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ABSTRACT
The inhibition of a-, b-, c-, and d-class carbonic anhydrases (CAs, EC 4.2.1.1) from bacteria (Vibrio cholerae
and Porphyromonas gingivalis) and diatoms (Thalassiosira weissflogii) with a panel of N’-aryl-N-hydroxy-
ureas is reported. The a-/b-CAs from V. cholerae (VchCAa and VchCAb) were effectively inhibited by some
of these derivatives, with KIs in the range of 97.5 nM – 7.26mM and 52.5 nM – 1.81mM, respectively,
whereas the c-class enzyme VchCAc was less sensitive to inhibition (KIs of 4.75 – 8.87mM). The b-CA from
the pathogenic bacterium Porphyromonas gingivalis (PgiCAb) was not inhibited by these compounds
(KIs> 10mM) whereas the corresponding c-class enzyme (PgiCAc) was effectively inhibited (KIs of 59.8 nM
– 6.42mM). The d-CA from the diatom Thalassiosira weissflogii (TweCAd) showed effective inhibition with
these derivatives (KIs of 33.3 nM – 8.74mM). As most of these N-hydroxyureas are also ineffective as inhibi-
tors of the human (h) widespread isoforms hCA I and II (KIs> 10mM), this class of derivatives may lead to
the development of CA inhibitors selective for bacterial/diatom enzymes over their human counterparts
and thus to anti-infectives or agents with environmental applications.
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1. Introduction

N-Hydroxyurea has been reported1 by our group as a new chemo-
type belonging to the family of inhibitors of the metallo-enzyme
carbonic anhydrase (CA, EC 4.2.1.1)2–6. This simple compound has
been shown to bind in an unprecedented manner to the metal
ion from this enzyme active site (more precisely the human (h)
isoform hCA II), by means of X-ray crystallographic and kinetic
studies1. Although N-hydroxyurea is a weak, micromolar inhibitor,
it was observed to coordinate bidentately to the Zn(II) ion from
the hCA II active site, both through its NH and OH groups of the
CONHOH fragment of the molecule (presumably deprotonated),
which is rather unusual, as all the previously investigated inhibi-
tors at that time were monodentate zinc ligands2. This discovery
led to the detailed investigation of organic hydroxamates
(RCONHOH) as CA inhibitors (CAIs), which are quite diverse from
the main class, prototypical inhibitors of these enzymes, which are
the sulfonamides and their isosteres, sulfamates, and sulfamides,
all of them incorporating the SO2NH2 moiety as zinc-binding
group (ZBG)2–7. Many representatives of these class of com-
pounds, are in clinical use for decades, as they show diuretic8,
antiglaucoma9, antiobesity10, antitumor11, anti-neuropathic pain12,
and anti-arthritis13 effects. However, a main concern with sulfona-
mides/sulfamates/sulfamides as CAIs is their lack of selectivity for
the many CA isoforms present in humans (15 different CAs
belonging to the a-class)3. When considering all the CA families
known to date (a-, b-, c-, d-, g-, f-, and h-CAs) in organisms all
over the phylogenetic tree2–6, the selectivity problem is really
challenging, since sulfonamides and their derivatives generally act

as effective inhibitors of enzymes belonging to all these diverse
classes. Thus, the development of non-sulfonamide isoform- or
class-selective CAIs is of great interest for targeting enzymes from
parasitic bacteria, fungi, or protozoa, which in many cases contain
non-a-CAs (which in turn are present in the vertebrate hosts,
including humans, as mentioned above)2–6. Interesting develop-
ments have been reported in this field in recent years, in the
search of anti-infectives with a new mechanism of action, devoid
of the drug resistance problems encountered by many classes of
antibiotic, antifungal, and anti-protozoan agents4,5. Indeed, some
hydroxamates or carboxylates showed effective in vitro CA inhibi-
tory properties and also anti-Trypanosoma cruzi, or anti-leishmanial
activities ex vivo4. Thus, in the search of isoform- or class-selective
CAIs we investigated here a class of recently developed N-
hydroxy-ureas14, which incorporate a more elaborated organic
scaffold attached to the second nitrogen atom (compared to the
simple lead molecule, N-hydroxyurea)1 and which proved to be
effective inhibitors of the tumor-associated isoforms hCA IX/XII14,
without inhibiting considerably the off-target, house-keeping cyto-
solic isoforms hCA I and II, which are responsible for the many
side effects seen with the sulfonamide type of CAIs2–6.

2. Materials and methods

2.1. Chemistry

Compounds 1–20 were prepared as reported earlier14. Buffers and
acetazolamide (AAZ) were commercially available, highest purity
reagents from Sigma-Aldrich/Merck, Milan, Italy.
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2.2. CA enzyme inhibition assay

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic activity of various
CA isozymes for CO2 hydration reaction15. Phenol red (at a con-
centration of 0.2mM) was used as indicator, working at the
absorbance maximum of 557 nm, with 10mM HEPES (pH 7.5, for
a- and d-CAs) or tris (pH 8.3, for b- and c-CAs) as buffers, 0.1M
sodium sulphate (for maintaining constant ionic strength), follow-
ing the CA-catalyzed CO2 hydration reaction for a period of 10 s at
25 �C. The CO2 concentrations ranged from 1.7 to 17mM for the
determination of the kinetic parameters and inhibition constants.
For each inhibitor at least six traces of the initial 5–10% of the
reaction have been used for determining the initial velocity. The
uncatalyzed rates were determined in the same manner and sub-
tracted from the total observed rates. Stock solutions of inhibitors
(10mM) were prepared in distilled-deionized water and dilutions
up to 1 nM were done thereafter with the assay buffer. Enzyme
and inhibitor solutions were pre-incubated together for 15min
(standard assay at room temperature) prior to assay, in order to
allow for the formation of the enzyme-inhibitor complex. The
inhibition constants were obtained by non-linear least-squares
methods using PRISM 3 and the Cheng-Prusoff equation, as
reported earlier14,16–22. All CAs were recombinant proteins pro-
duced as reported earlier by our groups16–22.

3. Results and discussion

Bacterial, fungal, protozoan, or other organisms CAs may represent
new drug targets for the development of anti-infectives with an
alternative mechanism of action to clinically used agents, but this
type of research was rather neglected for a long time4,5. Only in
the last several years, mainly our group, cloned and investigated
the inhibition of many parasite CAs from various organisms and
belonging to a multitude of enzyme classes, providing the proof-
of-concept experiments that parasite CA inhibitors may have a sig-
nificant anti-infective effect, in vitro and in vivo, for many wide-
spread pathogens such as those provoking malaria4,5, Chagas
disease4,5, Leishmania4,5, or Helicobacter pylori infection23.

The rationale to investigate the new N’-aryl-N-hydroxyureas of
compound type 1–20 as inhibitors of bacterial/diatom CAs, is
based on the recent reported of Bozdag et al.14 that these com-
pounds act as hCA IX/XII-selective inhibitors over hCA I and II
(Table 1). In this article we included in the investigations the
three CAs from the bacterial pathogen Vibrio cholerae (VchCAa/
b/c)16,17, the two CAs from the oral bacterial pathogen
Porphyromonas gingivalis (PgiCAb/c)18,24 as well as the uniquely
well investigated d-class CA, TweCAd, from the diatom
Thalassiosira weissflogii19.

Inhibition data of the six CAs mentioned above with
Compounds 1–20 and acetazolamide (AAZ) as standard, sulfona-
mide inhibitor, are shown in Table 2. The following structure-activ-
ity relationship (SAR) is observed from thee data of Table 2:

i. VchCAa was inhibited by some but not all Compounds 1–20
with KIs in the range of 97.5 nM – 7.26 mM (Table 2). The
best inhibitors were Compounds 2 and 9 (KIs of 111.5 and
97.5 nM, respectively) and both of them have a Me-Ph moi-
ety in their molecule (Compound 9 has also a second
methyl group). It seems that these two substitution patterns
of the aromatic ring are particularly effective for inhibiting
this enzyme. The nitro-containing derivatives (Compounds 7
and 8), as well as the 2-Me derivative (Compound 3) were

Table 1. Inhibition data of human CA isoforms hCA I, II, IX, and XII with
Compounds 1–22 by a stopped flow CO2 hydrase assay15.

N
H

O

N
H

OH

R
1-20

KI (nM)
a

Cmp hCA I hCA II hCA IX hCA XII

1 >10,000 >10,000 >10,000 27.4
2 >10,000 >10,000 >10,000 253.2
3 >10,000 >10,000 >10,000 >10,000
4 >10,000 >10,000 8237.3 491.2
5 >10,000 >10,000 >10,000 808.8
6 >10,000 >10,000 >10,000 >10,000
7 >10,000 >10,000 7781.7 43.6
8 >10,000 >10,000 >10,000 529.2
9 >10,000 >10,000 >10,000 >10,000
10 >10,000 >10,000 >10,000 768.0
11 >10,000 >10,000 >10,000 858.2
12 >10,000 >10,000 253.5 >10,000
13 >10,000 >10,000 679.1 27.9
14 >10,000 >10,000 78.9 7.2
15 >10,000 >10,000 >10,000 >10,000
16 >10,000 >10,000 >10,000 >10,000
17 >10,000 >10,000 268.9 51.3
18 >10,000 >10,000 130.0 42.1
19 >10,000 >10,000 >10,000 377.6
20 >10,000 >10,000 >10,000 746.6
aMean from three different assays, by a stopped flow technique (errors were in
the range of ±5–10% of the reported values)14.

Table 2. Inhibition of CAs belonging to the a-, b-, c-, and d-classes with N-
hydroxyureas Compounds 1–20 and the standard sulfonamide inhibitor acetazo-
lamide (AAZ), by a stopped-flow CO2 hydrase assay15.

N
H

O

N
H

OH

R
1-20

KI (nM)
a

No: R VchCAa VchCAb VchCAc PgiCAb PgiCAc TweCAd

1: H 7260 1810 >10,000 >10,000 6424 >10,000
2: 4-CH3 111.5 483 >10,000 >10,000 298 >10,000
3: 2-CH3 829 377 >10,000 >10,000 4214 >10,000
4: 4-Cl 4405 541 >10,000 >10,000 934 8740
5: 2-Cl 5941 64.2 >10,000 >10,000 3030 >10,000
6: 3-Cl 4000 60.3 >10,000 >10,000 819 >10,000
7: 4-O2N 509 54.1 >10,000 >10,000 2699 >10,000
8: 2-O2N 536 52.5 5687 >10,000 82.3 >10,000
9: 2,5-Me2 97.5 59.3 5500 >10,000 84.4 >10,000
10: 4-F >10,000 >10,000 >10,000 >10,000 >10,000 >10,000
11: 3-EtOOC >10,000 >10,000 >10,000 >10,000 >10,000 8490
12: 3,5-Me2 >10,000 >10,000 >10,000 >10,000 5493 57.8
13: 2-EtO >10,000 >10,000 >10,000 >10,000 >10000 33.3
14: 3-MeS >10,000 >10,000 >10,000 >10,000 59.8 52.0
15: 4-F-3-Me >10,000 >10,000 >10,000 >10,000 2882 3935
16: F5 >10,000 >10,000 >10,000 >10,000 3482 3413
17: 4-CF3 >10,000 >10,000 >10,000 >10,000 2630 4640
18: 4-CF3-2-Cl >10,000 >10,000 5426 >10,000 >10,000 856
19: 2-MeO >10,000 >10,000 4750 >10,000 >10,000 2879
20: 4-PhO >10,000 >10,000 >10,000 >10,000 >10,000 761
AAZ 6.8 451 473 214 324 83
aMean from three different assays, by a stopped flow technique (errors were in
the range of ±5–10% of the reported values, data not shown).
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the next best VchCAa inhibitors, with KIs< 1 mM, whereas
the remaining derivatives (Compounds 1–6) were weaker,
micromolar inhibitors. Strangely enough, all Compounds
11–20 showed KIs> 10 mM, which proves that small changes
in the substitution pattern at the aromatic ring has dramatic
consequences for the CA inhibitory activity.

ii. VchCAb showed a rather similar behavior, as Compounds
1–10 were effective inhibitors (KIs in the range of 52.5 nM –
1.81 mM), whereas Compounds 11–20 were not inhibitory
(KIs> 10 mM). The best inhibitors were Compounds 5–9 (KIs
in the range of 52.5 nM – 64.2 nM) and they incorporate
nitro, chloro, and 2,5-dimethylphenyl moieties. The position
of the R group on the phenyl moiety is crucial, since isomers
such as Compounds 4 and 5/6 differ by an order of magni-
tude in their inhibitory action (Table 2). The 4-chloroderiva-
tive (Compound 4) is roughly 10 times a weaker VchCAb
inhibitor compared to the 2- or 3-chlorosubstituted isomers
(Compounds 5 and 6). Compounds 1–4 were medium
potency inhibitors. It should be stressed that many of these
N-hydroxyureas were more effective VchCAb inhibitors com-
pared to acetazolamide (Table 1), such as for example
Compounds 3 and 5–9.

iii. VchCAc was generally poorly inhibited by most of the inves-
tigated N-hydroxyureas, except for Compounds 8, 9, 13, 14,
18, and 19, which were weak, micromolar inhibitors, KIs of
4.75 – 8.87 mM. The remaining 14 derivatives in the series
were not inhibitory at all up to 10 mM concentration of
inhibitor in the assay system (Table 1). It is in fact know that
the active site of c-CAs is rather shallow compared to the
deep ones of the a- and b-class enzymes3.

iv. PgiCAb was not significantly inhibited by any of the N-
hydroxyureas Compounds 1–20 investigated here, which is
rather difficult to explain considering the fact that the X-ray
crystal structure of this enzyme is unknown. AAZ is on the
other hand a medium potency inhibitor of this enzyme, with
a KI of 214 nM.

v. The c-CA from the same pathogenic bacterium, PgiCAc, was
on the other hand sensitive to inhibition by many of the
investigated N-hydroxyureas Compounds 1–20, which
showed KIs ranging between 59.8 nM and 6.42 mM (Table 1).
The best inhibitors were Compounds 8, 9, and 14, with KIs
ranging between 59.8 and 84.4 nM. Again they contain nitro-
phenyl (Compounds 8 and 9) and methylthiol-phenyl
(Compound 14) moieties in their molecule, which seem to
be the best ones inducing an effective inhibitory activity
against this enzyme. These three compounds were also
much more effective than acetazolamide as
PgiCAc inhibitors.

vi. TweCAd was poorly inhibited by Compounds 1–11, whereas
Compounds 12–20 showed a more effective inhibitory activ-
ity, with KIs of 33.3 nM – 8.74 mM (Table 1). The best inhibi-
tors were Compounds 12–14, with KIs of 33.3 – 57.8 nM and
they incorporate various R moieties on the aryl fragment
(3-methylthio, 2-ethoxy, and 2,5-dimethylphenyl). As for the
other enzymes investigated here, the nature of the R moiety
and substitution pattern on the aryl fragment are the main
factors influencing he biological activity.

vii. The inhibition profile of these six CAs is very different
between each other and also considering the human iso-
forms investigated earlier (hCA I, II, IX and XII)14, making this
class of CAIs of particular interest for developing class-select-
ive inhibitors.

4. Conclusions

A series of 20 N’-aryl-N-hydroxyureas possessing a variety of sub-
stitution patterns on the aryl fragment of the molecule, was inves-
tigated for the inhibition of six CAs belonging to four genetic
families, from pathogenic bacteria and nonpathogenic diatoms.
The a-/b-CAs from V. cholerae (VchCAa and VchCAb) were effect-
ively inhibited by some of these derivatives, with KIs in the range
of 97.5 nM – 7.26mM and 52.5 nM – 1.81 mM, respectively, whereas
the c-class enzyme VchCAc was less sensitive to inhibition (KIs of
4.75 – 8.87 mM). The b-CA from the pathogenic bacterium
Porphyromonas gingivalis (PgiCAb) was not inhibited by these
compounds (KIs> 10mM) whereas the corresponding c-class
enzyme (PgiCAc) was effectively inhibited (KIs of 59.8 nM –
6.42 mM). The d-CA from the diatom Thalassiosira weissflogii
(TweCAd) showed effective inhibition with these derivatives (KIs of
33.3 nM – 8.74 mM). As most of these N-hydroxyureas are also inef-
fective as inhibitors of the human (h) widespread isoforms hCA I
and II (KIs> 10mM), this class of derivatives may lead to the devel-
opment of CA inhibitors selective for bacterial/diatom enzymes
over their human counterparts and thus to anti-infectives or
agents with environmental applications.
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