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ABSTRACT

Recent advances in sequencing and bioinformatics
have expanded the tree of life by providing genomes
for uncultured environmentally relevant clades, ei-
ther through metagenome-assembled genomes or
through single-cell genomes. While this expanded
diversity can provide novel insights into microbial
population structure, most tools available for core-
genome estimation are sensitive to genome com-
pleteness. Consequently, a major portion of the huge
phylogenetic diversity uncovered by environmental
genomic approaches remains excluded from such
analyses. We present mOTUpan, a novel iterative
Bayesian method for computing the core genome
for sets of genomes of highly diverse completeness
range. The likelihood for each gene cluster to belong
to core or accessory genome is estimated by com-
puting the probability of its presence/absence pat-
tern in the target genome set. The core-genome pre-
diction is computationally efficient and can be scaled
up to thousands of genomes. It has shown compa-
rable estimates to state-of-the-art tools Roary and
PPanGGOLiN for high-quality genomes and is capa-
ble of using genomes at lower completeness thresh-
olds. mOTUpan wraps a bootstrapping procedure to
estimate the quality of a specific core-genome pre-
diction, as the accuracy of each run will depend on
the specific completeness distribution and the num-
ber of genomes in the dataset under scrutiny. mO-
TUpan is implemented in the mOTUlizer software
package, and available at github.com/moritzbuck/
mOTUlizer, under GPL 3.0 license.

INTRODUCTION

The continuous advancements of high-throughput sequenc-
ing technologies and bioinformatics tools over the last two
decades have fueled large-scale ecogenomic analyses lead-
ing up to a new view of the tree of life (1–3). This refined
view enabled by metagenomics and single-cell genomics re-
veals that uncultured bacteria and archaea exclusively rep-
resented by metagenome-assembled genomes (MAGs) and
single-cell amplified genomes (SAGs) account for ∼75% of
the cataloged phylogenetic microbial diversity (2). Despite
their unequivocal potential to reveal diversity, the inherent
incompleteness of MAGs and SAGs has so far hindered at-
tempts in the large-scale study of subpopulation diversity,
core-genome structure and genome evolution of these phy-
logenetically diverse species.

All nonredundant genes in genomes from a genome set
are part of its pan-genome and can be categorized as ei-
ther core or accessory (4). The core genome is a set of genes
common among all genomes of a species and is suppos-
edly responsible for the basic aspects of the cell’s biology
and phenotypic traits (5). The accessory part of the genome
is underpinning the subspecies diversity and is defined as
genes present in two or more but not all representatives of a
species. Accessory genes typically encode for functions that
provide cells with adaptive advantages (e.g. supplementary
metabolic pathways, enzymatic activities, antibiotic resis-
tance, phage and predation resistance, pathogenicity, etc.)
(4–6), but are often also relics or live selfish genetic elements
(7).

A key prerequisite for the comparative analyses of the
subspecies diversity and ecological adaptations is to first
have a robust estimation of the core genome that will enable
a better assessment of the accessory counterparts. However,
core-genome analyses are limited in taxonomic scope (8–
13), largely because of the severe limitations in culturing
microbes and obtaining high-quality genomes, combined
with existing bioinformatics methods being dependent on
high-quality genomes to scaffold such analyses. Most meth-
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ods used for core-genome analysis only work with sets of
high-quality and complete genomes and are very sensitive
to missing genes and fragmented genomes (14). These meth-
ods often concentrate on developing novel methods for
computation of clusters of orthologous genes (COGs) in
the population of interest (14) and use only simple binary
presence/absence models for the core-genome estimation
(e.g. a COG is core if it is present in all the genomes of the
clade). Such methods perform best when used on a mod-
erate number of high-quality genomes generated from cul-
tured microbial isolates. Accordingly, these methods are un-
able to deal with the rapidly growing database of incomplete
and fragmented MAGs and SAGs of the uncultured major-
ity of Earth’s microbiome (2). Due to these methodological
limitations, our understanding of the size and structure of
microbial core genomes and pan-genome dynamics remains
elusive and lags behind our growing appreciation of micro-
bial phylogenetic diversity. The recently released software,
PPanGGOLiN, uses synteny networks to compute clusters
of co-occurring gene clusters instead of presence/absence.
This method is highly scalable, fast and robust enough to
deal with incomplete genomes (15). However, this method
could be sensitive to fragmentation, which is a prominent
feature of most incomplete MAGs and SAGs, and is not
explicitly tailored to find the core, but rather to find clusters
of syntenic genes.

Here, we present a novel approach for computing core
genomes relying on a Bayesian estimator of the observed
presence/absence patterns of discrete genome-encoded
traits (any trait that can be encoded in a genome, e.g. gene
cluster, COG, functional annotations, etc.) in sets of in-
complete MAGs/SAGs and complete genomes. We wrote
a software tool, mOTUpan, that can estimate whether any
genome-encoded trait is more likely to be present in all
genomes of a genome set or only in a subset. mOTUpan
can compute the core-genome partitioning for genome sets
of a wide range of qualities, and is computationally efficient,
agnostic to the genome-encoded traits used and very robust
to incompleteness.

MATERIALS AND METHODS

Bayesian approach for core-genome estimation

mOTUpan can use any set of genomes that is suspected
to share a certain number of genome-encoded traits. We
typically use clusters where all genomes are within com-
pact clusters defined by a 95% average nucleotide identity
(ANI) threshold. We call such clusters metagenomic oper-
ational taxonomic units (mOTUs), which can be seen as an
operational definition of species. However, genomes clus-
tered at any other taxonomic level, or any other way one
can imagine (by niche, predator, host, etc.), could be done
too, but one should consider turning off re-estimation of
completeness estimates in some cases (‘--max iter 1’).
We will use the term genome as a shorthand for any set of
nucleotide sequences originating from the same organism.
This could be draft genomes, complete genomes, MAGs or
SAGs. Each genome is first described as a set of genome-
encoded traits. Here, we will use gene clusters, but it should
be mentioned that mOTUpan is agnostic to the specific
form of such traits; one could use genes, COGs, functional
annotations or any other discrete trait that is encoded by

a genome. mOTUpan then uses an iterative Bayesian ap-
proach to classify each trait of the genome in a genome clus-
ter as a core or accessory trait based on a likelihood ratio.
For each of the two hypotheses (core or accessory trait), a
probability is computed using an initial genome complete-
ness estimate inferred for each genome [genome complete-
ness can be calculated using CheckM (16) or any other tool
of your choosing, or a fixed value used]. The most likely trait
category (core or accessory) is then picked as class for that
trait. Using this new classification, we re-estimate complete-
ness, which can be used as an estimate for a second iteration
and then repeat this entire process until convergence.

Probability models

To compute the probability of a distribution of a specific
trait in the genome set mOTU under the assumption that
it is in the core, we multiply the probability ptrait∈g|core of
any genome g (g is treated as a set of traits) that has that
gene cluster with the inverse probability 1 − ptrait∈g|core for
the genomes that do not have that trait, where the probabil-
ity ptrait∈g|core is actually directly the completeness estimate
cg of g, e.g. Equations (1) and (2):

ptrait|core =
∏

g∈mOTU
if trait∈g

ptrait∈g|core

∏
g∈mOTU
if trait/∈g

(1 − ptrait∈g|core), (1)

ptrait∈g|core = cg. (2)

For the probability under the assumption that it is in the
accessory fraction of the genome, we will have to make some
further assumptions with regard to the structure of the pan-
genome. We have assumed that the traits in the pan-genome
that are not in the core are independent, and each trait has a
frequency |trait|/|T|, where |trait| is the number of genomes
in mOTU that have that trait and |T| is the total size of the
traits’ pool, e.g.

∑
all traits |trait|. To ‘fill’ the accessory frac-

tion of a genome, we draw ‘|g|’ times, where |g| is the number
of traits in the genome, core size |coremOTU| and complete-
ness cg, resulting in Equations (3) and (4):

ptrait|access =
∏

g∈mOTU
if trait∈g

(1 − ptrait∈g|access)
∏

g∈mOTU
if trait/∈g

ptrait∈g|access,

(3)

ptrait∈g|access =
(

1 − |trait|
|T|

)|g|−cg |coremOTU|
. (4)

For practical reasons, these computations are all done in
log space, resulting in a log-likelihood ratio (LLHR)

LLHR = log (ptrait|core) − log (ptrait|access). (5)

If the LLHR of Equation (5) is positive, the trait is con-
sidered core; if negative, it is considered accessory. Using
this classification, we recompute an updated completeness
estimate for each genome:

cg = |coremOTU ∩ g|
|coremOTU| , (6)

where coremOTU is the set of all traits classified as core.
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After this step, we rerun the likelihood computation. This
is repeated until convergence (when core-genome estimates
remain unchanged), to obtain a final set of core traits and
accessory traits, and posterior completeness estimates.

Benchmarking mOTUpan for core-genome estimation

To benchmark the core genomes computed by mOTU-
pan against other commonly used core-genome analy-
sis tools, we calculated the core genomes for 301 species
containing a total of 11570 genomes (for larger species,
only 50 genomes were randomly picked to make the
runs tractable with Roary) from the Genome Taxonomy
Database (GTDB release 95) (3) and 258 mOTUs contain-
ing 8955 genomes in total from the StratFreshDB (17).
The MAGs were reclustered with mOTUlizer (github.com/
moritzbuck/mOTUlizer), which computes a network based
on average nucleotide identity of which the connected com-
ponents form OTU-like clusters [see (17) for more details],
with less stringent parameters (‘--MAG-completeness
30 --MAG-contamination 10’) to have more low-
quality mOTUs and compare the performance of mOTU-
pan to Roary (14) (version 3.13.0) and PPanGGOLiN (15)
(version 1.1.96). Normalized residues of the comparisons
are computed by dividing the difference between mOTU-
pan’s predicted core size and Roary/PanGGOLiN’s pre-
dicted core size by the mean of the predictions. Genome
statistics, accession numbers and taxonomy are available in
Supplementary Table S1. This step aims to highlight and
compare the performance of mOTUpan with Roary and
PPanGGOLiN with regard to the ability to handle incom-
plete and fragmented genomes.

For more detailed benchmarking of mOTUpan perfor-
mance, we selected a dataset of genomes affiliated with
the Prochlorococcus A genus from the GTDB. All genomes
classified as Prochlorococcus A according to GTDB-Tk (18)
found in RefSeq as well as GORG (19) were clustered into
mOTUs (using mOTUlizer with standard parameters); the
mOTU with the largest number of genomes was used (see
Supplementary Table S2 for genome statistics and acces-
sion numbers). This Prochlorococcus mOTU consists of 388
genomes whereof 3 are closed genomes and 16 genomes are
estimated to be >95% complete according to CheckM (16)
(version 1.1.3) results. Genomes assigned to this mOTU
range in completeness from 8.59% to 99.52% (median =
69.05%) (Supplementary Table S2). mOTUpan’s perfor-
mance for core-genome estimates for this Prochlorococcus
mOTU was benchmarked against PPanGGOLiN using the
gene clusters generated by it [PPanGGOLiN uses mmseqs
(20) internally for gene clustering, version 13.45111 in our
case]. All results shown in this paper were analyzed by mO-
TUpan version 0.3.2.

Bootstrapped false discovery rate and sensitivity

In addition to the likelihood ratio between the two prob-
abilities, a bootstrapping approach has been integrated in
mOTUpan to estimate the false discovery rate and sensi-
tivity of a specific partitioning. Synthetic genomes are built
by drawing gene clusters from the original genome set ac-
cording to the partitioning; e.g. every synthetic genome is

composed of all the core gene clusters, and a number of ac-
cessory gene clusters are drawn randomly from the pool of
accessory gene clusters based on an estimated genome size
(mean of number of gene clusters divided by completeness
estimate). The synthetic genomes are built ‘complete’ and
then rarefied by randomly removing gene clusters accord-
ing to the genome set’s posterior completeness estimates.
This synthetic set of genomes is then run through mOTU-
pan again and the counts of core traits in the obtained core
genome and accessory are used to estimate the false posi-
tive rate and sensitivity. Multiple synthetic datasets can be
analyzed to obtain a better estimate. To evaluate the boot-
strapping, we need a core genome that is assumed to be true.
To achieve this, we ran 10 runs of mOTUpan with 100 ran-
domly picked genomes of Prochlorococcus A selected from
the set used for benchmarking. We used the union of the
obtained cores as such (this is a liberal estimation of the
true core as we cannot know what the true core of this
population is). We then for each run in the bootstrapping
computed an empirical false positive rate by counting the
genes appearing in the computed core that are not a part
of our calculated true core from the previous step. We then
end computed a bootstrapped false positive rate. Results are
presented in Supplementary Table S3 and Supplementary
Figure S1.

RESULTS AND DISCUSSION

Overview of the mOTUpan’s Bayesian approach

The Bayesian approach adopted in this tool tries to leverage
the genomic diversity uncovered by incomplete and frag-
mented MAGs and SAGs for exploring the core-genome
and pan-genome structure of bacterial and archaeal species
(or any other set of genomic traits). Most available tools
such as Roary rely on a hard presence/absence threshold
for defining the core genome. This limitation renders such
tools largely unusable when dealing with incomplete and
fragmented MAGs and SAGs. Comparing the performance
of Roary and mOTUpan for core-genome estimation with
the gene clusters computed by Roary is equivalent to com-
paring mOTUpan to a hard threshold approach.

The network nature of PPanGGOLiN makes it relatively
robust to deal with some degree of incompleteness; how-
ever, as it is looking for patterns of synteny to determine
the persistent fraction of the genomes, too much fragmen-
tation (that is common in MAGs and SAGs) could cause
problems in calculations of the persistent fraction of the
genomes. The Bayesian approach of mOTUpan, on the
other hand, helps by potentially bypassing both incom-
pleteness and fragmentation limitations for core-genome
and pan-genome estimation for sets of incomplete and frag-
mented MAGs and SAGs. To give an approximation of the
runtime and memory usage, we have used 9443 Staphylo-
coccus aureus genomes downloaded from the GTDB. These
genomes were processed in 4 min for gene clustering on 24
threads by mmseqs2, and 2 h 15 min for mOTUpan on a sin-
gle thread on a Ryzen 9 3900X using around 3 GB of RAM.
mOTUpan also calculates bootstrapped false discovery rate
and sensitivity for the core-genome/pan-genome partition-
ing.

http://github.com/moritzbuck/mOTUlizer
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Figure 1. Benchmarking the performance of mOTUpan against Roary along the completeness scale. Three hundred one species containing 11 570 genomes
from the GTDB and 258 mOTUs containing 8955 genomes in total from the StratFreshDB are used for this comparison. Gene clusters used are the ones
computed by Roary. (A) Predicted core sizes. (B) Normalized residues, fold change between core size predicted by mOTUpan and Roary; if the number
is >1, mOTUpan’s prediction is larger. (C) Predicted gene clusters in core divided by estimated number of gene clusters per genome (bins below 40%
completeness are ignored for this estimate) versus the mean. Local polynomial regression fitting is used in panel (C).

There are widespread and valid concerns that MAGs are
contaminated by contigs that might not be a genuine part
of their genome, as binning tools may mistakenly cluster
them together with the rest of the MAG. MAGs are usu-
ally screened for putative contamination with tools such
as CheckM that relies on a limited dataset of high-quality
genomes to compute a set of markers. mOTUpan can, how-
ever, address this known problem in a different way, as genes
annotated as core have a very low likelihood of being con-
taminants and can thus be used for prediction of genome
quality. Thus, mOTUpan allows users to compute an alter-
native to the completeness values estimated by CheckM (or
other tools) independent of marker gene collections or com-
plete genomes. This alternative can be used for all kinds of
genome sets, such as viruses or plasmids, that do not have
dedicated tools or databases.

Benchmarking mOTUpan against Roary and PPanG-
GOLiN along the completeness scale

To benchmark the performance of mOTUpan against
Roary, we used the gene clusters generated by Roary. Com-
paring the performance along the completeness scale shows
that Roary is highly sensitive to genome completeness,
as Roary’s core-genome estimate drops away considerably
from that of mOTUpan when completeness decreases (Fig-
ure 1A and B). Some of these limitations can be bypassed
by manually adjusting thresholds in Roary, but while this
can be done at a small scale, it is not tractable for the larger
scales where mOTUpan can still function (as is stated on
its web page: ‘Roary is not intended for metagenomics or
for comparing extremely diverse sets of genomes’, https:
//sanger-pathogens.github.io/Roary/).

Running mOTUpan using the COGs generated by
PPanGGOLiN [which internally uses the mmseq2 (15)

clustering tool], we obtain similar core-genome estimates
for the GTDB dataset (the more complete genome sets)
(Figure 2A). Looking more specifically at the deviation
from the first bisector along the completeness scale (Fig-
ure 2B), we can see that in general PPanGGOLiN’s core-
genome estimates are larger than those obtained with mO-
TUpan for the more complete genome sets. This tendency
changes drastically once the average completeness drops
below 70% where the mOTUpan estimates become larger.
This increase could be due to an inflation of predicted
core gene clusters for the more incomplete genome sets.
We accounted for this possibility by inspecting the frac-
tion of the genome classified as core (Figure 2C). While
this estimate is expected to be independent of complete-
ness, we can see that outputs from both PPanGGOLiN
and mOTUpan drop away from the expected value with
lower completeness, but the output from PPanGGOLiN
drops faster, demonstrating mOTUpan’s robustness to in-
complete and noisy genomes. Additionally, PPanGGOLiN
is designed to classify genes in three partitions (persistent,
shell and cloud) and thus it is not adapted for very incom-
plete genome sets. While at higher completeness values both
tools offer good estimation of the core genome, for most
ecological studies that focus on MAGs with completeness
at the ≥50% completeness and ≤5% contaminations (2),
mOTUpan could provide a better estimation of the core
genome.

Benchmarking mOTUpan against PPanGGOLiN for a
Prochlorococcus A genome set

For a more detailed benchmarking of mOTUpan against
PPanGGOLiN, we used a set of 388 genomes from the
Prochlorococcus A genus, ranging in completeness from
8.59% to 99.52% (median = 69.05%) according to CheckM

https://sanger-pathogens.github.io/Roary/
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Figure 2. Benchmarking the performance of mOTUpan against PPanGGOLiN along the completeness scale. Three hundred one mOTUs containing
11 570 genomes from the GTDB and 258 mOTUs containing 8955 genomes in total from the StratFreshDB were used for this comparison. Gene clusters
used are the ones computed by PPanGGOLiN (based on mmseqs2). (A) Predicted core sizes. (B) Normalized residues, fold change between core size
predicted by mOTUpan and PPanGGOLiN; if the number is >1, mOTUpan’s prediction is larger. (C) Predicted gene clusters in core divided by estimated
number of gene clusters per genome (bins below 40% completeness are ignored for this estimate). Local polynomial regression fitting is used in panel (C).

(Supplementary Table S2). For this analysis, we used the
gene clusters generated by PPanGGOLiN.

PPanGGOLiN splits the set of gene clusters by default
into three subsets: persistent, shell and cloud. For very com-
plete genomes, the persistent set of gene clusters is close
to the core genome, but for more noisy genomes, such as
those included in this Prochlorococcus A genome set, the
approach is not capturing the entire core genome (Fig-
ure 3). It is notable that gene clusters identified as ‘per-
sistent’ (316 gene clusters) very likely belong to the core
genome, while the ‘shell’ set of genes will normally corre-
spond to frequently co-occurring genes. PPanGGOLiN es-
timates a total of 1537 gene clusters to be a part of the
‘shell’ category for the Prochlorococcus A gene set. For the
same gene set, mOTUpan estimates 1637 gene clusters to be
part of the core genome. The core estimate of mOTUpan
seems to be close to the sum of ‘persistent’ and ‘shell’ (1853
gene clusters). The three closed genomes have 1883 gene
clusters, making the ‘persistent + shell’ estimate probably
an overestimate of the core genome. The ‘shell’ set of gene
clusters is picking up genes that are probably not all from
the core but rather frequently occurring accessory operons.
This is shown in the heatmap in Figure 4. The gene clus-
ters, which mOTUpan called accessory and PPanGGOLiN
called shell, seem to belong to blocks of gene clusters absent
in sets of highly complete genomes, hinting at very preva-
lent operons of accessory genes. Conversely, gene clusters
in mOTUpan’s accessory and PPanGGOLiN’s shell seem to
be very prevalent gene clusters that have only a diffuse pat-
tern hinting at single mobile genes, for example. This anal-
ysis also shows the robustness of mOTUpan to estimate the
true core genome from more noisy mOTUs.

Calculations of the core genome using mOTUpan with
the 3 closed genomes and 16 genomes with completeness
>95% of the Prochlorococcus A cluster estimate 1644 gene

clusters in the core (1714 ‘persistent’ gene clusters with
PPanGGOLiN). This is probably an upper bound to the
size of the core of this Prochlorococcus A mOTU, as addi-
tional microdiversity and noise would only remove genes
from this, making the 1637 gene clusters predicted to make
up the core in mOTUpan for the full set a better estimate
than either PPanGGOLiN’s ‘shell’ set (316 clusters) or ‘per-
sistent + shell’ set (1853 clusters).

This generally shows that mOTUpan can predict a core
genome very similarly to other state-of-the-art tools, while
at the same time being more robust over broader ranges of
genome completeness in comparison to those tools.

In order to get an idea on the effect of completeness
on the core-genome estimation using mOTUpan, we gen-
erated data for 10000 idealized mOTUpan runs. For each
run, one ‘good’ genome (a random genome of complete-
ness >45%, picked randomly) and a variable number of
‘bad’ genomes (of completeness <45%) were picked. Em-
pirical true and false positive rates were computed as in
Supplementary Figure S1 to evaluate performance in these
hard border cases. The completeness of the ‘good’ genome
controls mainly the amount of core genes that can be re-
trieved (Supplementary Figure S2A), and an excess of ‘bad’
genomes seems to reduce the number of core genes retrieved
(Supplementary Figure S2B). However, increased number
of ‘bad’ genomes added can decrease false positive rate
(Supplementary Figure S2C). Also, there is a large amount
of noise around the quality of the prediction; this makes se-
lecting a good set of genomes and parameters complicated.
The bootstrapping false positive rate can be of help as it
seems to be a good predictor for the true positive rate (Sup-
plementary Figures S1B and S2D).

Additionally, to show the effect of genome completeness
on the core-genome estimation we ran mOTUpan 30 times
for random subsets of 100 genomes of the Prochlorococ-
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Figure 3. Rarefaction analysis of mOTUpan’s and PPanGGOLiN’s core-genome prediction on the Prochlorococcus A mOTU. The same analysis was
performed on random subsets of the available 388 genomes.

cus A mOTU with estimated completeness in the range of
0–50%, 50–70% and 70–100% (Supplementary Figure S3).
By removing genomes with higher completeness value in the
tested subset, mOTUpan expectedly recovers a lower frac-
tion of the core genome.

mOTUpan can be used in a number of ways. It can obvi-
ously be used to study pan-genome structure at large scale
and with noisier data. This comes with some caveats; i.e. the
method is highly dependent on the gene-clustering method
used and it is very hard to evaluate the correctness of these
at a larger scale. Additionally, mOTUpan can only clas-
sify genes that actually are in the genomes that are ana-
lyzed. Accordingly, genes that are hard to assemble or bin
(due to different k-mer or abundance profiles) will be over-
looked, leading to an inevitable underestimate of the ac-
cessory genomes. Another known issue is that uneven rep-
resentations of subclades in a genome set might lead to
the core of the dominating subclade to be computed. This,
however, is easily spotted by a strong decrease of posterior
completeness estimates and mOTUpan will print a warn-
ing for these cases. Additionally, initial estimation of com-
pleteness could potentially impact the core size calculation
by mOTUpan. For those novel taxa that are poorly char-
acterized, we might have an overestimation of complete-
ness for the genomes, which might affect the mOTUpan
core size calculation. These effects can be evaluated by the
bootstrapping method. As shown in Supplementary Fig-
ure S1, the false positive rate computed with the bootstrap-
ping method relates well to the accuracy of the core calcu-
lation and should single out if the inputted combination of
the bins is problematic. It is to be noted though that the
estimated false positive rates are conservative (see Supple-
mentary Figure S1). It has to be noted that in the absence

of higher quality genomes in an mOTU, estimates of core
genomes will be accurate, but might be very partial. How-
ever, using the bootstrapped false positive rates allows us to
easily detect problematic cases. Nevertheless, it is the only
tool available that can do this type of analysis, and should
hence be an invaluable resource for biodiversity exploration
and comparative genomics. While PPanGGOLiN is per-
forming very well with noisy data, the specific purpose and
scope of this tool are different. PPanGGOLiN can be lever-
aged if one needs to select and identify core genes to, for
example, make a core phylogeny, and mOTUpan is a re-
liable choice for estimating and exploring the core and/or
accessory genome structure. Another important use envi-
sioned for mOTUpan is to strengthen functional predic-
tions for metagenomic projects. Rather than relying on sin-
gle MAGs where the presence of specific genes can be ques-
tioned, mOTUpan can robustly quantify this presence as
long as highly similar MAGs are available (which is often
the case in medium- to large-scale metagenomic project).
Notably, it can be used with a variety of genome-encoded
traits, and the currently available version has parsers avail-
able for Roary, PPanGGOLiN, eggNOG-mapper (21), mm-
seqs2 (20) and anvi’o (22), with possibly more to be included
later.

Ultimately, mOTUpan introduces and enables a new type
of analysis within the field of microbial genomics, i.e. the
usage of presence–absence of genome-encoded traits com-
bined with some Bayesian computation to predict gene con-
tent in a genome set. This approach can be expanded into a
number of different directions. We can, for example, move
from presence–absence to gene count, or use this approach
for gene-linkage assessment to estimate whether some traits
co-occur more often than by chance.
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Figure 4. Distribution of 5985 generated gene clusters from 388 genomes of a Prochlorococcus A mOTU. Each column represents a genome, and each row
represents a gene cluster. Presence/absence pattern of each gene cluster in each genome is shown in black and white, respectively. Gene clusters are assigned
to different partitions using mOTUpan and PPanGGOLiN estimations. These assignments are shown in the left side of the heatmap as colored columns.
Genome stats such as number of contigs, genome length, CheckM completeness and mOTUpan completeness are shown on top of the heatmap.

DATA AND CODE AVAILABILITY

The mOTUpan software is written in Python 3 and
is freely available under GPL 3.0 license via GitHub
in the mOTUlizer package at github.com/moritzbuck/
mOTUlizer. A conda recipe and pip package for user-
friendly installation are also available in the appropri-
ate repository. Scripts used for the analyses in this paper
can be found at github.com/moritzbuck/mOTUlizer/tree/
master/mOTUlizer/scripts. The data used for benchmark-
ing are from the GTDB (3) (release 95), available at gtdb.
ecogenomic.org (with actual genomes at RefSeq and Gen-
Bank); GORG-Tropics (19), available under GenBank at
PRJEB33281; and the StratFreshDB (17).
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