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Abstract
Spontaneous intracerebral haemorrhage (ICH) is a 
devastating type of stroke with high mortality and 
morbidity and for which no effective treatments are 
available to date. Much experimental and clinical research 
have been performed to explore its mechanisms regard 
the subsequent inflammatory cascade and to seek the 
potential therapeutic strategies. The aim of this review 
is to discuss insights from clinical settings that have led 
to the development of numerous animal models of ICH. 
Some of the current and future challenges for clinicians to 
understand ICH are also surveyed.

Introduction and definitions
Acute spontaneous intracerebral haemor-
rhage (ICH) (non-traumatic) affects approxi-
mately 2 million people each year in the world, 
and it is the most serious and least treatable 
form of stroke.1 Stroke was also the second 
most common cause of disability-adjusted 
life years, and according to a report from the 
Global Burden of Disease 2016 Lifetime Risk 
of Stroke Collaborators, the estimated global 
lifetime risk of stroke in 2016 for those aged 
25 years or older was 24.9%.2

ICH indicates that blood has deposited in 
the brain parenchyma3 and may extend into 
the ventricles. Blood components, including 
leucocytes, haemoglobin, thrombin, plasmin, 
complement, plasma and fibrin degradation 
products appear in the brain tissues.4 An 
inflammatory response and brain cell death 
take place subsequently, which may involve 
enzyme activation, cytokine release, leuco-
cyte migration and brain tissue breakdown 
and repair.5 Forty per cent of patients die 
within the first 30 days,6 the mortality rate at 
the first month is 43%–51%, and the survi-
vors have irreversible consequences depen-
dent on the injured location.6 The most 
common neurological deficit is hemiplegia 
or anaesthesia.7 There can be dysphasia,8 
cognitive deficits,9 emotional difficulties,10 
daily living problems and pain.11 In addi-
tion, numbness or tingling is also a common 
deficit. ICH in the brain stem may influence 
vision, swallowing, breathing, balance and 
consciousness.12

The amount of research on ICH lacks that 
of ischaemic stroke. The mechanisms of 
delayed clinical deterioration after ICH still 
remain unclear. This review is mainly focused 
on summing ICH occurring in the clinical 
setting and in different animal models, and 
describes progress in pathophysiology of 
brain damage after ICH.

ICH in the clinical setting
The worldwide annual incidence of sponta-
neous ICH is 12–35 per 100 000 population, 
which accounts for approximately 15% of 
cerebral strokes; it has a higher mortality rate 
compared with that of cerebral ischaemia.13 
The major high-risk factors for ICH are an 
elderly population,14 male sex,15 current 
smoking,16 excessive alcohol consumption,17 
low total cholesterol level,18 long sleep dura-
tion,19 illicit drug use,20 Asians ethnic origin21 
and genetic factors.22 Other clinical disease 
can cause ICH, including hypertension,23 
coagulopathy,24 cerebral amyloid angiopathy 
(CAA),25 cerebral tumours,26 intracranial 
arterial aneurysm,27 vascular anomalies,28 
brain trauma,29 premature birth,30 haemor-
rhagic conversion of stroke,31 posterior revers-
ible encephalopathy syndrome,32 vasculitis,33 
infective endocarditis,34 dural arteriovenous 
fistula,35 brain arteriovenous malformation,36 
cavernous malformation37 and intracranial 
venous thrombosis38 (figure  1). ICH asso-
ciated with hypertension remains the most 
common form of ICH.23 The importance of 
CAA is growing due to ageing population.25 
Besides, drug-related ICH, particularly antico-
agulants, is also a major cause of ICH.39

Effective treatment for ICH is still scarce.40 
However, clinical therapeutic strategies 
includes medication and surgery.41 Drug 
therapy is the most common treatment 
for ICH. This includes prevention of ICH 
based on treating an individual’s underlying 
risk factors, for example, control of hyper-
tension.42 Hyperglycaemia in diabetics is 
common after stroke; managing glucose 
level may reduce the stroke size.43 Oxygen 
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Figure 1  Risk factors of ICH. (A) Risk factors of ICH. (B) 
Some clinical diseases that can cause ICH. ICH, intracerebral 
haemorrhage.

is given as needed. Surgery can be used to prevent ICH 
by repairing vascular damage or malformations in and 
around the brain, or to treat acute ICH by evacuating the 
haematoma; however, the benefit of surgical treatment is 
still controversial44 due to very few controlled randomised 
trials. Rehabilitation may help overcome disabilities that 
result from ICH damage.45

Animal models of ICH
Animal models of ICH may help us to understand its 
pathogenesis and explore preventive or therapeutic 
approaches. Experimental ICH models have been 
studied in several species including mouse,46 rat,47–49 
rabbit,50 51 cat,52 pig53 and primate.54 The ICH model 
should be selected carefully to fit study aims (table 1).

Microballoon insertion models
An acute expanding lesion model using a mechanical 
microballoon to simulate the space-occupying effect 
of ICH was developed by Sinar in the adult rat in 1987 
(although this model lacks the effects of blood compo-
nents).55 The microballoon system consists of an embo-
lisation balloon mounted on a 20-gauge venous cannula 
using its own previously blunted guide. The microballoon 
is then inflated with saline in a syringe. After balloon 

inflation in the caudate nucleus of rats, intracranial pres-
sure (ICP) increases significantly and cerebral blood 
flow (CBF) decreases subsequently in ipsilateral frontal 
cortex and caudate nucleus.56 Microballoons (25 mL and 
50 mL in volume) that mimic lesion size in man cause 
little change in ICP. However, a larger volume (100 mL) 
increases ICP.57 The volume of ischaemic damage in 
the ipsilateral caudate nucleus for inflation group was 
reported to be 10-fold more than that for sham-treated 
group.55 Compared with transient inflation groups, 
amounts of injured neurons in permanent groups was 
significantly higher.58 Deflation of balloon after 10 min 
was shown to improve clinical outcome and reduced CBF 
abnormalities in rats.59 Therefore, to defend the devel-
opment of irreversible neurological deficits and death 
in this model, evacuation of expanding haematoma-like 
mass is necessary within a proper time window. Similarly, 
a microballoon inserted into the ventral posterolateral 
nucleus of the thalamus in cat caused a rapid reduction 
in CBF following gradual balloon inflation.60

Autologous whole blood injection models
Anatomically localised haematomas may be realised by 
this method without artificial agents.48 49 61 Except for 
needle insertion, autologous blood injection may closely 
mimic clinical ICH. The autologous blood extracted 
from tail or femoral artery of animal is directly injected 
into particular brain regions. Several studies employ this 
model to survey brain injury mechanisms. Hydroceph-
alus, cell death, inflammation and behavioural disor-
ders may be induced by autologous blood injection in 
rats.47–49 62–64 Studies in the dog have shown that despite 
a prominent increase in ICP and mean arterial pressure 
after ICH, ischaemic penumbra in the first 5 hours after 
ICH was not demonstrated.65 Increased ICP as well as 
compromised CBF and metabolism following ICH have 
been shown66 in the cats, rabbits, monkeys and pigs. Pigs 
have been frequently studied for clot evacuation.67 68 For 
instance, a tPA (tissue Plasminogen Activator)-induced 
clot lysis study showed that reduction in clot size was 
significantly greater than mechanical aspiration alone. 
In the rabbit model,69 urokinase treated animals showed 
86% of clot lysis compared with injection of saline into 
clot (23%). Effects of blood components, including leuco-
cyte fractions, erythrocytes, plasma, serum, thrombin and 
plasmin, were demonstrated separately in rats.49 70 Leuco-
cytes, activated leucocytes, thrombin and plasminogen 
caused brain oedema, inflammation and brain cell death 
when they were injected into the brain.47 Components 
of the coagulation system can modulate inflammation.71 
Activation of the complement system72 and injections of 
haemoglobin as well as erythrocytes into the brain may 
lead to brain oedema.61 70

Collagenase animal model of ICH
This model was developed by Rosenberg’s group. Bacterial 
collagenases, which may destroy capillary basal lamina, are 
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Table 1  Animal models of ICH

Mediators of injury Advantages Disadvantages Citation

Microballoon Microballoon model successfully in producing 
an effective brain lesionwithreduction in 
cerebral blood flow and an increase in 
intracranial pressure at the site of damage.

Fails to address the potential effects of blood 
and subsequent substances released by the 
clot formation.

55–60

Autologous whole 
blood

The autologous blood injection model 
providesa sterile system without exogenous 
proteins, a good way to investigate the natural 
coagulation and inflammation pathways after 
ICH.

The amount of blood injected into the brain is 
significantly higher than other mediators, there 
is always a risk of blood disruption in the 
subarachnoid and ventricular spaces.

47–49 61–72

Collagenase Collagenase injection model offers an 
easier procedure and a highly reproducible 
haemorrhage.

The bacterial collagenase can introduce 
a significant inflammatory reaction to 
affect investigation of innate inflammatory 
responses; Disrupted BBB could unnaturally 
facilitate drugaccess to the brain during 
pharmacological (eg, neuroprotection) 
experiments.

62 64 73–77

Thrombin This model has been used to study the 
mechanisms of thrombin toxicity that cause 
neuroinflammation and cell death

This model provides minimal utility beyond 
thrombin toxicity research.

47 78–80

Hypertensive stroke 
models

This model has been used to study the 
mechanisms of thrombin toxicity to study 
the mechanism of brain injury following 
hypertensive ICH.

The disadvantage of this model is that brain 
lesions are unpredictable with regard to size 
and location.

81–83

Periventricular
/intraventricular 
haemorrhage
(PVH/IVH)

This model mimics the hydrocephalus 
following PVH/IVH in prematurely born 
infants, it provides an opportunity to study 
mechanisms of cellular injury after PVH/IVH.

This model provides minimal utility other than 
PVH/IVH.

30 46 84–92

BBB, blood brain barrier.

injected into basal ganglia to induce ICH.73 74 Reproduc-
ible haemorrhage without significant blood leakage along 
the needle track mimics spontaneous ICH. Following 
ICH induced by collagenase in rats, behavioural improve-
ment is rapid but incomplete at 3 weeks, accompanied 
by resolution of the oedema.62 This model is also used to 
study treatment following ICH.73–77 Compared with autol-
ogous blood injection model and venous haemorrhage 
model by avulsion of cerebral surface vessels, collagenase 
model introduces exogenous protein that may cause 
more inflammatory reactions.64 Addition of heparin 
to collagenase injection enhances the inflammation in 
rat brain.62 From an anatomical perspective, the extent 
of brain injury is more consistent for collagenase than 
other models. However, from a biological perspective, it 
is the most artificial. In addition, compared with other 
models, inflammation and cell death begin earlier. Colla-
genase induces a haematoma, and may cause cell damage 
directly and rapidly. Thus, the model has distinct differ-
ences from ICH in the clinical setting and the autologous 
bloodinjection model.

Thrombin model of ICH
Thrombin toxicity activates microglia and promotes 
cytokine production that causes neuroinflammation 
and cell death. Thrombin released from haematoma is 
a main contributor to secondary brain damage in acute 

ICH.47 78 Intraventricular injection of thrombin causes 
significant hydrocephalus, ventricular wall damage and 
periventricular blood–brain barrier (BBB) disruption.79 
Intrastriatal thrombin injection that impairs neurogen-
esis and spatial memory function is partly mediated by 
inflammation, which is characterised by the activation of 
CD68 positive microglia/macrophages.80 This model has 
been used to study the mechanisms of thrombin toxicity 
that cause neuroinflammation and cell death.78 80 A disad-
vantage of this model is that it provides minimal utility 
beyond thrombin toxicity research.

Hypertensive stroke models
Hypertension is the most common risk factor for ICH. 
Hypertension also induces changes in the walls of small 
vessels in the brain leading to rupture, which make the 
blood bleed into the brain parenchyma. To understand 
the effect of hypertension induced haemorrhage and to 
develop treatment for it, several animal models have been 
developed.81 Renovascular hypertension may be induced 
by renal artery constriction. By means of ring-shaped silver 
clips, roots of both renal arteries are constricted.82 The 
rate of stable hypertension was 100% and the incidence 
of spontaneous stroke including ICH and brain infarct 
was 61.8% at 40 weeks after renal artery constriction.82 
Furthermore, the induced hypertension is not dependent 
on renin, brain angiotensin and perhaps circulating 
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vasopressin.81 Stroke prone spontaneously hypertensive 
rats may also develop cerebral haemorrhage as well as 
cerebral infarct.83 The brain lesions in this model include 
old and fresh cerebral haemorrhage and infarcts with 
or without subarachnoid effusion. These models simu-
late hypertensive ICH in humans and offer the chance 
to study the mechanism of brain injury following hyper-
tensive ICH. The disadvantage is that brain lesions are 
unpredictable with regard to size and location.

Models of neonatal periventricular/intraventricular 
haemorrhage
Periventricular/intraventricular haemorrhage (PVH/
IVH) occurs most commonly in premature infants of 
24–30 weeks gestation.30 The mechanisms of germinal 
matrix (GM) haemorrhage have been illustrated in 
immature animals, including cats, dogs, rabbits and 
sheep. Fluctuations in arterial and venous blood pressure 
can cause PVH.84 In prematurely born rabbits (27–30 
days gestation), IVH may be induced by glycerol to create 
intracranial hypotension.85 86 In a newborn beagle model, 
injection of phenylephrine hydrochloride intravenously 
induces hypertension which can cause IVH.87 Intraven-
tricular injection of blood in dog has been employed 
to explore the influence of acute ventricular expansion 
on adjacent blood flow patterns.88 Dog models may be 
employed to survey risk factors for PVH/IVH.84 Unlike 
those seen in humans, superficial foci of bleeding may be 
induced in neonatal hypoxia mouse model.89 However, 
these researches are related to physiological and anatom-
ical characteristics that allow occurrence of PVH/IVH, but 
not the tissue reactions. By injection of autologous whole 
blood into periventricular tissue including GM and stri-
atum, we developed a novel PVH/IVH model in newborn 
mice.46 Haematoma expanded into the ventricles in 
most mice, which mimics GM haemorrhage in humans 
at 24–28 weeks gestation age. Therefore, according to 
imaging research in premature human infants, this model 
mimics grade III/IV PVH/IVH.90 This model provides an 
opportunity to study mechanisms of cellular injury after 
PVH/IVH. By injection of blood into the ventricles of the 
7-day-old rats, posthaemorrhagic hydrocephalus may be 
induced.91 It mimics the hydrocephalus following PVH/
IVH in prematurely born infants.92

Other animal models of ICH
In addition to the above-mentioned ICH animal models, 
others have also been developed. Cortical vessel avul-
sion by tearing the pia can cause mixed brain damage 
including ischaemic and haemorrhagic.64 Cortical vessel 
avulsion causes ischaemic infarction and haemorrhage. 
Therefore, it is not a simple ischaemic stroke model,93 94 
but an ischaemia and haemorrhagic mixed model just 
like traumatic cortical laceration. Additionally, haemor-
rhage related to shaking injury in the 6-day-old rats has 
been studied as a model of child abuse.95 Some forms of 
traumatic brain injury also cause bleeding into the brain 

parenchyma.96–98 None of the above-mentioned ICH 
models completely reproduce the brain injury response 
following human ICH. However, these models have signif-
icantly contributed to the overall knowledge of the patho-
physiology of human ICH including oedema, inflamma-
tion, cell death, brain damage, compromised CBF and 
metabolism as well as pathogenesis.

Pathophysiology of brain damage after ICH
ICH causes brain damage through multiple mechanisms.
1.	 Mechanical injury of brain: Mechanical injury of brain 

tissue may be induced by the expanding haemato-
ma,29 56 and mechanical and chemical factors may re-
duce local CBF around the haematoma.56 Raised ICP 
and distortion of the microvasculature contribute to 
oedema and secondary brain damage.56 As cerebral oe-
dema develops, ICP increases and cerebral perfusion 
pressure declines.56 In this regard, ICH has similarities 
to ischaemic stroke particularly in the penumbra re-
gion that surrounds the haematoma.99 100 If the hae-
matoma is large and secondary infarction follows, the 
surrounding tissue may become necrotic.101

2.	 Complex immune and inflammatory cascades: Throm-
bin and plasmin are potentially toxic in the first day 
following ICH.102 Local ischaemia, release of toxins by 
blood breakdown products, release of iron,103 proteo-
lytic enzymes or inflammation involving chemokines, 
cytokines and leucocytes all contribute to delayed 
damage.47 62–64 70 75 102 104 105 Degenerating erythrocytes 
and fragmented nuclear debris may be observed after 
24 hours. Two to three days after ICH, erythrocytes be-
gin to break down, and haemoglobin is released. He-
mosiderin is evident in macrophages as early as 3 days 
after the bleed.106 Iron-dependent formation of ox-
idising agents results in brain damage.70 107 Damaged 
brain cells, reactive microglia/macrophages and neu-
trophils produce reactive oxygen species (ROS) that 
cause brain cell damage following ICH.29 108 Moreover, 
chemotactic factors, including thrombin, are released 
from blood clot and damaged brain after ICH.109 The 
transit of leucocytes from blood vessels into the insult-
ed brain may be prompted by thrombin.110 Neutrophil 
infiltration and reactive glial changes including astro-
cyte activation and microglia reaction in the brain ad-
jacent to the haematoma are obvious at 2–3 days after 
ICH.108 111–113 Secondary brain damage may be caused 
by activated leukocytes through liberating cytokines, 
ROS, NO, matrix metalloproteinases (MMPs) and oth-
er proteases.114 115 Large clots degrade very slowly be-
cause the macrophage ingestion of debris takes place 
only in the periphery of haematoma. For months after 
clot resolution, residual hemosiderin and mineralisa-
tion may be detected along the haematoma cavity. In 
IVH, blood debris may obstruct the cerebral aqueduct 
and cause hydrocephalus.41 116 The transition of pro-
teolytic enzymes from plasma into the brain parenchy-
ma, including thrombin, plasmin and complement 
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Figure 2  In the earliest stage of ICH, the primary injury 
causes blood products (Fe2+, Hb, thrombin) to leak into 
the damage area to activate microglia/macrophages to 
express high levels of IL-6, IL-1β, TNFα, GM-CSF, INFγ, 
ROS, RNS, CCLs, HO-1 and MMPs. These changes 
extend the brain damage such as brain oedema, cell death, 
blood–brain barrier disruption and neurological deficits. 
CCLs, chemokines subfamilies; GM-CSF, granulocyte-
macrophage colony stimulating factor; Hb, haemoglobin; 
HO-1, heme oxygenase-1; INFγ, interferon-γ; MMPs, matrix 
metalloproteinases; RNS, reactive nitrogen species; ROS, 
reactive oxygen species; TNFα, tumour necrosis factorα.

proteins, may exacerbate ICH injury.117 MMPs are 
proteolytic enzymes with relative specificity for compo-
nents of the extracellular matrix. Following brain in-
jury MMPs, such as MMP-3 and MMP-9, are produced 
by infiltrating inflammatory cells, microglia and astrog-
lia.118 Plasmin can promote the activity of MMPs.119 120 
MMPs may injure directly by processing death mole-
cules (eg, FasL), disrupting myelin and perpetuating 
inflammation119 120 (figure  2). This could also occur 
after ischaemia because large molecular weight pro-
teins, including plasminogen and prothrombin, may 
penetrate the BBB.121–124 They may contribute to brain 
oedema102 125 (eg, albumin), cellular necrosis (eg, 
thrombin and plasmin) and inflammation47 (eg, com-
plement).

3.	 Beneficialfactors: The proinflammatory microglia/
macrophages play an important role in the early stages 
after ICH. However, increasing evidence indicates that 
the regulatory microglia/macrophages with potential 

reparative and anti-inflammatory roles in the later 
phase of ICH can resorb haematoma and resolve oe-
dema, contributing to improved white matter integri-
ty, repair and functional recovery.126 127 A recent study 
provesastrocytic-derived humanin could act as a ben-
eficial factor in promoting a phagocytic/reparative 
phenotype.128

Conclusion
Despite great advances in ischaemia stroke, no prominent 
improvement in the morbidity and mortality after ICH 
have been realised. The current understanding of ICH is 
still limited, and the models do not completely mirror the 
human condition. Novel effective modelling is required 
to mimic spontaneous ICH in humans and allow for effec-
tive studies on mechanisms and treatment of haematoma 
expansion and secondary brain injury.
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