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Abstract: This study aimed to investigate the effects of dietary AFB1 on growth performance, health,
intestinal microbiota communities and AFB1 tissue residues of turbot and evaluate the mitigation
efficacy of yeast cell wall extract, Mycosorb® (YCWE) toward AFB1 contaminated dietary treatments.
Nine experimental diets were formulated: Diet 1 (control): AFB1 free; Diets 2–5 or Diets 6–9: 20 µg
AFB1/kg diet or 500 µg AFB1/kg diet + 0%, 0.1%, 0.2%, or 0.4% YCWE, respectively). The results
showed that Diet 6 significantly decreased the concentrations of TP, GLB, C3, C4, T-CHO, TG
but increased the activities of AST, ALT in serum, decreased the expressions of CAT, SOD, GPx,
CYP1A but increased the expressions of CYP3A, GST-ζ1, p53 in liver. Diet 6 increased the AFB1

residues in serum and muscle, altered the intestinal microbiota composition, decreased the bacterial
community diversity and the abundance of some potential probiotics. However, Diet 8 and Diet 9
restored the immune response, relieved adverse effects in liver, lowered the AFB1 residues in turbot
tissues, promoted intestinal microbiota diversity and lowered the abundance of potentially pathogens.
In conclusion, YCWE supplementation decreased the health effects of AFB1 on turbot, restoring
biomarkers closer to the mycotoxin-free control diet.

Keywords: Aflatoxin B1; adsorbent; physiological effects; intestinal microbiota; AFB1 residues; turbot;
yeast cell wall extract

Key Contribution: Yeast cell wall extract, used as a mycotoxin mitigation strategy, could effectively
restore the immune response, counteract liver damage and disruption of intestinal microbiota and
decrease AFB1 residues in tissues of turbot induced by AFB1-contaminated diet.

1. Introduction

Aquaculture is the fastest growing food production industry in the world, and by 2030 it is
expected to provide 60 percent of the fish available for human consumption [1]. In aquaculture,
plant-based protein alternatives are used to replace or partially replace fish meal since exclusive use
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of fish meal is not sustainable [2–4]. However, plant-based ingredients are easily contaminated with
mycotoxins, which increase the health risks to fish [5,6]. Aflatoxin B1 (AFB1), the secondary metabolite
of fungi Aspergillus parasiticus and A. flavus [7], is one of the most harmful mycotoxins [8]. In poultry
and livestock, the detrimental effects of AFB1 include low productivity, high mortality of offspring,
anorexia, poor growth, immune dysfunction, and AFB1 residues in edible animal parts [9–15]. In fish,
there were studies of various species exposed to AFB1. Most of these studies concentrated on the
impact on growth performance, liver lesions and immunosuppression induced by dietary AFB1. It had
been reported that when sea bass (Dicentrarchus labrax) were fed a diet with 18 µg AFB1/kg of body
weight, adverse effects (liver lesions and AFB1 residues in musculature) were induced [16]. Studies
on rainbow trout (Oncorhynchus mykiss) indicated that toxic effects of AFB1 could be induced when
fish were fed more than 0.05 µg AFB1/kg diet [17–22]. There was also plenty of research in nile tilapia
(Oreochromis niloticus) [23–26], the poor growth performance was caused by more than 250 µg AFB1/kg
in diet. Other relevant studies also included gibel carp (Carassius auratus gibelio) [27–29], grass carp
(Ctenopharyngodon idella) [30], rohu (Labeo rohita) [31–33], red tilapia (O. niloticus × O. mossambicus) [34],
channel catfish (Ictalurus punctatus) [35], tambaqui fingerlings (Colossoma macropomum) [36], beluga
(Huso huso) [37] and Thai koi (Anabas testudineus) [38]. Usually the toxic effects of AFB1 occurred when
the dose was greater than 100 µg/kg diet.

AFB1 is classified as Group 1 carcinogen of hepatocellular carcinoma to human by International
Agency for Research on Cancer [39]. Consequently, food consumption of AFB1 presents a serious risk
to human health [40–42]. Few studies showed the results of AFB1 residues in musculature in fish
such as sea bass [16], gibel carp [27], tambaqui [36] and Thai koi [38], whereas other studies did not
detect AFB1 tissue residues in nile tilapia [26] and red tilapia [34]. The disparities observed in these
studies show the potential differences in responses and absorption/metabolization processes amongst
fish species following AFB1 exposure. In addition, information on the effect of AFB1 on intestinal
microbiota of fish is limited. Therefore, a more complete comprehensive understanding of the effects
of AFB1 in fish is necessary.

AFB1 is stable and difficult to remove from contaminated feed; therefore, one of the strategies
is to decrease its bioavailability [43]. Nowadays, adsorbing agents which could prevent AFB1 from
being absorbed by the intestine are widely studied and used [41,43]. The studies of these products,
including hydrated sodium calcium aluminosilicate, activated carbon, zeolites and yeast cell wall, etc.,
have been reviewed comprehensively [43–48]. Due to the negative effects of some of the inorganic
adsorbents, such as adsorption of micronutrients [44,45], high inclusion rates [49] and limited adsorbing
capacity to multiple mycotoxins [48,50], research has shifted to focus on composite-type mycotoxin
adsorbents [43,51–53]. Yeast cell wall extract (YCWE) is an adsorbent that contains yeast cell wall, beer
yeast powder, calcium carbonate and hydrated sodium calcium aluminosilicate, which have shown
favorable effects in livestock and poultry challenged with mycotoxin exposure [54–63].

Turbot (Scophthalmus maximus) is an important commercial marine species in aquaculture. Recently,
plant-based ingredients have been more widely used in the feeds of marine fish [2], with some inclusion
levels higher than 50% of the total feed ingredients [64–67]. Research about the effects of AFB1 and
mycotoxin adsorbents on turbot health and performance is lacking. Therefore, this study was aimed
to investigate the impacts of AFB1 in turbot and evaluate the effects of YCWE on turbot fed AFB1

contaminated diets.

2. Results

2.1. Growth Performance

No significant difference was observed in FI and survival rate (p > 0.05) (Table 1). No significant
difference was observed in WGR, SGR and FE in Diets 1–5 (p > 0.05) (Table 1). WGR and SGR of fish
fed Diet 6 were lower than that of fish fed Diet 1 but no significant difference was observed (p > 0.05)
(Table 1). The FE of fish fed Diet 6 was significantly lower than that of fish fed Diet 1 (p < 0.05) (Table 1).
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No significant difference was observed in moisture and crude protein content of fish (p > 0.05) (Table 2).
No significant difference was observed in content of ash and crude lipid of fish fed Diets 1–5 (p > 0.05)
(Table 2). The content of crude lipid of fish fed Diet 6 was significantly lower than that of fish fed Diet
1. The Diet 8 and Diet 9 resulted in significantly higher crude lipid content compared to fish fed Diet 6,
but this was still significantly lower than that of fish fed Diet 1 (p < 0.05) (Table 2). Conversely, the
content of ash of fish fed Diets 6, 7 and 8 was significantly higher than that of fish fed Diet 1 (p < 0.05)
(Table 2). However, no significant difference of the ash content was observed between Diet 1 and Diet
9 (p > 0.05) (Table 2).

2.2. Biochemical Analysis of Serum

2.2.1. TP, ALB and GLB

No significant difference was observed in the concentration of serum TP of fish fed Diets 1–5
(p > 0.05) (Figure 1A). The concentration of TP of fish fed Diet 6 was significantly lower than that
of fish fed Diet 1 (p < 0.05) (Figure 1A). However, Diets 7, 8 and 9 resulted in significantly higher
concentration of TP compared to Diet 6 (p < 0.05) (Figure 1A). No significant difference was observed in
the concentration of serum ALB (p > 0.05) (Figure 1B). The concentration of GLB of fish fed Diet 2 and
Diet 6 was significantly lower than that of in control diet (p < 0.05) (Figure 1C). However, Diet 8 and
Diet 9 resulted in significantly higher concentration of GLB compared to Diet 6 (p < 0.05) (Figure 1C).
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Figure 1. The effects of AFB1 and YCWE in serum TP, ALB and GLB concentrations of turbot. (A) Total
protein (TP); (B) albumin (ALB); (C) globulin (GLB). Values represented are means ± S.E. of 3 replicate
tanks. a, b, c, d Value bars not sharing a same superscript letter are significantly different (p < 0.05).

2.2.2. IgM, C3, C4 and LZM

No significant difference was observed in the concentration of serum IgM and the activity of
serum LZM among all groups (p > 0.05) (Table 3). No significant difference was observed on the
concentrations of serum C3 and C4 of fish fed Diets 1–5 (p > 0.05) (Table 3). The concentrations of
serum C3 and C4 of fish fed Diet 6 were significantly lower than that of fish fed Diet 1, while serum
C3 and C4 concentrations of fish fed Diets 7, 8 and 9 were equal to those observed in fish fed Diet 1
(p > 0.05) (Table 3).
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Table 1. Effects of aflatoxin B1 (AFB1) and yeast cell wall extract (YCWE) on growth performance and feed utilization in turbot *.

Diets AFB1 (µg/kg) YCWE (%) IBW 1 (g) FBW 1 (g) FI (%/day) WGR (%) SGR (%/day) FE Survival (%)

1 0 0 12.46 ± 0.10 38.37 ± 0.27 1.03 ± 0.04 208.0 ± 4.1 ab 1.68 ± 0.02 ab 1.49 ± 0.06 c 92.22 ± 1.11
2 20 0 12.36 ± 0.02 40.32 ± 2.64 1.15 ± 0.04 226.1 ± 21.1 b 1.76 ± 0.10 b 1.37 ± 0.02 abc 96.67 ± 1.93
3 20 0.1 12.48 ± 0.03 38.78 ± 0.45 1.17 ± 0.04 210.7 ± 3.8 ab 1.69 ± 0.02 ab 1.31 ± 0.04 abc 98.89 ± 1.11
4 20 0.2 12.40 ± 0.05 39.03 ± 2.17 1.12 ± 0.04 214.5 ± 16.1 ab 1.71 ± 0.08 b 1.38 ± 0.01 abc 93.33 ± 0.00
5 20 0.4 12.41 ± 0.06 39.04 ± 0.50 1.08 ± 0.02 214.7 ± 2.6 ab 1.71 ± 0.01 b 1.43 ± 0.03 bc 95.56 ± 1.11
6 500 0 12.45 ± 0.04 34.34 ± 0.15 1.10 ± 0.01 175.8 ± 1.9 ab 1.51 ± 0.01 ab 1.27 ± 0.01 ab 95.55 ± 2.22
7 500 0.1 12.48 ± 0.06 32.79 ± 0.65 1.12 ± 0.01 162.6 ± 4.7 a 1.44 ± 0.03 a 1.20 ± 0.02 a 92.70 ± 2.03
8 500 0.2 12.43 ± 0.06 34.26 ± 1.65 1.14 ± 0.04 175.6 ± 13.2 ab 1.51 ± 0.07 ab 1.22 ± 0.05 a 97.78 ± 1.11
9 500 0.4 12.38 ± 0.06 34.08 ± 1.40 1.08 ± 0.03 175.1 ± 9.9 ab 1.51 ± 0.05 ab 1.29 ± 0.06 ab 95.55 ± 2.22

* Values represented are means ± S.E. of 3 replicate tanks. a, b, c Values in a column not sharing a same superscript letter are significantly different (p < 0.05). 1 IBW: initial body weight;
FBW: final body weight.

Table 2. Effects of AFB1 and YCWE on carcass composition in turbot *.

Diets AFB1 (µg/kg) YCWE (%) Moisture (%) Crude Protein 1 (%) Crude Lipid 1 (%) Ash 1 (%)

1 0 0 78.17 ± 0.24 64.21 ± 0.28 19.15 ± 0.31 c 15.11 ± 0.06 a

2 20 0 77.57 ± 0.29 64.41 ± 1.18 19.55 ± 0.21 c 15.12 ± 0.31 a

3 20 0.1 77.00 ± 1.41 65.86 ± 0.85 19.82 ± 0.01 c 15.38 ± 0.17 a

4 20 0.2 78.97 ± 0.34 66.54 ± 0.74 19.19 ± 0.10 c 15.74 ± 0.04 ab

5 20 0.4 79.22 ± 0.14 67.15 ± 1.15 19.18 ± 0.07 c 15.73 ± 0.09 ab

6 500 0 79.46 ± 1.10 66.69 ± 0.55 16.53 ± 0.18 a 16.47 ± 0.03 c

7 500 0.1 79.59 ± 0.23 66.32 ± 0.11 16.99 ± 0.06 a 16.53 ± 0.06 c

8 500 0.2 78.56 ± 0.51 65.11 ± 0.19 18.18 ± 0.03 b 16.28 ± 0.02 bc

9 500 0.4 78.96 ± 0.31 65.43 ± 0.25 18.15 ± 0.12 b 15.73 ± 0.06 ab

* Values represented are means ± S.E. of 3 replicate tanks. 1 Expressed as a percentage of dry matter. a, b, c Values in a column not sharing a same superscript letter are significantly different
(p < 0.05).
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Table 3. Effects of AFB1 and YCWE on hematological parameters in turbot *.

Diets AFB1 (µg/kg) YCWE (%) IgM (g/L) C3 (g/L) C4 (g/L) LZM (U/L) TG (mmol/L) T-CHO
(mmol/L)

1 0 0 3.26 ± 0.01 5.67 ± 0.15 b 0.976 ± 0.028 b 0.360 ± 0.014 13.43 ± 0.38 bc 4.04 ± 0.08 b

2 20 0 3.20 ± 0.03 5.56 ± 0.09 b 0.933 ± 0.021 b 0.349 ± 0.007 13.28 ± 0.26 bc 4.27 ± 0.21 b

3 20 0.1 3.21 ± 0.03 5.53 ± 0.08 b 0.967 ± 0.035 b 0.366 ± 0.005 13.79 ± 0.12 c 4.06 ± 0.03 b

4 20 0.2 3.10 ± 0.07 5.38 ± 0.14 b 0.912 ± 0.014 ab 0.349 ± 0.011 14.07 ± 0.50 c 4.24 ± 0.24 b

5 20 0.4 3.09 ± 0.02 5.48 ± 0.12 b 0.945 ± 0.029 b 0.354 ± 0.006 13.82 ± 0.33 c 3.85 ± 0.11 ab

6 500 0 3.17 ± 0.04 4.47 ± 0.09 a 0.809 ± 0.012 a 0.347 ± 0.005 10.77 ± 0.12 a 3.25 ± 0.19 a

7 500 0.1 3.22 ± 0.02 5.28 ± 0.06 b 0.892 ± 0.016 ab 0.365 ± 0.007 10.57 ± 0.03 a 3.22 ± 0.09 a

8 500 0.2 3.19 ± 0.02 5.40 ± 0.06 b 0.889 ± 0.015 ab 0.353 ± 0.005 12.00 ± 0.20 ab 3.68 ± 0.06 ab

9 500 0.4 3.24 ± 0.06 5.46 ± 0.13 b 0.930 ± 0.006b 0.363 ± 0.007 12.00 ± 0.45 ab 3.70 ± 0.28 ab

* IgM: immunoglobulin M; C3/C4: complement component C3/C4; LZM: lysozyme; TG: triglyceride; T-CHO: total cholesterol. Values represented are means ± S.E. of 3 replicate tanks.
a, b, c Values in a column not sharing a same superscript letter are significantly different (p < 0.05).
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2.2.3. TG and T-CHO

No significant difference was observed on the concentrations of serum TG and T-CHO of fish fed
Diets 1–5 (p > 0.05) (Table 3). The concentrations of serum TG and T-CHO of fish fed Diet 6 and Diet
7 were significantly lower than that of fish fed Diet 1 (p < 0.05) (Table 3). In addition, no significant
difference was observed on the concentrations of serum TG and T-CHO of fish fed Diet 8 and Diet 9
compared to Diet 1 (p > 0.05) (Table 3).

2.2.4. ALP, AST and ALT

No significant difference was observed in the activity of serum ALP among all groups (p > 0.05)
(Figure 2A). No significant difference was observed in the activities of serum AST and ALT of fish
fed Diets 1–5 (p > 0.05) (Figure 2B,C). The activities of AST and ALT in serum of fish fed Diet 6 were
significantly higher than that of fish fed Diet 1 (p < 0.05) (Figure 2B,C). However, fish fed Diet 8 and
Diet 9 had significantly lower activities of AST and ALT in serum compared to fish fed Diet 6 (p < 0.05)
(Figure 2B,C).
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2.3. Gene Expression in Liver

2.3.1. Antioxidant Genes

No significant difference was observed for gene expression of CAT, SOD or GPx of fish fed
Diets 1–5 (p > 0.05) (Figure 3A–C). The gene expression of CAT, SOD and GPx of fish fed Diet 6 was
significantly lower than that of fish fed Diet 1 (p < 0.05) (Figure 3A–C). Compared to Diet 6, the gene
expression of CAT of fish was significantly heightened by Diet 9 (p < 0.05) (Figure 3A), and the gene
expression of SOD of fish was significantly heightened by Diet 8 and Diet 9 (p < 0.05) (Figure 3B).
No significant difference was observed for gene expression of CAT, SOD or GPx when fish were fed
Diets 7, 8 and 9 compared to Diet 1 (p > 0.05) (Figure 3A–C).

2.3.2. CYP1A, CYP3A, GST-ζ1

No significant difference was observed on gene expression of CYP1A, CYP3A and GST-ζ1 of fish
fed Diets 1–5 (p > 0.05) (Figure 4A–C). The gene expression of CYP1A of fish fed Diet 6 was significantly
lower than that of fish fed Diet 1 (p < 0.05) (Figure 4A), while the expression was significantly higher in
fish fed Diet 8 and Diet 9 (p < 0.05) (Figure 4A). The gene expression of CYP3A and GST-ζ1 of fish
was significantly increased by Diet 6 (p < 0.05) (Figure 4B,C). Compared to Diet 6, the gene expression
of CYP3A of fish was significantly lowered by Diet 8 and Diet 9 (p < 0.05) (Figure 4B), and the gene
expression of GST-ζ1 of fish was significantly lowered by Diets 7, 8 and 9 (p < 0.05) (Figure 4C).
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No significant difference was observed for gene expression of CYP1A, CYP3A and GST-ζ1 when fish
were fed Diet 8 and Diet 9 compared to Diet 1 (p > 0.05) (Figure 4A–C).
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Figure 4. The effects of AFB1 and YCWE on CYP1A, CYP3A, GST-ζ1 and p53 expressions in liver of turbot.
(A) Cytochrome p450 1A (CYP1A); (B) cytochrome p450 3A (CYP3A); (C) glutathione-S-transferase-zeta
1 (GST-ζ1); (D) p53: tumor suppressor protein p53. Values represented are means ± S.E. of 3 replicate
tanks. a, b, c Value bars not sharing a same superscript letter are significantly different (p < 0.05).

2.3.3. Apoptosis Gene

No significant difference was observed on gene expression of p53 of fish fed Diets 1–5 (p > 0.05)
(Figure 4D). The gene expression of p53 of fish fed Diet 6 was significantly higher than that of fish fed
Diet 1 (p < 0.05) (Figure 4D). Compared to Diet 6, the gene expression of p53 of fish was significantly
lowered by Diet 8 and Diet 9 (p < 0.05) (Figure 4D). No significant difference was observed for gene
expression of p53 when fish were fed Diet 8 and Diet 9 compared to Diet 1 (p > 0.05) (Figure 4D).
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2.4. Intestinal Microbiota

After assembled, quality screened and trimmed, a total of 3,106,795 high quality valid reads
were obtained, resulting in identification of 22,064 OTUs under 97% sequence similarity. These OTUs
were assigned to 66 phyla, 82 classes, 185 orders, 375 families, and 1347 genera. Rarefaction curves,
rank abundance and species accumulation boxplot showed that all samples reached the saturation
phase, indicating adequate sequencing depth (Figure S1). At phylum level, Firmicutes, Proteobacteria,
Bacteroidetes were the predominant bacterial phyla in turbot intestinal content across all groups,
and Actinobacteria, Acidobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Deinococcus-Thermus,
Chloroflexi completed the top 10 most abundant phyla (Figure 5A). At the genus level, the top 10 most
abundant genera were Ignatzschineria, Sphingomonas, Massilia, Lactobacillus, Gardnerella, Acinetobacter,
Proteiniphilum, unidentified_Clostridiales, Enhydrobacter, Candidatus_Arthromitus (Figure 5B).
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The alpha diversity indices indicated that no significant difference was observed on OTUs, Chao1
index, ACE index and Shannon index of fish fed Diets 1–5 (p > 0.05) (Table 4). OTUs, Chao1 index,
ACE index and Shannon index were significantly lowered when fish were fed Diet 6 (p < 0.05) (Table 4).
The Diet 2 and Diet 6 resulted in significantly lower PD whole tree index in turbot intestinal microbiota,
especially, when fish were fed Diet 6, the PD whole tree index was even lower (p < 0.05) (Table 4).
However, the Diets 7, 8 and 9 resulted in significantly higher alpha diversity indices including OTUs,
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Chao1 index, ACE index, Shannon index, and PD whole tree index (p < 0.05) (Table 4). No significant
difference was observed on Simpson index among all groups (p > 0.05) (Table 4).

Table 4. Richness and diversity indices of intestinal microbiota of experimental turbot *.

Diets
AFB1

(µg/kg)
YCWE

(%)
Richness Estimates Diversity Estimates Phylogenetic

Diversity

OTUs Chao1 ACE Shannon Simpson PD whole tree

1 0 0 3918 ± 137 c 4014 ± 147 c 4203 ± 164 c 9.21 ± 0.15 b 0.973 ± 0.005 719.9 ± 24.9 d

2 20 0 3219 ± 147 bc 3306 ± 140 bc 3467 ± 140 bc 8.39 ± 0.49 ab 0.983 ± 0.004 451.7 ± 23.8 bc

3 20 0.1 3749 ± 188 c 3831 ± 199 c 3991 ± 222 c 9.52 ± 0.16 b 0.987 ± 0.003 464.0 ± 38.2 bc

4 20 0.2 3439 ± 228 bc 3551 ± 220 bc 3738 ± 214 bc 8.85 ± 0.42 ab 0.972 ± 0.011 428.0 ± 29.8 b

5 20 0.4 3402 ± 199 bc 3496 ± 201 bc 3656 ± 204 bc 8.80 ± 0.48 ab 0.971 ± 0.012 492.4 ± 41.1 bc

6 500 0 1353 ± 161 a 1411 ± 167 a 1495 ± 176 a 7.57 ± 0.35 a 0.974 ± 0.010 211.8 ± 15.3 a

7 500 0.1 3601 ± 173 c 3715 ± 169 c 3919 ± 174 c 8.87 ± 0.36 ab 0.971 ± 0.008 435.4 ± 26.1 b

8 500 0.2 3499 ± 75 bc 3569 ± 73 bc 3714 ± 73 bc 9.30 ± 0.17 b 0.982 ± 0.005 579.8 ± 15.7 c

9 500 0.4 2759 ± 237 b 2821 ± 236 b 2938 ± 244 b 9.21 ± 0.15 b 0.985 ± 0.002 396.4 ± 40.6 b

* Values represented are means ± S.E. of 3 replicate tanks. a, b, c, d Values in a column not sharing a same superscript
letter are significantly different (p < 0.05).

In Diets 1–5 groups, MRPP test confirmed the differences between groups were greater than
differences within groups (Table S1). The results of Adonis test indicated the intestinal microbial
community structure of fish fed Diet 1 or Diet 2 was significantly different from other groups, while
the difference within Diets 3, 4 and 5 was not significant (Table S1). Similarly, the PCoA (Figure 6A)
and UPGMA (Figure S2A) plot showed that samples clustered together according to the diets with
a clear separation among Diet 1, Diet 2 and Diets 3–5. In Diet 1, Diet 6 and Diet 8 groups, MRPP
test confirmed the differences between groups were greater than differences within groups (Table S2).
The results of Adonis test indicated the intestinal microbial community structure in these three groups
were significantly different from each other (Table S2). Similarly, the PCoA (Figure 6B) and UPGMA
(Figure S2B) plot showed that samples clustered together according to the diets with a clear separation
among Diet 1, Diet 6 and Diet 8.
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distances between Diet 1–5 or Diet 1, 6 and 8.

MetaStat analysis was conducted to compare the relative abundance of intestinal bacteria at genus
levels in Diet 1, Diet 6 and Diet 8 groups (Figure 7). The Diet 6 resulted in significantly lower abundance
of genera Lactobacillus, Lactococcus, Streptococcus, Faecalibacterium, unidentified Lachnospiraceae,
Blautia, unidentified Clostridiales, Alcaligenes, Sphingomonas, unidentified Enterobacteriaceae, and
unidentified Acidobacteria, as well as potential pathogenic genera Salmonella, Aeromonas and Comamonas
compared to Diet 1 (p < 0.05) (Figure 7). The Diet 8 resulted in significantly higher abundance of
genera Lactobacillus, Streptococcus, unidentified Lachnospiraceae, Blautia, unidentified Clostridiales,
unidentified Acidobacteria and Salmonella compared to Diet 6 (p < 0.05) (Figure 7). The Diet 8 resulted
in significantly lower abundance of genera Lactococcus, Bifidobacterium, and potential pathogenic genera
Salmonella, Aeromonas and Comamonas compared to Diet 1 (p < 0.05) (Figure 7).
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Figure 7. The MetaStat analysis of intestinal microbiota communities of juvenile turbot. (A–C) The
significantly changed abundance at genus level in Diet 1, 6 and 8. (A) Genera belong to phylum
Firmicutes. (B) Genera belong to phyla Proteobacteria, Acidobacteria, Actinobacteria. (C) Potential
pathogenic genera belong to phyla Proteobacteria. u_ means unidentified. *: p < 0.05, **: p < 0.01.
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2.5. AFB1 Residues in Serum and Muscle

No AFB1 residues in serum or muscle were detected in control group (Diet 1, Figure 8). The AFB1

residues in serum of fish fed Diet 4 and Diet 5 was significantly lower than that of fish fed Diet 2
(p < 0.05) (Figure 8A). The AFB1 residues in serum of fish fed Diet 9 was significantly lower than that
of fish fed Diet 6 (p < 0.01) (Figure 8A). Besides, the AFB1 residues in muscle of fish fed Diet 5 was
lower than that of fish fed Diet 2, fish fed Diet 8 and Diet 9 was lower than that of fish fed Diet 6, while
no significant difference was observed (p > 0.05) (Figure 8B).
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3. Discussion

In the present study, dietary AFB1 (20 and 500 µg/kg) did not remarkably affect the growth
performance of turbot in a 67-day feeding trial. The adverse effects of higher level of AFB1 in diet on
growth performance had been reported in several fish species. In nile tilapia, diets with AFB1 (2000
or 4000 µg/kg) remarkably reduced the weight gain (WG), FE, and the content of crude lipid [23],
while results reported by Tuan et al. [25] and Deng et al. [26] demonstrated that WG, FI and FE were
significantly reduced by 250 µg/kg or higher dietary AFB1. A similar result was also showed in
tambaqui (500 µg/kg or higher level of AFB1) [36]. However, previous studies found that a diet with
low levels of AFB1 could reduce the WGR, SGR and FI of grass carp (less than 147 µg/kg AFB1) [30].
Beluga fed diets with 75 or 100 µg/kg AFB1 affected WG and FE but not the SGR [37]. The effects of
dietary AFB1 on the growth performance of fish is closely tied to the level of AFB1 in diet but is also
dependent on the fish species, the development stage, the environment and the length of feeding terms.

It has been identified that dietary AFB1 could induce immunosuppressive response in aquatic
animals, such as sea bass [16], grass carp [30], rohu [32], nile tilapia [68,69] and pacific white shrimp [70].
The level of TP and GLB can reflect protein synthesis capacity and immunity [32,71,72]. C3 and C4 are
the key components of both classical and lectin pathways responsible for various immune effector
functions [73]. In the current study, the concentrations of TP and GLB, as well as the concentrations of
C3 and C4 in serum, were reduced by Diet 6, which suggested an immunosuppressive effect. It has been
reported that the reduction of TP might be attributed to the hepatocellular damage [32], and reduction
of GLB might be resulting from lymphocytolysis [74]. Generally, AST and ALT are recognized as
biomarkers to identify the hepatic functions and cell membrane permeability. In the present study,
turbot fed Diet 6 had higher activities of AST and ALT in serum indicating that AFB1 might cause
hepatocellular damage in turbot. Similar results had been observed in other aquatic animals such
as sea bass [16], nile tilapia [26], gibel carp [29] and pacific white shrimp [75]. The reduction of the
concentrations of TG and T-CHO in serum induced by Diet 6 was similar when compared to previous
studies performed in broiler chicks and ducks [76,77]. Due to the hepatocellular damage, the synthesis
of TG and T-CHO was decreased, which was consistent with the lower concentrations of TP and GLB
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of serum as well. On the other hand, AFB1 requires metabolic activation by the cytochrome p450
enzymes system to generate AFB1-exo-8, 9-epoxide (AFBO), which can exert cytotoxic effects [78]. GSTs
is one of the important detoxifiers of AFBO [79]. In the process of hepatocellular function, CYP1A and
CYP3A play key roles in AFB1 activation [80–82], but CYP1A or CYP3A could also convert AFB1 to
less toxic AFM1 or AFQ1, respectively [82]. In this study, the down-regulated expression of CYP1A
and up-regulated expression of CYP3A and GST-ζ1 observed in fish fed Diet 6, might indicate that the
affinity of CYP1A and CYP3A to AFB1 is different in hepatocytes of turbot. Moreover, AFBO, one of the
oxidation products of AFB1 is easily bound to DNA, which could induce DNA damage [83,84]. Gene
p53 could promote apoptosis when DNA damage is unrepaired [85]. Consequently, tissue antioxidant
capacity may be compromised, and the oxidative metabolism of AFB1 may contribute further to
oxidative stress [26,86], eventually leading to oxidative damage as well. This was consistent with the
decreased expression of liver p53, CAT, SOD and GPx in group of Diet 6. A previous study in rohu
also reported that both DNA and oxidative damage of liver were induced by dietary AFB1 [87,88].

In the present study, high-throughput sequencing was used to assess the overall intestinal
microbiota community of juvenile turbot in response to dietary AFB1 and YCWE. The observation
that the predominant phyla in the intestinal mucosa belonged to Firmicutes and Proteobacteria was in
accordance with previous studies on turbot intestinal microbiota [89,90]. Compared with control group,
turbot fed Diet 6 showed the lowest observed OTUs and phylogenetic diversity, and the microbiota
community formed a different cluster from other groups. This was similar to a study in male Fischer 344
rat where AFB1 significantly decreased the observed OTUs and phylogenetic diversity [91]. In addition,
Wang et al. reported the number of bacterial species at genus and phylum level were decreased by a
dietary level of 5000 µg/kg AFB1 in pacific white shrimp [92]. The present study showed that Diet 6
significantly decreased the abundance of some potential beneficial microbiota, including Lactobacillus,
Lactococcus, Streptococcus, Faecalibacterium genera, which are lactic acid producers [93]. It has been
reported that lactic acid could efficiently degrade AFB1 into less toxic AFB2 and AFB2a [94]. In addition,
some studies had proved that some strains of Lactobacillus, Lactococcus, Streptococcus and Bifidobacterium
could detoxify AFB1 by cell binding mechanisms [95–97]. Therefore, the intestinal bacteria might be
involved in detoxification of AFB1. Besides, previous studies had reported the intestinal microbiota
alteration of liver diseases’ patients. For example, in the host with cirrhosis and hepatic encephalopathy
diseases, the decreased abundance of non-pathogenic bacteria Lachnospiraceae and Clostridiales were
observed; in the host with non-alcoholic fatty liver disease, the decreased abundance of potential
probiotics Faecalibacterium and Bifidobacterium were observed [98]. Therefore, the role of intestinal
bacteria in liver disease induced by AFB1 is of great significance for further research.

Several studies have reported AFB1 residues in fish fed dietary AFB1. While few studies paid
attention to the residues of AFB1 in serum, the current study was the first to study AFB1 residues
both in serum and muscle of aquatic animals. The result showed that AFB1 residues in serum was
higher than in muscle of turbot fed Diet 6. Furthermore, Han et al. reported AFB1 residues in muscle
and ovaries of gibel carp [27], and similar findings had been observed in kidney and spleen of grass
carp [30] and muscle, kidney and liver of tambaqui [36]. El-Sayed and Khalil reported AFB1 residues
in musculature of sea bass at high level (about 5 µg/kg), the consumption of which could have negative
effects on human health [16]. In contrast, two experiments with nile tilapia and red tilapia concluded
that the consumption of fish muscle had no effects on human health as no AFB1 residue was detected
when fish were exposed to AFB1 [26,34]. These differences might be the result of different uptake doses
of AFB1 and different AFB1 metabolism pathways in different fishes.

In the present study, Diet 2 altered intestinal microbiota composition; however, there were no
significant effects observed on growth performance, immune response and the diversity and abundance
of intestinal microbiota in 67 days feeding trial. Nonetheless, low level of AFB1 residues in serum
and muscle were observed in fish fed Diet 2. The AFB1 residues of fish muscle might accumulate
more under long-term cultivation. Food contaminated with AFB1 residues may increase the risk to
human hepatoma [99]. The safety level of AFB1 in human food has been set at 2 µg/kg by the European
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Union [100]; however, experts of FAO and WHO have given a guidance value for a provisional
maximum tolerated daily intake of 1 ng AFB1/kg body weight per day [101]. Hence, even a low dose
of AFB1 residues poses a danger to humans.

As a complex adsorbent, previous studies on YCWE focused on livestock and poultry. In the
present study, YCWE also showed favorable mitigation efficacy to the adverse effects caused by dietary
AFB1 in turbot. In addition, Diet 8 and Diet 9 lessened the immune function loss and liver damage
induced by Diet 6. Apart from this, Diet 8 and Diet 9 resulted in lower AFB1 residues in serum and
muscle. These results indicate the positive adsorbing capacity of YCWE to AFB1. Therefore, dietary
YCWE could decrease the health risk resulting from feed consumption with AFB1 contamination.
The results agree with previous studies in cows (10 g YCWE/cow per day) [58] and broilers (0.1%
or 0.25% addition) [61,62,102,103]. Further, Diet 8 resulted in significantly higher alpha diversity
and abundance of some potential beneficial bacteria compared to Diet 6; the abundance of potential
pathogenic bacteria Salmonella, Aeromonas and Comamonas was lowered by Diet 8 compared to Diet 1.
This derived a suggestion that YCWE might be beneficial to regulate intestinal microbiota communities.

4. Conclusions

The present study showed that 20 µg AFB1/kg diets did not affect the growth performance of
turbot in a 67-day feeding trial. However, the AFB1 residues detected in serum and muscle of turbot
suggested that the AFB1 intake at low level remains a potential health risk to human consumption of
fish products. In addition, 500 µg AFB1/kg diet suppressed the immune response, induced liver damage
(including reduced antioxidant capacity, decreased expression of antioxidant genes and increased
expression of apoptosis genes in liver), increased AFB1 residues in serum and muscle, decreased the
intestinal bacterial community diversity and reduced the abundance of some potential probiotics of
turbot. However, the supplementation of 0.2% and 0.4% YCWE in 500 µg AFB1/kg diets resulted in
liver function, immunity, AFB1 residues, intestinal microbiota communities and relative abundance of
some potential probiotics more similar to that of the untreated control, which suggests that YCWE is
an effective adsorbent to AFB1 in turbot feed.

5. Materials and Methods

5.1. AFB1 Preparation and YCWE Preparation

Reference Standard AFB1 was purchased from Pribolab (Qingdao, China) Technology Co., Ltd.
The AFB1 was dissolved in absolute ethanol (AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) at 0.1 mg AFB1 per 1 mL ethanol.

Product of adsorbent (Mycosorb®) was provided by Beijing Alltech Biological Products (Beijing,
China) Co., Ltd. YCWE was mixed with powder ingredients.

5.2. Experimental Diets

Based on previous studies establishing the negative effects of AFB1 on fish, 0 µg, 20 µg
(Low contamination) or 500 µg (High contamination) of AFB1 per kg feed were included in the
diets, resulting in the following nine isonitrogenous and isolipidic experimental diets: Diet 1 (control,
basal diet): 0 µg AFB1/kg diet; Diets 2–5: 20 µg/kg AFB1 + 0%, 0.1%, 0.2%, or 0.4% YCWE; Diets
6–9: 500 µg/kg AFB1 + 0%, 0.1%, 0.2%, or 0.4% YCWE. The basal experimental diet was formulated
as shown in Table 5. Fish meal, soybean meal and corn gluten meal were used as the main protein
sources. Fish oil and soybean lecithin were used as lipid sources. Basal ingredients were purchased
from Qingdao Great-seven Nutr-tech Co., Ltd (Qingdao, China). All the powder ingredients were
thoroughly mixed, and then, the ethanol solution with AFB1 was re-dissolved in water and mixed
with powder ingredients. After mixing all ingredients, the feed was pelleted with an approximate
diameter of 3 mm and dried until constant weight at 55 ◦C in a ventilated oven. The practical content
of AFB1 was detected by Beijing Alltech Biological Products (Beijing, China) Co., Ltd. The feeds were
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stored at −20 ◦C without light until the start of feeding. The chemical composition and AFB1 content
in feeds were shown in Table 6.

Table 5. Diet formulation of basal diet (% dry matter).

Ingredients Content (%)

Fish meal 39.20
Soybean meal 15.68

Corn protein meal 8.00
Glutens 5.12

Beer yeast 2.50
Wheat flour 16.63

Taurine 1.00
L-Methionine 0.26
L-Threonine 0.18
L-Histidine 0.19

L-Lysine 0.74
Fish oil 8.00

Soya bean lecithin 1.00
Vitamin and mineral premix 1 1.00

Choline chloride 0.25
Ethoxyquin 0.05

Calcium propionate 0.10
Yttrium oxide 0.10

1 Vitamin and mineral premix (kg−1): retinyl acetate 675,000 IU; vitamin D3 150,000 IU; DL-α-tocopherol
acetate 6 g; vitamin K3 1.2 g; thiamin nitrate 0.9 g; riboflavin, 1.35 g; pyridoxine hydrochloride 1.05 g;
vitamin B12 0.0075 g; D-calcium pantothenate 4.5 g; nicotinamide 6.75 g; folic acid 0.375 g; D-biotin, 0.015 g;
L-ascorbyl-2-monophosphate-Na 15 g (based on L-ascorbic acid); inositol 10 g; Fe 20 g; Zn 9.6 g; Mn 5 g; Cu 0.6 g;
Co 0.08 g; Se 0.04 g; I 0.08 g; moisture < 10%.

Table 6. Chemical composition and AFB1 concentrations of experimental diets.

Parameters
Diets

1 2 3 4 5 6 7 8 9

Chemical Analysis (% dry matter)

Crude
protein 52.8 52.5 52.8 53.8 53.1 52.4 53.3 53.1 53.8

Crude lipid 15.8 15.0 15.2 15.2 15.7 15.3 14.5 15.1 16.0
Ash 9.62 9.66 9.57 9.61 9.65 9.49 9.51 9.55 9.69

AFB1 Analysis (µg/kg)

AFB1
(formulated

value)
0 20 20 20 20 500 500 500 500

AFB1
(analyzed

value)
ND 1 18 19 18 17 525 537 513 504

Adsorbents (%)

YCWE 2 0 0 0.1 0.2 0.4 0 0.1 0.2 0.4
1 ND: Not Detected. 2 The content of wheat flour was partly replaced by the same addition of YCWE.

5.3. Fish Husbandry and Sample Collection

Juvenile turbot (Scophthalmus maximus L.) was purchased from one commercial farm in Haiyang
(Shandong, China). The feeding trial was carried out in Huanghai Aquaculture Co. Ltd. Prior to the
start of the experiment, fish were acclimated to a commercial diet for two weeks with flowing water.
Then the fish were fasted for 24 h and weighed (initial body weight of 12.43 ± 0.02 g). A total of 810 fish



Toxins 2020, 12, 597 15 of 23

were randomly distributed to 27 cylindrical fiberglass tanks (200 L) in an indoor rearing system with
flow-through seawater. In each tank 30 fish were cultured. The nine diets were randomly assigned
to 27 tanks (three replications each group). Fish were fed to apparent satiation twice per day (08:00
and 18:00 h) for 67 days. The seawater of 2/3 volume was exchanged twice daily. To avoid the loss of
AFB1, the experimental diets were stored in refrigerator (−20 ◦C), and a small portion of the feed was
weighed to feed the fish every week. During the feeding trial, temperature was 12–14 ◦C; salinity was
30–33 %�; pH was 7.5–8.0; dissolved oxygen was higher than 7 mg/L.

At the end of feeding trial, fish were fasted for 24 h, and then, all surviving fish were counted and
weighed. After that, 2 fish of each tank were randomly selected and stored at −20 ◦C for whole-body
analysis. Six fish of each tank were randomly selected to collect blood from caudal vein using 1 mL
syringes. After clotting on ice, the serum was obtained by centrifugation with 3000 rpm for 10 min
at 4 ◦C and stored at −80 ◦C for biochemical analysis. For enzyme activities and gene expressions
analysis, 6 fish of each tank were randomly selected and dissected. The liver was obtained, transferred
into 2 mL sterile tubes (Axygen, USA), frozen in liquid nitrogen and stored at −80 ◦C. For the analysis
of intestinal microbiota, 2 fish of each tank were randomly selected. The exterior of fish was wiped
with 70% ethanol, and the abdominal cavity was opened. After that, hind gut was obtained with sterile
tools. The intestinal content was removed, the hind gut was transferred to 2 mL sterile tubes and
immersed in liquid nitrogen immediately.

5.4. Growth Performance

Growth performance were calculated by using the following variables:

Weigh gain rate (WGR, %) = 100 × (finial body weight−initial body weight)/initial body weight

Specific growth rate (SGR, %/day) =100 × (Ln final body weight−Ln initial body weight)/days

Feed intake (FI, %/day) = 100 × total amount of feed consumptions/[(initial body weight +

final body weight) ×2]/days

Feed efficiency (FE) = (final body weight−initial body weight)/total amount of feed consumptions

Survival rate (%) =100 × final number of fish/initial number of fish.

5.5. Feeds and Whole-Body Chemical Analysis

Chemical composition analysis of the feeds and the whole-body were performed following
standard protocols of AOAC [104]: dry matter was measured by drying samples to a constant weight at
105 ◦C; crude protein was determined by measuring nitrogen (N × 6.25) using Kjeldahl method; crude
lipid was determined by mineral ether extraction using Soxhlet method; ash content was determined
by incineration of samples at 550 ◦C in a muffle furnace.

The moisture was calculated with following equation:

Moisture (%) = 100 × (W1 −W2)/W1;

W1: Wet weight of matter; W2: Dry weight of matter.
The ash content was calculated with following equation:

Ash (%) = 100 ×W3/W2;

W3: Ash weight; W2: Dry weight of matter.
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5.6. Biochemical Analysis of Serum

Hematological parameters were determined by using automated biochemistry analyzer
(Roche/Hitachi cobas c 311 analyzer, Tokyo, Japan). GLB was calculated by subtracting ALB values
from TP. The content of IgM, C3 and C4 and activity of LZM were determined by using commercial
Fish ELISA kits and following manufacturer instructions (IgM: 17025, C3: 17181, C4: 17200, LZM:
17094, Quantikine® ELISA kit, R and D Systems, Minnesota, MN, USA).

5.7. RNA Extract and Real-Time PCR

The total RNA of the liver was isolated using Trizol Reagent (9108; Takara Biotech, Dalian, China).
Briefly, approximate 0.2 g liver tissue was homogenized in 1 mL RNAiso Plus using a tissue grinder.
Then, chemicals were added in order following the reagent instruction. The RNA concentration and
quality were assessed with NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Waltham, MA,
USA). The integrity of extracted RNA was determined by electrophoresis on a 1.2% (w/v) agarose gel.
After that, 1000 ng RNA was reverse transcribed to cDNA in 20 µL reactions using PrimeScript RT
reagent Kit with gDNA Eraser (RR047A; Takara Biotech, Dalian, China). Then, real-time PCR was
performed in a total 25 µL volume: 1 µL cDNA template (≤ 50 ng); 1 µL Forward primer (10 µM);
1 µL Reverse primer (10 µM); 9.5 µL DEPC-treated water (Sangon biotech, Shanghai, China); 12.5 µL
TB Green™ Premix EX Taq II™ (RR820 A, Takara Biotech, Dalian, China). A two-step real-time PCR
amplification program was used: 95 ◦C for 2 min and then 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s.
At last, melting curve analysis was used to ensure the specification of PCR product for each primer pair.

Specific primers for target genes and housekeeping genes, designed in NCBI, were synthesized
by Sangon Biotech (Shanghai) Co., Ltd., and then the application efficiency was assessed (Table S3).
All the real-time PCR analysis were performed using a quantitative thermal cycler (CFX96 Touch™
Real-Time PCR Detection System, Bio-Rad, Richmond, CA, USA). The genes expressions levels were
normalized using relative quantitative method (2−∆∆CT) referencing gene β-actin of turbot [105].

5.8. DNA Extract of Intestinal Microbiota and Sequencing Analysis

Genomic DNA sample was extracted from the intestinal mucosa layer using the QIAamp Fast DNA
Stool Mini Kit (51604, Qiagen, Hilden, Germany) under sterile conditions (alcohol flame) following the
manufacturer manual with some modifications [89,90]. PCR amplification of V4 region of 16S rRNA
(515F/806R primer), quality and purity of PCR product were assessed by Beijing Novogene Genomics
Technology Co. Ltd. (Beijing, China). Sequencing was conducted on an Illumina NovaSeq platform
provided by Beijing Novogene Genomics Technology Co. Ltd. (Beijing, China).

For the sequence data analysis, Fast Length Adjustment of SHort reads (FLASH) was used to
merge paired-end reads from the original DNA fragments when there were overlaps between reads1
and reads2 [106]. Sequencing reads were assigned to each sample with unique barcodes. Cutadapter
was used to remove the adapter sequence, barcode sequence, primer sequence and to filter low-quality
reads of raw reads [107]. The UCHIME algorithm was used to detect and remove chimeric sequences
and obtain effective reads that would be used for further analysis [108]. After dereplication, abundance
sort and discarding singletons reads, sequences with ≥97% similarity were clustered to the same
OUTs (operational taxonomic units) using UPARSE [109]. Representative sequence for each OTU
was screened for further annotation using Silva Database(v132) based on Ribosomal Database Project
(RDP) classifier [110]. Alpha diversity indices (OTUs, Chao1, ACE, Shannon, Simpson and PD whole
tree) were calculated with Quantitative Insights Into Microbial Ecology (QIIME) and displayed with R
software (v 3.6.2) [111]. Beta diversity on unweighted UniFrac for Principal Coordinate Analysis (PCoA)
and Unweighted Pair Group Method with Arithmetic mean (UPGMA) Clustering was calculated with
QIIME and displayed with R software as well.
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5.9. AFB1 Residues of Serum and Muscle

The AFB1 residues of serum and dorsal muscle of turbot were detected following the methods
provided by Wang et al. [112]. This analysis was completed at the Institute of Quality Standard and
Testing Technology for Agro-Products of CAAS (Beijing, China).

5.10. Statistical Analysis

Statistical software SPSS 22.0 for Windows (IBM SPSS corporation, Chicago, IL, USA) was used
for the data analysis. Results were analyzed by one-way analysis of variance (ANOVA). Tukey’s
multiple-range test was used for the multiple comparisons of group means. Differences were regarded
as significant when p < 0.05. T-test was used for the comparisons of AFB1 residues in fish tissues of
any two groups; “*” was marked when p < 0.05, and “**” was marked when p < 0.01.

Multi Response Permutation Procedure (MRPP) and Adonis test were employed to assess the
difference of microbiota composition within or between groups using the vegan package in R software (v
3.6.2). MetaStat analysis [113] was conducted to identify the differential abundant taxa between groups.

5.11. Ethics Statement

The animal study was reviewed and approved by the Animal Care Committee of Ocean University
of China (No. OUCFC2018001325, 24 August 2018).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/9/597/s1.
Figure S1: Rarefaction curves (A), Rank abundance (B) and Species accumulation boxplot (C) for all the intestinal
microbiota samples. Figure S2: UPGMA clustering trees in samples (A,B) based on Unweighted Unifrac distances
between Diet 1–5 or Diet 1, 6 and 8. Table S1: MRPP test and Adonis test of the Diet 1–5 groups’ microbial
community structure of turbot. Table S2: MRPP test and Adonis test of the Diet 1, 6 and 8 groups’ microbial
community structure of turbot. Table S3: Primer sequences, efficiency, amplicon size, annealing temperature and
function for the genes profiled in real-time PCR.
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Abbreviations

AFB1 aflatoxin B1
AFBO AFB1-exo-8, 9-epoxide
ALB albumin
ALP alkaline phosphatase
ALT alanine aminotransferase
AST aspartate aminotransferase
C3 complement component 3
C4 complement component 4
CAT catalase
CYP1A cytochrome p450 1A
CYP3A cytochrome p450 3A
FE feed efficiency
FI feed intake
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GLB globulin
GPx glutathione peroxidase
GSTs glutathione-S-transferase
GST-ζ1 glutathione-S-transferase zeta-1
IgM immunoglobulin M
LZM lysozyme
p53 tumor suppressor protein p53
SGR specific growth rate
SOD superoxide dismutase
T-CHO total cholesterol
TG triglyceride
TP total protein
WG weight gain
WGR weight gain rate
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