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 Abstract 23 

The mechanisms linking a history of major depressive disorder (MDD) to an increased risk of 24 

Alzheimer’s disease and related dementia (ADRD) are not fully understood. Using the UK 25 

Biobank available proteomic and genomic data, we evaluated the biological mechanisms linking 26 

both conditions. In participants with a history of MDD at baseline (n=3,615), we found that 27 

plasma levels of NfL, GFAP, PSG1 were associated with higher risk (HR=1.38; 1.37; 1.34, 28 

respectively; all adjusted p-values<0.05), while VGF, GET3, and HPGDS were associated with 29 

lower risk of incident ADRD (n=150) (HR=0.73; 0.71; 0.66, respectively; all adjusted p-30 

values<0.05) during a mean follow-up of 13.7 years (SD=2.2). Two-sample Mendelian 31 

randomization analysis using cis-pQTLs genetic instruments revealed that a lower protein 32 

expression of apolipoprotein E and higher IL-10 receptor subunit B were causally linked to 33 

incident ADRD. Finally, we developed a Proteomic Risk Score (PrRSMDD-ADRD), which showed 34 

strong discriminative power (C-statistic = 0.84) to identify participants with MDD that developed 35 

ADRD upon follow-up. In addition to demonstrating an association between plasma proteins 36 

associated with inflammation and future ADRD risk in individuals with MDD, our findings include 37 

an element of causality using Mendelian Randomization (MR) and PrRSMDD-ADRD can be useful 38 

to identify individuals with the highest risk to develop ADRD in a highly vulnerable population.  39 

Key-words: Major depressive disorder; Alzheimer's disease; dementia; proteomics; genomics, 40 

inflammation.  41 

  42 
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Introduction  43 

Major depressive disorder (MDD) is a highly heterogeneous, multifactorial condition with 44 

multiple concurrent risk factors, as well as pathophysiological processes playing a significant 45 

role in its phenotypic manifestation and long-term outcomes1, 2. The elevated burden of disease 46 

associated with MDD3 is due not only to the severity of psychopathology but also to its 47 

association with adverse health outcomes and multiple other diseases of aging4. 48 

Epidemiological studies have consistently shown that a history of MDD across the lifespan 49 

significantly increases the risk of incident Alzheimer's disease and related dementia (ADRD) in 50 

older adults5, 6. The association between MDD and the risk of ADRD cannot be underestimated. 51 

For example, there are over 7 million people living with ADRD in the US, with 11.1% to 14.7% of 52 

these cases attributable to major depression7. Therefore, preventing MDD in the general 53 

population, or reducing the risk of development of ADRD among those with MDD can 54 

significantly lower the incidence of ADRD in older ages7-9.   55 

Despite well-known associations, underlying mechanisms linking MDD to a higher risk of 56 

developing ADRD are unclear. For example, previous studies did not suggest that a major 57 

depressive episode increases brain amyloid burden10-12, the primary pathological mechanism of 58 

Alzheimer’s disease, despite some conflicting results13. On the other hand, the presence of mild 59 

cognitive impairment (MCI) during an MDD episode increases the risk of incident ADRD14 and is 60 

associated with greater cortical and hippocampal atrophy and dysregulation in multiple 61 

biological pathways implicated in aging15, 16 that are relevant to the ADRD physiopathology, 62 

including increased pro-inflammatory burden, loss of proteostasis control, cellular senescence, 63 

and metabolic control17-19. Also, a recent study demonstrated a significant genetic correlation 64 

between MDD and AD and a potential causal link between MDD and AD using a generalized 65 

data-summary Mendelian randomization approach20.   66 
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Despite the relevance of these past studies, they did not provide definitive evidence of 67 

which biological mechanisms may underlie the elevated risk of ADRD among individuals with 68 

MDD. Moreover, the results were based on relatively small sample sizes. Large-scale 69 

population studies, including identifying MDD cases at baseline and incident ADRD cases, along 70 

with multi-omics measurements (e.g., genomic and proteomic data), are necessary to identify 71 

the biological processes linking MDD to a higher risk of ADRD. For example, the UK Biobank 72 

(UKB, https://www.ukbiobank.ac.uk/) is one of the largest biomedical databases containing data 73 

from up to half a million UK participants. Through linkage with electronic health records from 74 

primary care and hospital settings, the UKB includes data on the history of MDD and a variety of 75 

long-term outcomes, including the diagnosis of ADRD. In addition, the UKB offers in-depth 76 

biological information, including genomic and proteomic data, which enables the discovery of 77 

over 14,000 protein quantitative loci (pQTL). Identifying pQTLs and disease associations can 78 

provide more robust causal inference information via approaches such as Mendelian 79 

Randomization supporting drug development or repurposing strategies21, 22. Our primary goal 80 

was to investigate the proteogenomic signatures of MDD that are distinctively associated with 81 

the risk of ADRD by integrating proteomic and genomic available from the UKB.  82 

 83 

Methods 84 

UK Biobank Pharma Proteomics Project (UKB PPP) cohort 85 

A total of 53,018 active participants were included in the UKB Pharma Proteomics 86 

Project (UKB PPP) cohort22. The plasma proteomic analysis was done using the Olink® Explore 87 

3072 assay, covering 2,923 proteins. Normalized protein expression (NPX) levels were 88 

calculated to account for technical variations22. After removing three proteins with high missing 89 

rates (GLIPR1 99.7%, NPM1 74.0%, and PCOLCE 63.6%), the median missing rate per protein 90 

was 14.7% (interquartile range 3.0% to 17.4%), and the median missing rate per individual was 91 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313493doi: medRxiv preprint 

https://www.ukbiobank.ac.uk/
https://doi.org/10.1101/2024.09.11.24313493
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.5% (interquartile range 0.1% to 7.5%). Missing proteomic data were imputed using the k-92 

nearest neighbor approach (k=10), with higher weights to neighbors sharing higher similarities 93 

across proteins23.  94 

Baseline cohort 95 

The “baseline cohort” included 42,807 UKB PPP participants after excluding participants 96 

at baseline with (1) pre-existing psychiatric disorders (schizophrenia, unspecified nonorganic 97 

psychosis, manic episode, and bipolar affective disorder); (2) pre-existing ADRD or dementia in 98 

other diseases, (3) diagnosis of MDD before the age of 18 years; (4) any missing baseline 99 

covariate data (age at recruitment, self-reported sex, ethnicity, and education, body mass index 100 

[BMI], hypertension diagnosis (yes/no), diabetes diagnosis (yes/no), APOE e4 carrier status 101 

(yes/no), antidepressant use (yes/no), and selection by the UKB PPP consortium (yes/no) 102 

(Figure S1). A total of 3,615 individuals had a history of MDD at baseline (n=3,615) (Figure S1). 103 

Cases of MDD and incident ADRD were identified using the first occurrence data derived by the 104 

UKB, which integrated multi-source data based on ICD-10 codes (primary care, hospital 105 

admissions, death registry, and baseline self-reported medical condition data) (Table S1). Data 106 

extraction was conducted using the field IDs presented in Table S1. The anatomical therapeutic 107 

chemical codes of antidepressants used to confirm antidepressant use at baseline are provided 108 

in Table S2.  109 

Association between protein expression and incident ADRD in participants with a history 110 

of MDD at baseline 111 

We applied the inverse normal transformation to individual proteins (n=2,920) in the baseline 112 

cohort to correct distributional skewness and unify the scales into z-scores24. The association of 113 

each protein with incident ADRD was modeled using a Cox regression model, adjusting for 114 

baseline covariates (age at recruitment, self-reported sex, ethnicity, education, BMI, 115 
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hypertension diagnosis (yes/no), diabetes diagnosis (yes/no), APOE e4 carrier status (yes/no), 116 

antidepressant use (yes/no), and selection by the UKB PPP consortium (yes/no). A sensitivity 117 

analysis was performed by excluding APOE e4 carrier status from the covariates. P-values were 118 

corrected for multiple testing using the Benjamini-Hochberg false discovery rate (FDR) 119 

approach25, and adjusted p-values smaller than 5% were considered statistically significant. 120 

Proteins significant at the FDR-adjusted level of 5% were jointly modeled in a Cox regression 121 

model adjusting for covariates to evaluate their dependency.  122 

Two-sample Mendelian randomization analysis 123 

Observational study data provide limited evidence about causal relationships between 124 

an exposure (e.g., protein expression) and an outcome (e.g., incidence of ADRD) due to the 125 

lack of experimental control, unmeasured confounding, and risk of reverse causality that are 126 

intrinsic to observational study designs26, 27. Mendelian randomization (MR) analyses can help 127 

overcome these limitations by using genetic variants. Genotypes are fixed at conception as 128 

instrumental variables to examine exposure-outcome relationships28. The focus on protein 129 

quantitative trait loci (pQTL) helps to understand how common and rare genetic variation 130 

influences protein levels29 and identify proteins to target for drug development. 131 

Two-sample Mendelian Randomization (MR) methods were applied to assess the causal 132 

effect of each protein on incident ADRD in UKB European-descent participants with a history of 133 

MDD at baseline. Autosomal cis-protein quantitative trait loci (cis-pQTL) were used as genetic 134 

instruments for protein expression levels. The selection of cis-pQTL was based on the genome-135 

wide association study (GWAS) summary statistics using UKB European-descent participants 136 

from the Sun et al. discovery cohort22. They were further validated in the subset with a history of 137 

MDD at baseline (“MR: baseline MDD cohort” [n=3,896], see Figure S2). To avoid bias from 138 

sample overlap, we estimated the associations between cis-pQTL and incident ADRD using 139 
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UKB European-descent participants with a history of MDD at baseline who were not in the UKB 140 

PPP (referred to as the “MR: incident ADRD in MDD cohort” [n=30,903], Figure S2). 141 

Selection of genetic instruments  142 

Genetic variants that showed significant associations with each protein, with a p-value< 143 

5×10-8 and were located within 1 Mb of the coding gene region (i.e., cis-gene region)30 were 144 

extracted from the Sun et al22. discovery GWAS summary statistics. These variants were 145 

identified through individual associations with each protein following the inverse normal 146 

transformation, using a two-step procedure involving standard linear regression models22. 147 

Those with a minor allele frequency smaller than 0.01 or an INFO score <0.7 (low 148 

imputation accuracy) were excluded. For each protein, linkage disequilibrium (LD) clumping was 149 

performed on the remaining variants to select independent cis-pQTL. The selection started from 150 

the most significant variant with the smallest p-value and then the next after excluding those in 151 

LD (r2>0.01) or within 500 kb of that variant (clumping window 500 kb). The LD between genetic 152 

variants was assessed using genome-wide genotype data from 5,000 randomly selected 153 

unrelated UKB participants of European descent. This procedure was repeated until no further 154 

cis-pQTL was identified. 155 

We excluded cis-pQTL that showed a discrepancy in β greater than 0.1 for associations 156 

with the coded protein (i.e., >0.1 SD change in the transformed NPX per effect allele increase) 157 

between the Sun et al. discovery cohort22 and the MR baseline MDD cohort. Similar covariate 158 

adjustments were made in the MR baseline MDD cohort, including age at baseline assessment 159 

(age in short), age2, sex, age × sex, age2 × sex, genotyping array, top 10 genetic principal 160 

components in the UKB, and the consortium selection.  161 

We conducted a sensitivity analysis using cis-pQTL as selected by Sun et al.22, who 162 

used similar criteria but a more stringent GWAS significance level (p<1.7×10-11) and the 163 
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clumping windows of 10,000 kb followed by 500 kb to account for potential long-range LD, while 164 

also merging overlapped clumps. 165 

Associations between genetic instruments for protein expression levels and incident 166 
ADRD in MDD 167 

Cox regression models were used adjusting for age at baseline assessment (age in 168 

short), age2, sex, age × sex, age2 × sex, genotyping array, and top 10 genetic principal 169 

components in the UKB. Both associations of cis-pQTL with a protein (from Sun et al.22) and 170 

incident ADRD were expressed as the effects per copy increase in the level-increasing allele. In 171 

the MR analysis, we reported the hazard ratio (HR) for incident ADRD per SD increase in the 172 

genetically determined NPX. 173 

Two-sample Mendelian randomization methods 174 

The primary two-sample MR analysis was conducted using the inverse-variance 175 

weighted (IVW) method31. A fixed-effect model was used when there were three variants or 176 

fewer, and a random-effects model otherwise. Additionally, we applied the MR-Egger regression 177 

and MR-Robust Adjusted Profile Score (MR-RAPS) methods32, 33. Comparing the results across 178 

different methods allows us to evaluate the robustness of our findings. Based on the IVW 179 

results, proteins significant at the FDR level of 5% were further examined for the 1) strength of 180 

cis-pQTL (weak instrument if the IVW F-statistic<10), 2) heterogeneity in the causal effect 181 

estimates of cis-pQTL (significant heterogeneity if the IVW Cochran’s Q test p<0.01), and 3) 182 

pleiotropy (MR-Egger intercept test p<0.01) for those with little evidence against the no 183 

measurement error assumption of MR-Egger (I2≥0.9). When the NOME assumption is not met, 184 

an inflated type I error is expected for the pleiotropy test34. After excluding proteins that failed in 185 

any of the examinations, we compared the IVW and MR-RAPS results, with similar results 186 

between methods suggesting finding robustness.  187 

Prediction model for incident ADRD in participants with a history of MDD at baseline 188 
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We evaluated the prediction for incident ADRD using all included proteins (n=2,920) in 189 

participants with proteomic data and a history of MDD at baseline. Proteins were selected by a 190 

least absolute shrinkage and selection operator (LASSO) Cox regression model, where the 191 

regularization parameter lambda that determined the shrinkage of regression coefficients 192 

associated with the proteins for a parsimonious model was chosen for close-to-optimal deviance 193 

within one standard error of the minimal deviance (i.e., one-standard-error rule)35 using the 10-194 

fold cross-validation. The selected proteins were carried forward to fit a Gomperz model36 to 195 

develop a proteomic risk score (PrRSMDD-ADRD) to estimate the 10-year risk of ADRD. We 196 

compared different prediction models, including sociodemographic factors and APOE e4 carrier 197 

status, for the prediction of incident ADRD in MDD using Harrell's C-index37.  198 

To further validate PrRSMDD-ADRD, we examined its correlations with intermediate 199 

phenotypes of ADRD, i.e., cognitive function measures and brain MRI image-derived 200 

phenotypes. We selected five cognitive function measures from the baseline or first imaging 201 

visit, depending on when they were first implemented in the UK Biobank,  202 

1. reaction time (processing speed); 203 

2. digit spam forward test (working memory); 204 

3. symbol digit substitution (executive function);  205 

4. trail making test B (executive function);  206 

5. matrix pattern completion (non-verbal reasoning);  207 

showing moderate to high concurrent validity with well-validated reference tests and test–retest 208 

reliability38.  Their UKB field IDs were provided in Table S1, with measurement details described 209 

elsewhere38.  We also selected brain MRI T1 structural and T2-weighted image-derived 210 

phenotypes (IDPs), including regional gray matter volumes, subcortical volumes, and white 211 

matter hyperintensities (UKB filed IDs in Table S1). We calculated Spearman correlations 212 

between PrRSMDD-ADRD and cognitive function measures or IDPs, and p-values were adjusted 213 
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using the FDR approach. Cognitive function measures from the first imaging visit were adjusted 214 

for the time gap between the baseline and first imaging visits. Brain MRI measures were 215 

adjusted for the between-visit time gap and head size. 216 

All the statistical tests were two-sided. The statistical analyses were performed in R 217 

version 4.2.3. The R packages used included “survival” for fitting Cox regression models39, 218 

“glmnet” for fitting LASSO Cox regression models40, “flexsurv”41 for fitting Gompertz models, 219 

“gwasRtools”42 for LD clumping, “MendelianRandomization”43 for two-sample MR analyses, and 220 

“stat” for multiple testing adjustments. 221 

 222 

Results 223 

In the baseline cohort (n=42,807, Figure S1), 3,615 were diagnosed with MDD before or 224 

at baseline. The characterization of participants with and without a history of MDD at baseline is 225 

reported in Table S3. During a mean follow-up of 13.3 years (SD=2.2), the incidence of ADRD 226 

was higher in participants with a history of MDD than in those who were MDD-free at baseline 227 

(4.1% versus 3%), including the incidence of ADRD subtypes, such as Alzheimer’s disease 228 

(1.8% versus 1.4%) and vascular dementia (0.9% versus 0.5%). A history of MDD was 229 

significantly associated with higher risks of ADRD (HR=1.81, 95% CI 1.52 to 2.15, p=1.37×10-230 

11), Alzheimer’s disease (HR=1.72, 95% CI 1.32 to 2.23, p=4.79×10-5), and vascular dementia 231 

(HR=2.38, 95% CI 1.65 to 3.43, p=3.72×10-6) after adjusting for baseline covariates, age, sex, 232 

ethnicity, education, BMI, smoking status, diabetes diagnosis, hypertension diagnosis, and 233 

APOE e4 carrier status.  234 

Identification of proteins associated with incident ADRD in participants with a history of MDD 235 

Of the 2,920 proteins tested, six were significantly associated with the risk of ADRD in 236 

participants with a history of MDD at baseline (FDR-adjusted p < 0.05). Higher expression of 237 
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GFAP (glial fibrillary acidic protein), NFL (neurofilament light chain protein), and PSG1 238 

(pregnancy-specific beta-1-glycoprotein 1) were associated with increased risk of ADRD, while 239 

higher expression of VGF (neurosecretory protein VGF), GST3 (guided entry of tail-anchored 240 

proteins factor 3, ATPase), and HPGDS (hematopoietic prostaglandin D synthase) were 241 

associated with decreased risk of ADRD upon follow-up (Table S4, Figure 1). These 242 

associations remained statistically significant after excluding APOE e4 carrier status from the 243 

covariates, but GLYR1 (Glyoxylate Reductase 1 Homolog) also became statistically significant 244 

(Table S5). In the joint model with GFAP, NEFL, PSG1, GET3, HPGDS, and VGF, adjusting for 245 

covariates including APOE e4 carrier status, the hazard ratios associated with these proteins 246 

little changed compared to those from models with one protein at a time and covariates.  247 

A two-sample Mendelian randomization analysis  248 

Of 2,920 proteins, 2,003 had one or more autosomal cis-pQTL. After excluding 3,670 249 

associations between cis-pQTL and their coded proteins that showed a significant discrepancy 250 

(absolute difference in standardized β greater than 0.1) between general whites in the discovery 251 

cohort of Sun et al. and its subset with a history of MDD at baseline, 1,982 proteins remained. 252 

Half of the proteins had 5 or less cis-pQTL (range 1 to 81). Individual cis-pQTL showed an 253 

ignorable discrepancy in effect allele frequencies (≤0.021) between the two cohorts (whites vs. 254 

non-whites with a history of MDD).  255 

Genetically determined lower apolipoprotein E and higher IL10RB protein expression 256 

levels were significantly associated with incident ADRD in MDD (IVW HR=1.81 and 1.41 per 257 

SD, FDR-adjusted p-values 5.79×10-10 and 0.035, respectively). Figure 2 shows the ratio 258 

estimate (log(HR)) of per allele association with incident ADD to per allele association with the 259 

expression of APOE or IL10RB. Both IVW and MR-RAPS showed similar results (Table S6). 260 

Additionally, there was no evidence of weak instruments (IVW F-statistic>10), heterogeneity 261 
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among causal estimates (IVW Cochran’s Q test p>0.01), and pleiotropy (MR-Egger intercept 262 

test p>0.01) (Table S6).   263 

We conducted a sensitivity analysis using the IVW method with 1 or 2 cis-pQTL per 264 

protein (n=1,734), as reported in Sun et al22., removing cis-pQTL with a minor allele frequency 265 

smaller than 0.01. The hazard ratios associated with genetically determined protein expression 266 

levels were moderately correlated (Pearson correlation coefficient 0.76) across proteins 267 

(n=1,718) between analyses using this set of cis-pQTL and cis-pQTL identified in our setting 268 

(primary analysis) (Table S7). 269 

Prediction of ADRD risk in individuals with a history of MDD  270 

We fitted a LASSO Cox regression model to identify the protein set that could best 271 

predict the future risk of ADRD among participants with a history of MDD at baseline. The 272 

hyperparameter lambda (λ) was chosen as 0.009731. Nineteen proteins were selected by a 273 

LASSO Cox regression model (Table S8). These proteins were used to develop a Proteomic 274 

Risk Score (PrRSMD-ADRD) for incident ADRD in a Gomperz model (Gomperz parameter 275 

estimates in Table S9). The PrRSMDD-ADRD showed a strong discriminative power separating 276 

incident ADRD cases and controls within 10-year of follow-up among participants with a history 277 

of MDD at baseline (C-statistics = 0.84, SE = 0.016) (Table 1). Its discriminative power was 278 

higher than common risk factors and predictors of ADRD in the general population (e.g., age, 279 

sex, education, and APOE e4 carrier status, whether considered individually or in combination). 280 

Interestingly, the discriminative power of the model with PrRSMD-ADRD alone was higher than the 281 

model with PrRSMDD-ADRD, age, sex, education, and APOE carrier status.  282 

Correlations between PrRSMDD-ADRD with intermediate phenotypes of ADRD 283 

We examined the correlations between PrRSMDD-ADRD and intermediate phenotypes of 284 

ADRD in participants with a history of MDD at baseline. It is worth noting that the sample size 285 

was reduced due to limited overlaps between cohorts and incomplete data, ranging from 556 286 
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(numeric memory) to 4527 individuals (reaction time test) for cognitive function measures and 287 

from 568 (white matter hyperintensities phenotypes) to 591 (regional cortical volume 288 

phenotypes) for brain MRI IDPs. An increased PrRSMDD-ADRD was significantly correlated with 289 

worse cognitive performance among individuals with a history of MDD at baseline (Figure 3). 290 

These cognitive domains are commonly affected in individuals with a history of MDD and are 291 

strong predictors of the future development of ADRD44. We also observed significant 292 

correlations of PrRSMDD-ADRD with atrophy in multiple cortical and subcortical regions and 293 

increased cerebrovascular burden in brain regions critical for cognitive and emotional 294 

processing and implicated in both MDD and ADRD45 (Figure 4, Table S10). These results 295 

reinforce the robustness of PrRSMDD-ADRD.  296 

 297 

 298 

 299 

Discussion 300 

Prior studies showed a significant genetic correlation between MDD and ADRD, a 301 

significant overlap of biological processes between MDD and ADRD (including inflammation-302 

related pathways), and that amyloid-related pathways are causally linked to MDD and ADRD 303 

using bi-directional Mendelian randomization. However, these studies relied on cross-sectional 304 

data, summary-based GWAS data, and analyses of post-mortem brain tissues, and despite the 305 

robustness of the findings, these samples and study designs can introduce significant biases to 306 

the results. Moreover, these studies did not provide a biologically based predictive model to 307 

identify individuals with MDD that have the highest risk to progress to ADRD over time.  308 

Our results are consistent with these prior observations, but significantly extend them in 309 

several ways. First, using proteomic data from the UKB, we found that a small set of proteins 310 
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was significantly associated with the incidence of ADRD among individuals with MDD, including 311 

2 proteins (i.e., NfL and GFAP) that have been extensively associated with the risk of ADRD in 312 

the general population. Our Mendelian randomization approach relied on the identification of 313 

cis-pQTLs as genetic instruments instead of GWAS summary statistics, which can provide more 314 

robust causal inference evidence21, 22. Using this approach, we determined that genetically 315 

determined protein expression of apolipoprotein E and IL-10 receptor subunit B are causally 316 

related to the elevated risk of ADRD in individuals with MDD. Finally, we developed a proteomic 317 

risk score (PRSMDD-ADRD) with strong predictive power to identify those with MDD that will 318 

progress to ADRD over a long-term follow-up. Importantly, PrRSMDD-ADRD was also associated 319 

with intermediate phenotypes relevant to both MDD and ADRD, such as worse cognitive 320 

performance, cortical brain atrophy in areas relevant to both conditions, and cerebrovascular 321 

disease burden. Therefore, PrRSMDD-ADRD can be used in clinical trials as a biomarker to identify 322 

those with the highest risk of developing ADRD to test interventions aiming at reducing the risk 323 

of ADRD in a highly vulnerable population.  324 

We identified a small set of proteins that were significantly associated with the risk of 325 

ADRD in MDD. The GFAP and NfL are well-established markers of astroglial activation and 326 

neurodegeneration, respectively, higher levels of these proteins in the blood are associated with 327 

progression from mild cognitive impairment to clinical dementia in multiple cohorts46. Our 328 

findings, thus, support the role of unspecific neurodegenerative and neuroinflammatory 329 

abnormalities as markers related to the progression to ADRD in individuals with MDD. VGF is a 330 

multifunctional polyprotein, primarily secreted by neurons and involved in neuroplasticity, 331 

neurogenesis, and energy metabolism47. Previous studies showed that VGF levels are reduced 332 

in MDD (both in plasma and CSF), and lower levels are associated with more severe cognitive 333 

impairment48, 49. Also, lower levels of VGF have been reported in older adults with MCI and AD 334 

and related to Alzheimer’s disease neuropathological changes50, 51.  335 
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We found novel proteins associated with the risk of ADRD among individuals with MDD 336 

that have not been previously reported in the literature. HPGDS is responsible for the 337 

conversion of prostaglandin H2 (PGH2) to prostaglandin G2 (PGD2) in the immune cells. The 338 

primary effect of PGD2 is the regulation of inflammatory processes through the recruitment of 339 

CD4+ TH2 cells and it has been associated with allergic reactions and asthma development52. 340 

However, PGD2 is also the most abundant prostaglandin in the brain and previous studies have 341 

reported lower levels in individuals with MDD53, but higher levels of PGD2 have been reported in 342 

AD54. Therefore, our results showing that higher levels of HPGDS are associated with reduced 343 

risk of ADRD are contradictory and warrant further investigation. GET3 is a protein chaperone 344 

and important in the cytoplasmic protein trafficking and protection against oxidative stress 345 

damage, playing a major role in maintaining proteostasis55. PSG1 is a protein that is mostly 346 

secreted during pregnancy in the placenta, but is also secreted by multiple tissues in non-347 

pregnant people56. It has a potent immunomodulatory effect by activating the TGF-β signaling 348 

pathway57 and higher expression of PSG1 is associated with poor prognosis in multiple 349 

cancers58. Further investigations are necessary to clarify their roles in both conditions and how 350 

they can lead to a higher risk of ADRD in individuals with MDD.    351 

The Mendelian randomization analyses revealed that genetically determined protein 352 

expression of apolipoprotein E and IL-10 receptor is causally linked to the risk of ADRD among 353 

individuals with MDD. The APOE gene is a well-established risk factor for ADRD and the 354 

presence of its ε4 allele significantly increases the ADRD risk, while the ε2 allele is protective 355 

against it in the general population59, 60. The presence of the allele ε4 leads to structural 356 

modification, reduced lipidation potential, and lower protein expression levels61-63 of 357 

apolipoprotein E, and the net effect is reduced clearance of toxic amyloid-β proteins in the brain 358 

and a greater propensity to amyloid-β aggregation and development of neuritic plaques. A 359 

recent large-scale proteogenomic study showed that APOE is also a pQTL and the allele ε2 360 
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leads to higher genetically determined protein expression of apolipoprotein E compared to the 361 

allele ε422. Such finding provides additional mechanistic evidence why different APOE gene 362 

polymorphisms confer a protective or harmful effect against ADRD development.  363 

On the other hand, a genetically determined higher expression of IL-10 receptor subunit 364 

B (IL-10RB) is causally linked to ADRD among MDD individuals. The IL-10 cytokine, through the 365 

interaction of its receptor IL-10, has a primarily anti-inflammatory effect and is a master 366 

regulator of the resolution of the inflammatory response64. IL-10 has a similar 367 

immunomodulatory effect in the brain and is associated with the response against acute insults 368 

to the brain, e.g., acute brain injuries and stroke65. However, the hyperactivation of the IL-10/IL-369 

10R system can be detrimental, preventing the resolution of tissue damage, autoimmune 370 

conditions, and immunological escape of tumors 66, 67. Interestingly, the primary intracellular 371 

signaling pathway activated by IL-10/IL-10R is the JAK/STAT signaling pathway. The 372 

overactivation of this pathway can lead to the inhibition of pro-apoptotic factors and induction of 373 

cellular senescence68, 69. It is worth noting that elevated senescence burden has been 374 

associated with major depression and cognitive impairment across the lifespan18, 70 and that IL-375 

10 is overexpressed in immunosenescent cells71, thus increased activation of IL-10 in this 376 

context may be more reflective of this cytokine’s role in cellular senescence than its anti-377 

inflammatory properties.  378 

Overall, our findings from the Mendelian randomization and observational analyses 379 

provide a robust mechanistic explanation for the higher risk of ADRD in individuals with MDD. 380 

First, a genetically determined reduction in the apolipoprotein E expression can promote the 381 

aggregation of the amyloid-β protein in the brain. Coupled with impaired control of the immune 382 

response by the genetically determined higher expression of IL-10RB, there is a reduction in the 383 

capacity of brain tissues to resolve the local insults secondary to the amyloid-β accumulation. 384 

Over time, the imbalance of amyloid-β accumulation and lower damage resolution capacity in 385 
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individuals with MDD can lead to additional development of astrogliosis, neuronal injury, cellular 386 

senescence, reduced neurotrophic support, impaired proteostasis and metabolic control, 387 

culminating in the progression of neurodegenerative changes and the development of ADRD. It 388 

is important to note that other characteristics of a depressive episode, that were not captured in 389 

the current study, like chronic perceived stress, medical comorbidities, and poor lifestyle and 390 

behaviors, can contribute to the intensification of these pathophysiological processes and 391 

moderate the risk of ADRD in individuals with MDD.  392 

Antidepressant treatment may have a mild effect on improving cognitive performance in 393 

individuals with MDD72, although they do not seem to have a robust effect preventing ADRD in 394 

individuals with MDD73. Therefore, more specific interventions are needed, and our results point 395 

to more specific treatment targets for interventions aiming to mitigate the risk of ADRD in this 396 

group. For example, several drugs that inhibit the JAK/STAT pathway, a major pathway 397 

activated by the IL-10 receptor, are clinically available (e.g., baricitinib and tofacitinib) and could 398 

be repurposed aiming the prevention of ADRD in individuals with MDD; however, their side 399 

effect profile and low brain penetrance may preclude its effectiveness for this purpose74. On the 400 

other hand, there has been a growing interest in modulating apolipoprotein E effects as a 401 

treatment target for ADRD and several compounds have been developed and tested in animal 402 

models75 and they could be also promising in the prevention of ADRD in individuals with MDD.    403 

To the best of our knowledge, we were the first to develop a proteomic risk score 404 

estimating the 10-year risk of ADRD in individuals with a history of MDD. Our model (PrRSMDD-405 

ADRD) had a strong discriminative performance, with a C-statistics of 0.84. Interestingly, PrRSMDD-406 

ADRD alone showed a stronger predictive performance than well-established risk factors for 407 

ADRD in the general population, including APOE genotype, socio-demographic variables (age, 408 

education, and sex), or their combination. Importantly, the PrRSMDD-ADRD was also associated 409 

with intermediate phenotypes of ADRD like worse cognitive performance, atrophy in cortical and 410 
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subcortical brain regions, and cerebrovascular burden. These findings support the robustness of 411 

PrRSMDD-ADRD to predict ADRD development in MDD populations and for its potential use in 412 

observational studies and clinical trials aiming to evaluate the association between MDD and 413 

ADRD.  414 

Our results should be interpreted in light of the study limitations. The UK Biobank sample 415 

is relatively healthier, with better socioeconomic status, and predominantly white compared to 416 

the general UK population. Thus, our findings may not be generalizable to the general 417 

population or other geographical locations. The identification of MDD cases was based on 418 

electronic health records. Despite of the strong validity of EHR for the identification of MDD 419 

cases in the UK Biobank76, the lack of formal psychiatric interview for the majority of UK 420 

Biobank participants does not allow for a fine-grained characterization of the major depressive 421 

episode, such as currently depressed or in remission, age of onset, chronicity and number of 422 

prior episodes, trajectories of depressive symptoms after the diagnosis, treatment response 423 

which are all variables that can influence the risk of ADRD in this population77, 78. Similarly, the 424 

identification of ADRD was based on EHR and there is no information about AD-related 425 

biomarkers (amyloid-β and phosphorylated Tau protein). Thus, there is a risk of misclassification 426 

of cases that could have influenced the current results. We were not able to validate our models 427 

and results using an external validation study. This is due to the absence of large-scale 428 

epidemiologic studies with the identification of MDD cases and future cases of ADRD that also 429 

have used the OLINK Explore 3072® proteomic assay. Therefore, our findings must be 430 

replicated and validated in future studies, including large and diverse sample sizes.  431 

Despite the study limitation, our analyses have unique strengths such as the large 432 

sample of individuals with MDD, proteomic data, and a long follow-up. Despite UKB participants 433 

being younger, healthier, and better off socio-economically we were still able to detect the 434 

association between MDD and ADRD and to develop a robust predictive model based on the 435 
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proteomic data. Finally, the Mendelian randomization analysis, using cis-pQTLs as genetic 436 

instruments, allows one to move beyond typically descriptions of associations with all the 437 

multitudes of different and unavoidable biases of observational studies and towards studies 438 

involving inference of biological causation.   439 

 440 

  441 
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Figure 1 Proteins significantly associated with incident ADRD in participants with a history of MDD at 
baseline 
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Figure 2 MR-Egger plots to show causal estimates from IVW vs. other MR methods for the effects of 
APOE and IL10RB (FDR-adjusted p<0.05) on incident ADRD in participants with a history of MDD at 
baseline. The slope estimates represent log(HR) per SD increase in genetically determined APOE or 
IL10RB. 
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Figure 3 - Spearman correlations between PrRSMDD-ADRD, age, and cognitive performance measures 
from baseline (reaction time, numeric memory, fluid intelligence score) or first imaging visit (symbol 
digit substitution, trail making, matrix pattern completion). Significance: ***p<0.001, **0.01<p<0.001, 
*0.01<p<0.05. 
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Figure 4 Spearman correlations of PrRSMDD-ADRD with T1 structural and T2-weighted brain MRI image-
derived phenotypes (IDPs), adjusting for head size. IDPs labeled if FDR-adjusted p<0.05 and Spearman 
correlation >0.2. 
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