
 

Semantic ETL into i2b2 with Eureka! 

Andrew R. Post, MD, PhD,1 Tahsin Kurc, PhD,1 Himanshu Rathod,1 Sanjay Agravat, MS,2 
Michel Mansour, MS,1 William Torian,1 Joel H. Saltz, MD, PhD1 

1Center for Comprehensive Informatics, 2Research and Woodruff Health Sciences IT 
Emory University, Atlanta, GA 

Abstract 

Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health 
record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes 
may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns 
in billing and clinical data. These patterns’ complexity suggests the need for a robust yet flexible extract, transform 
and load (ETL) process that can compute them. This capability should be accessible to investigators with limited 
ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical 
Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and 
loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and 
monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud. 

Background 

Clinical data warehouses1 support computing derived measures from EHR data using business intelligence tools.2 
These tools primarily leverage billing codes with standard representations. These standards have enabled use of data 
warehouses in epidemiology.3 Clinical phenotyping aims to leverage systematically clinical in addition to billing 
data from EHRs in research.4 Phenotyping employs categorizing billing codes, classifying numerical test results, 
computing frequency, sequential and other temporal patterns, and leveraging alternative data types depending on 
availability.5 Phenotyping requires a comprehensive EHR with broad coverage of clinical observations and events, a 
requirement that is increasingly satisfied by current EHR deployments.6  

IT departments may provide EHR data access for research studies often by delivering data from their data 
warehouse to investigators in spreadsheets or flat files. At our institution, there has been an unmet need to provide 
tools for loading such data into project-specific data marts and performing clinical phenotyping. Our CTSA program 
addressed this need by implementing a locally developed ETL process7 for creating i2b21 data marts.8 This system 
extends temporal abstraction9 software, PROTEMPA,10,11 to support specifying phenotypes as the categories, 
classifications and patterns above. Data modelers maintain a library of phenotypes representing co-morbidities and 
hospital quality improvement patient characteristics that are specified in a temporal abstraction ontology9,11 and are 
computed by the ETL system. Due to this and the complexity of accessing data warehouses that also are leveraged 
for hospital operations, our solution requires substantial IT and informatics support to maintain. 

There remain many investigators who lack substantial IT and informatics support whose research would be 
accelerated by access to data marts containing phenotyped EHR and other data. To support them, we are developing 
user interfaces for loading data in Excel spreadsheets into i2b2 with our ETL system. Version 1.0 of this system, 
called Eureka! Clinical Analytics, was recently released. We anticipate continuing to provide a set of curated 
phenotypes while ultimately enabling investigators to define additional phenotypes that are specific to their research. 

Methods 

Eureka! Clinical Analytics is a web application. Users have an account that is associated with a user-specific i2b2 
project. Users may upload spreadsheets containing data into their project. The project allows querying a pre-defined 
set of source data and derived phenotypes, and retrieving patient sets meeting specified criteria. 

Supported data model 

The i2b2 loader assumes a data model with a central visit (encounter) table to which all other data (patient, provider 
and observations) are associated. The model, an example of which is shown in Figure 1, is represented in a frames 
ontology in Protégé (http://protege.stanford.edu) that models a subset of UML (entities, attributes and associations). 
An XML configuration file specifies which entities in the model correspond to i2b2’s dimensions. In Figure 1, the 
PatientDetails entity corresponds to the patient dimension, Encounter corresponds to the visit dimension, and 
Provider corresponds to the provider dimension. The configuration file also specifies associations from the visit 
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entity to various observation facts (e.g., vital signs, 
medication orders, procedures). Such a model allows 
associating every observation fact with i2b2’s 
dimensions. The configuration file additionally 
specifies the attributes of dimension entities that will 
populate the columns of i2b2’s dimension tables. 

Spreadsheet syntax and semantics 

An Excel spreadsheet template mirrors the structure 
and semantics of the data model. It contains a tab for 
each of the model’s entities. An example with fake 
data is shown in Figure 2. The Encounter tab 
contains “foreign keys” to join to patient and 
provider records in the Patient and Provider tabs. 
Tabs prefixed by “e” represent observation facts, 
with each record having an encounter foreign key. 
Attribute values of an entity are represented as 
columns in the entity’s tab. Column values may be 
numerical, string or enumerated. Tabs prefixed with 
“metadata” document the allowed values for 

enumerated attributes. 

Clinical phenotype specification 

Phenotypes are specified in a 
centrally managed temporal 
abstraction ontology that is stored 
and edited using Protégé. See 
Figure 3 for an example. The 
ontology represents raw data 
definitions from the data model 

and four kinds of derived data definitions that together enable specifying phenotypes. Low-level abstraction 
definitions allow specifying thresholds on numerical data values or on the slope of sequential values. Temporal 
patterns allow specifying temporal relationships between raw data values and derived data such as within 6 months 
before, between 1 day and 1 month apart, and at the same time as. Sequential temporal patterns restrict relationship 

 
Figure 1. UML diagram of the data model used by 
Eureka! Red entities correspond to i2b2 dimensions, 
and blue entities correspond to i2b2 observation facts. 

 
Figure 2. Screenshot of a sample data spreadsheet suitable for upload.  

 
Figure 3. Screenshot of the temporal abstraction ontology in Protégé, showing the Chemotherapy 
180 days before surgery temporal pattern abstraction. 
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finding to sequential values, such as two sequential encounters that do not overlap and are within 30 days of each 
other. The Slice abstraction allows specifying the first, second, etc. interval of a raw or derived data value, such as 
the second elevated systolic blood pressure value. Finally, the ontology allows specifying hierarchies of raw and 
derived variables that may be leveraged in specifying phenotypes, such as groupings of ICD-9 codes reflecting 
diabetes or a class of medications reflecting treatment for hypertension. These derived and raw data definitions form 
nodes in a graph connected by hierarchical and temporal relationships. 

Figure 3 shows the Chemotherapy 180 days before surgery temporal pattern abstraction. The AbstractedFrom slot 
shows that the abstraction is composed of the V58.1 ICD-9 code group and the SurgicalProcedure category of ICD-
9 codes (contains all surgical procedure codes). The WithRelations slot specifies the temporal constraint between the 
procedure and chemotherapy encounter codes. The TemporalOffset slot specifies, together with the MaxGap, 
Concatenable and Solid slots, that intervals created by this abstraction should have the same temporal extent as the 
surgical procedure from which they are derived. The InDataSource slot is unchecked to indicate not to search for 
this data element in the spreadsheet (because it is computed). The ICD9:V58.1 and ICD9:SurgicalProcedure 
categories are specified by populating the ontology’s InverseIsA slot with lists of ICD9 codes or categories of codes. 

User Workflow 

Users download a sample 
spreadsheet (Figure 2) 
from the data upload 
page, shown in Figure 4, 
and replace the data with 
their own. After 
uploading a spreadsheet, 
a validation step checks 
for proper structure and 
provides useful error 
messages. The data in the 
spreadsheet is loaded into 
a temporary database 
(Oracle 11g XE or 
Enterprise), after which 
the ETL process extracts 
the data specified in the 
XML configuration file 
and computes the 
specified phenotypes one 
patient at a time. Data 
and phenotypes are 
streamed into the fact and 
dimension tables of the 
current user’s i2b2 
project. The i2b2 concept 

hierarchy is loaded into the user’s metadata tables as a list of hierarchies from the temporal abstraction ontology that 
is specified in the XML file above. Users click a link in the upper right hand corner of the Eureka! interface (Figure 
4) to access their i2b2 instance. Details of the ETL processing are described in an earlier paper.8 

Results 

Eureka! is implemented in Java and may be deployed in either the Tomcat (http://tomcat.apache.org) or Glassfish 
(http://glassfish.java.net) container environment. We support i2b2 version 1.5. An example of a resulting i2b2 
instance is shown in Figure 5. The Comorbidities folder in the term browser on the left of the screen shows derived 
variables for a variety of diseases inferred from groups of diagnosis codes, thresholds in laboratory test results, 
procedure codes, and/or orders for classes of medications. Similarly, the Hospital Readmissions folder shows 
phenotypes computed as temporal patterns in raw and/or other derived data, such as the Chemotherapy within 180 
days before surgery abstraction shown in Figure 3. The i2b2 interface shows these phenotypes as i2b2 concepts in a 
flat hierarchy, thus hiding their relationships to each other and raw data for ease of use (see Discussion). These 

 
Figure 4. Data upload page in Eureka! showing a spreadsheet being uploaded. 
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derived concepts may be dragged into the i2b2 query tool on the right of the screen along with concepts representing 
raw data. The query in Figure 5 is for 45-54 years old with Cancer and a hospital readmission within 30 days (the 
Subsequent 30 Day Readmission derived concept). 

The software is available as open source under the Apache 2 license from http://aiw.sourceforge.net. It also is 
available in demonstration form at http://eureka.cci.emory.edu and as an Amazon EC2 virtual machine (Amazon 
Machine Image name EurekaCVRG). Its central ontology comes with a curated set of 193 derived variables, and 
billing code, laboratory, vital sign and medication hierarchies. Included derived variables not shown in Figure 5 
include cancer diagnoses and hypertension treatments defined in terms of billing codes and medication dispenses. 
The software processes and loads the provided sample spreadsheet (contains 2,555 synthetically generated 
encounters on 512 patients with clinical and billing data) into i2b2 in 3 minutes. We do not support modifying the 
ontology currently, with such support to be added in a future release. 

Discussion 

Eureka! fills an unmet need in research for robust but economical data management that may be configured by 
technologically savvy investigators. Data marts traditionally require IT and/or informatics support to create and 
maintain. While Eureka! does not eliminate that need, it amortizes the support requirements across multiple data 
marts and investigators. A centrally managed ontology of clinical phenotypes allows all investigators to leverage 
such phenotypes. We plan to add to Eureka! a capability for users to create custom phenotypes specific to them or 
their research. Deployment as an institutionally hosted service or in the Amazon EC2 cloud requires little setup by 
the individual researcher. Investigators generally are familiar with Excel. I2b2’s web client interface appears easy 
for investigators to use. Through funding from the CardioVascular Research Grid (http://www.cvrgrid.org), we aim 
for Eureka! to become a part of a cloud-based ecosystem for data management and analysis. Major EHR vendors 
(e.g., Cerner) are providing cloud-based deployment, and cloud solutions like Amazon EC2 provide HIPAA-
compliant storage, thus we expect cloud-based research data management to be similarly attractive. 

The Eureka! software allows use of clinical phenotypes in i2b2 without any source code changes to i2b2. The 
phenotypes are computed entirely during ETL and are loaded into i2b2 as concepts in its metadata and concept 
dimension tables. They may be used in queries like any other concept. A limitation of this approach is that the 

 
Figure 5. The i2b2 web client, showing concepts from standard terminologies for raw data, and derived 
phenotypes for co-morbidities and hospital readmissions. 
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underlying definitions of the phenotypes are not accessible through the i2b2 web client. An analysis tool plugin 
could potentially access the Protégé ontology and present phenotype definitions within the web client. The i2b2 
concept tool tips could potentially be populated with brief textual summaries about a phenotype during ETL. Ideally, 
the web client’s term hierarchy would support hyperlinking to more detailed information about a selected concept. 

Implementation challenges arose during this project. I2b2’s term hierarchy does not allow multiple inheritance, but 
the temporal abstraction ontology does. An ICD-9 code, for example, may be in multiple categorical phenotypes in 
addition to the category to which it is assigned in ICD-9. To workaround this issue, the specification of the term 
hierarchy’s contents in the XML configuration file allows specifying an order to when sub-trees of concepts from 
the temporal abstraction ontology are loaded into i2b2. Standard terminologies like ICD-9 are loaded first, and 
phenotypes are loaded after. Categorical phenotype concepts with children that have already been added because 
they are in a standard terminology’s hierarchy appear as leaves in the user interface. Categorical phenotype concepts 
whose children are solely other derived concepts that have yet to be loaded appear as folders. Temporal pattern and 
numerical classification concepts appear as leaves because they have no hierarchical relationship with the data from 
which they are derived. Figure 5 demonstrates this strategy. The Cancer concept has ICD-9 codes as children, thus it 
appears as a leaf. Subsequent 30 Day Readmission is a temporal pattern, thus it appears as a leaf.  We believe that 
this strategy yields an intuitive appearance for clinical phenotypes in the term hierarchy. 

While this paper has focused on spreadsheet upload with Eureka!, the backend software also allows specifying 
source-to-target mappings to institutional databases for data retrieval. This capability supports i2b2 data marts at our 
institution used by research groups in cardiovascular disease,8 lung cancer and lymphoma/leukemia. The software 
also is deployed at Kaiser Permanente Southeast for the Minority Health Grid study of the genetics of hypertension. 

Conclusion 

We have demonstrated the feasibility of loading clinical phenotypes reflected by complex patterns in EHR data into 
i2b2, thus enabling the use of such phenotypes in i2b2 web client queries. Our spreadsheet-based data upload 
approach may enable i2b2 to be leveraged by a broader constituency of investigators who lack an IT team to manage 
i2b2 and ETL from source systems. Usability evaluation of our approach and implementation is warranted. 
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