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Abstract: Three-dimensional (3D) printing is perceived as an innovative tool for change in tissue
engineering and regenerative medicine based on research outcomes on the development of artificial
organs and tissues. With advances in such technology, research is underway into 3D-printed artificial
scaffolds for tissue recovery and regeneration. In this study, we fabricated artificial scaffolds by coat-
ing bone demineralized and decellularized extracellular matrix (bdECM) onto existing 3D-printed
polycaprolactone/tricalcium phosphate (PCL/TCP) to enhance osteoconductivity and osteoinductiv-
ity. After injecting adipose-derived stem cells (ADSCs) in an aggregate form found to be effective in
previous studies, we examined the effects of the scaffold on ossification during mandibular recon-
struction in beagle dogs. Ten beagles were divided into two groups: group A (PCL/TCP/bdECM +
ADSC injection; n = 5) and group B (PCL/TCP/bdECM; n = 5). The results were analyzed four and
eight weeks after intervention. Computed tomography (CT) findings showed that group A had more
diffuse osteoblast tissue than group B. Evidence of infection or immune rejection was not detected
following histological examination. Goldner trichrome (G/T) staining revealed rich ossification
in scaffold pores. ColI, Osteocalcin, and Runx2 gene expressions were determined using real-time
polymerase chain reaction. Group A showed greater expression of these genes. Through Western
blotting, group A showed a greater expression of genes that encode ColI, Osteocalcin, and Runx2
proteins. In conclusion, intervention group A, in which the beagles received the additional ADSC
injection together with the 3D-printed PCL/TCP coated with bdECM, showed improved mandibular
ossification in and around the pores of the scaffold.

Keywords: adipose-derived stem cells; aggregate; osteogenesis; 3D-printed PCL/TCP/bdECM
scaffold
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1. Introduction

3D printing technology has contributed to significant advancements in many different
fields over the past 20 years. Many countries have attempted to develop the 3D printing
industry for business, fashion, and mechanical engineering [1–3]. With the recent ad-
vances in 3D printing technology and increasing research in biomedical fields, 3D printing
technology is seen as a new tool of change, especially in biotechnology involving tissue
engineering and regenerative medicine. In fact, developing artificial organs and tissues
using 3D printing technology has been recently reported [4].

The tissue engineering area has seen active research on manufacturing artificial scaf-
folds using various materials. It aims to restore, maintain, and improve the damaged
function of the living body. To perform such recovery and regeneration of tissues, materials
required for the manufacturing of scaffolds must have biocompatibility, biodegradability,
and mechanical properties that can be maintained in the body. Additionally, cells injected
into and attached to the pores manufactured according to the characteristics of the im-
plantation site of the scaffold must be able to differentiate and proliferate. These internal
connective structures through the pores show excellent biocompatibility by enhancing the
penetration, differentiation, and proliferation of cells [5–8].

Manufacturing of scaffold for tissue engineering through the 3D printing technology al-
lows patient-customized scaffolds based on patients’ computed tomography (CT)/magnetic
resonance imaging (MRI) data. These scaffolds have excellent internal connectivity be-
cause of the 3D shape. Their mechanical properties, pore size, and porosity can be con-
trolled [9–14].

The extracellular matrix (ECM) provides important clues for long-term cell prolifera-
tion and differentiation and creates a microenvironment consisting of cell–cell connectivity
and 3D cells [15]. ECM is a sophisticated biomaterial composed of various collagens,
non-collagen proteins (NCPs), and proteoglycans. These secreted collagens combine with
NCP to form a dense structural hierarchy. Then, amorphous and non-crystalline ECM is
converted into a more crystalline form and undergoes bone mineralization for increased
hardness and strength of the tissue [16]. Previous studies have demonstrated the important
role of NCP in bone mineralization.

Recent studies have shown that demineralized bone matrix (DBM) causes more inflam-
mation than synthetic hydroxyapatite compounds due to using additional viscous carriers,
such as water-soluble polymers (sodium hyaluronate or carboxymethylcellulose) or an-
hydrous aqueous solvents (glycerol). Therefore, bone-demineralized and decellularized
extracellular matrix (bdECM) has been developed to make a gel form of the same biological
material without using an additional solvent [17]. This bdECm hydrogel has the same
bone conductivity and fluidity [18]. Therefore, bdECM has been manufactured using ECM
extracted from animal bones and has been widely used in bone tissue engineering. A 3D
printing technique in which bdECm is added to a polycaprolactone/tricalcium phosphate
(PCL/TCP) porous scaffold has recently been developed to promote bone regeneration
and improve adhesion and proliferation of osteoblasts. Interestingly, using bdECm as a
bio-ink for bioprinting of cells has been raised recently [19–21].

Stem cells refer to those cells capable of self-renewal and differentiation into various
types of cells under appropriate biological signals and external stimuli. Mesenchymal
stem cells (MSCs) from fetal tissues, umbilical cord blood, and bone marrow and adipose-
derived stem cells (ADSCs) can be differentiated into various tissues, such as bone, cartilage,
muscle, and nerve through tissue engineering [22–26]. Several studies have reported bone
differentiation after the injection of stem cells into the 3D scaffold. However, most studies
reported limitations in bone differentiation and adhesion of stem cells to the scaffold. Many
studies are currently being conducted to increase adhesion and bone differentiation by
using aggregates of ADSCs [27,28].

This study was conducted to assess the effects of 3D-printed polycaprolactone (PCL)/
tricalcium phosphate (TCP)/bdECM biomaterials and ADSC aggregates on the ossification
of mandibular bone reconstruction in beagles. bdECM was coated on PCL/TCP scaffold,
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which was used to promote ossification in a previous study. We hypothesized that ADSC
aggregates would increase bone formation inside the contact surface and scaffold in forming
the bone tissue [29–32].

2. Results
2.1. Outcomes of the Evaluation Using CT
CT Results: Coronal, Axial, and Sagittal Views

In both groups, ossification was not observed at four weeks on CT compared to normal
bones. At week 8, the density was increased on CT images, similar to that of normal bones
alongside the margins of the scaffold, unlike the previous pattern. This was the pattern of
ossification progression alongside the marginal region. The density of CT images increased
more markedly at eight weeks than at four weeks. As a result, the findings suggested that
ossification of the marginal region continued to increase at eight weeks.

In both groups, the size and number of internal pores were decreased at eight weeks.
However, the bone density of the scaffold was not as high as the surrounding normal
bone tissues and only showed a partial increase. This suggests that most of the pores were
products of inflammatory reactions with surrounding tissues and an increased number
of connective tissues. Only partial ossification occurred. At eight weeks, the pores were
further decreased, and bone density was also higher than that at four weeks.

The PCL/TCP/bdECM + ADSC aggregate administration (PTE + SA) group showed
a more pronounced marginal ossification and a greater decrease in pores compared to the
PCL/TCP/bdECM (PTE) group (Figure 1).
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Figure 1. Sagittal views of CT. (A) PTE group. (B) PTE + SA group (1. immediate postoperative findings, 2. postoperative
4 weeks findings, 3. postoperative 8 weeks).

Bone density was measured using the Hounsfield unit (HU) in five grafts of each
group. The average HU was compared between the two groups to measure the density in
the pores. In the PTE + SA group, the density was 337.28 at week four and 372.32 HU at
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eight. In the PTE group, the density in the pores was 248.12 HU at four weeks and 273.38
HU at eight weeks.

Although there was a difference in HU between the two groups, HU increased over
time, suggesting that ossification progressed sufficiently. Additionally, the PTE + SA group
showed a higher density than the PTE group, confirming that ossification was progressing
better (Figure 2).
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Figure 2. Hounsfield unit of the PTE group and the PTE + SA group.

2.2. Histological Findings

Biopsies were obtained from each group in four locations to observe changes in
inflammation and connective tissues, including collagen fibers, as well as the extent of
ossification through G/T stain. In both groups, periosteal connective tissue was enclosed
in the marginal region of the scaffold, and a dense pattern of connective tissues was also
observed inside the pores. These suggested that the scaffold had high biocompatibility. In-
flammation was partially observed in the pore, which seems to be caused by inflammatory
reactions before engraftment of the scaffold. Ossification was observed in each marginal
area, and the PTE + SA group had higher ossification than the PTE group. Biopsy of the
center of the scaffold showed a relatively more distinct ossification pattern than that of the
marginal region. These findings suggested that ossification was better induced in the PTE
+ SA group administered with ADSCs than in the PTE group (Figures 3 and 4).
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day (Goldner trichrome stain). (A) Anterior marginal area, (B) posterior marginal area, (1. original magnification × 20, 2.
original magnification ×100).

2.3. RT–PCR

At eight weeks after the 3D-printed model surgery, ossification was observed in the
scaffold pores with increased fibrinogen around the tissue. The increase in fibrinogen
was confirmed by the increased expression of collagen type I (ColI) gene, and ossification
was confirmed by the increased expressions of Osteocalcin and Runx2 genes. Real-time
polymerase chain reaction (RT–PCR) results showed that the levels were slightly increased
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in the PTE + SA group, which was administered ADSCs, compared to the PTE group
(Figure 5).
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Figure 5. RT–PCR results of Collagen type I (ColI), Osteocalcin, and Runt-related transcription factor
2 (Runx2). A comparison of the gene expression of each protein at postoperative week 8.

2.4. Western Blot

At eight weeks after 3D-printed model surgery, the expression of proteins related
to ossification was increased in both groups. Runx2, Col, and Osteocalcin expressions
were also increased. The band intensity of COL1, OCN, and RUNX2 was normalized to
that of β-actin. Western blot results indicated that the protein levels were increased in the
PTE + SA group administered with ADSCs compared to those in the PTE group (Figure 6).
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3. Discussion

3D printing technology has rapidly developed through many studies and is now used
in various aspects of medicine due to its convenience and suitability. Recent studies also
show that 3D printing technology can be used in studies on bones, ears, exoskeletons, res-
piratory organs, jawbones, lenses, cell culture, stem cells, blood vessels, vascular networks,
tissues, and organs [33–35]. However, the lack of specialized software for simulation, an
insufficient correlation between preoperative simulation and actual surgery, problems
of accuracy, and the possibility of artifacts in data obtained through CT scans limit the
further use of 3D-printed models. Despite these limitations, 3D printing technology is still
recognized as a new medical technology, and soon, it is expected to help medical staff to
visualize and specify various characteristics of each patient [36–38].
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On the other hand, tissue engineering is also opening a new era in bioengineering. In
general, tissue engineering includes three components: cells, scaffolds, and growth factors.
3D technologies have been used recently in cell and tissue printing techniques. Although
there are numerous challenges to overcome, 3D technology is expected to surpass the
existing traditional cell culture technologies in tissue engineering. It is expected that it
would be possible to simultaneously form living cells and scaffolds using 3D living cell
printing technology [1,39–42].

Scaffolds in tissue engineering are generally made of natural and synthetic polymer
materials. Natural polymer materials extracted from natural substances, animals, and
humans have superior biocompatibility compared to other materials and are nontoxic.
These include gelatin, collagen, fibrin, elastin, and alginate. Synthetic polymer materials
are relatively inexpensive, have outstanding mechanical properties, and are hydrolyzed
in vivo or decomposed by enzymes. Therefore, these are ideal polymers as a supporter.
Examples of synthetic polymer materials include poly-ε-caprolactone (PCL), poly-lactide-
co-glycolide (PLGA), and polylactic acid (PLA). In particular, various scaffolds for bone
tissue regeneration are manufactured using polylactide, a polymer material used for bone
tissue regeneration, and TCP, a bioceramic material. Most recently, resorbable membranes
have been utilized preferentially because the non-resorbable forms inevitably require a
surgical procedure for membrane removal, which can cause further patient discomfort,
risk of tissue damage, and additional costs and duration of treatments. Accordingly,
studies on synthetic bioresorbable materials have been conducted for the fabrication of
form-stable resorbable GBR membranes with a sufficient degradation rate. Bioresorbable
materials, such as polycaprolactone (PCL), polyglycolides (PGAs), polylactides (PLAs),
and copolymers, have been used for medical purposes [43].

A previous study fabricated thin-membrane-type scaffolds blending polycaprolactone
(PCL), poly(lactic-co-glycolic acid) (PLGA), and beta-tricalcium phosphate (β-TCP). It con-
firmed that the PCL/PLGA/β-TCP membrane prepared using the 3D printing technology
promoted appropriate bone-formation in a rabbit calvaria bone-defect model. This biore-
sorbable PCL/PLGA/β-TCP membrane has the biological and mechanical advantages of
both PCL and PLGA, as well as the osteoconductivity of TCP. However, PLGA also has
been reported to induce an inflammatory response because of the acidic byproduct and
toxins produced during its degradation process. Therefore, this study was undertaken by
only using PCL/TCP [44].

However, unlike polymer materials that are solid and produced using heat, bioceramic
materials are in powder form. They have lower mechanical strength than scaffolds made
of polymers. In addition, the material is in powder form, which leads to difficulties in
manufacturing a 3D support with excellent internal pores. Therefore, many studies are
being conducted to mix ceramic and polymer materials.

In general, scaffolds must be strong enough to resist external forces. They must
be disassembled after the pores are filled with bones at an appropriate time. In our
study, a scaffold was manufactured using PCL/β-TCP, a popular biodegradable material
with osteoinductive properties used in many different clinical studies. β-TCP has a high
affinity for BMP-2, which is a factor required for bone production. Thus, it induces bone
formation and β-TCP biodegrades over time. These two important features are ideal for a
scaffold [45–49].

ECM contains collagen, non-collagen proteins, and proteoglycans, all of which play
an important role in cell proliferation and differentiation by providing a microenvironment
through adequate intercellular connections. In the recent study [15], it was confirmed
that extracellular matrix (ECM) composes a favorable environment for long-term cell
proliferation and differentiation in the scaffold. Amorphous and non-crystalline ECM is
converted into a more crystalline form and undergoes bone mineralization for increased
hardness and strength of the tissue [16]. However, it is challenging to develop biomaterials
by imitating the ECM composition of the target tissue [19,50]. For this reason, DBM
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produced using ECM extracted from bovine bone has been widely used for the engineering
of bone tissues [51,52].

DBM contains growth factors, collagen and non-collagen proteins. Thus, it reproduces
the microscopic habitat environment, which enables osteoconduction and osteoinduc-
tion [17,53]. However, DBM xenografts may trigger immune responses. Therefore, bdECM
gels manufactured without using additional solvents, while having the same bone conduc-
tion and induction properties, have been used [18,20].

In recent studies, a 3D printing technique that adds bdECM to a PCL/PLCA/β-
TCP porous scaffold was developed to promote bone regeneration and improve adhesion
and proliferation of osteoblasts. There are also reports that bdECM can be used as a
bio-ink necessary for the bioprinting of cells [19,20]. Based on these studies, Bae et al.
observed that bdECM in 3D-printed scaffold increased initial cell adhesion and improved
ALP. In other words, a scaffold with bdECM containing rhBMP-2 promotes skeletal dif-
ferentiation [54–57]. Accordingly, in this study, bone-demineralized and decellularized
extracellular matrix (bdECM) using ECM was additionally used in the scaffold. Through
this, the adhesion and proliferation of the bone regeneration and osteoblast increased. Due
to this nature, bdECM is also widely applied as bio-ink the bioprinting process.

Stem cells capable of differentiating from adipose tissue into other tissues were dis-
covered in 2001 by Zuk and Huang et al. The isolation process of ADCS is relatively simple
compared to that of bone marrow-derived MSCs (BM-MSCs). Adipose tissue is abundant
throughout the body, and a greater number of cells can be isolated. Additionally, there
are no ethical problems, unlike embryonic stem cells. Isolation of BM-MSCs can lead to
possible complications, such as pain and infection, and the amount of BM that can be
collected is limited. On the other hand, ADSCs can be collected in large quantities under
local anesthesia. Therefore, they have been widely used to promote bone fusion through
tissue engineering in bone grafts and the regeneration of bone defects [22–25].

The use of ADSCs aggregates, which affects bone formation, for 3D-printed scaffold
has several advantages. Scaffolds are good mediators for the survival and bone formation
of these ADSCs [58,59].

A difference from other studies is the method of injecting adipose-derived stem cells
(ADSCs) within the scaffold. ADSCs can be differentiated into various tissues, such as
the bone, cartilage, muscle, and nerves, through tissue engineering. Several studies have
reported bone differentiation after the injection of stem cells into the 3D scaffold. In the
earlier study, cultured cells were seeding or injected in the scaffold as it is.

However, in this study, we gathered ADSC aggregate that was created and injected
into the scaffold. This can heighten the cell density much more significantly, so the paracrine
effect can be enhanced. Through the paracrine factors, we confirmed a result with increased
cell proliferation and bone regeneration.

To evaluate the bone regeneration ability of ADSC aggregates and bdECM-coated
PCL/β-TCP scaffold, micro-CT and histological staining were analyzed after implanting
the scaffold into the mandibular defects of beagle dogs. It was observed that the volume of
new bone increased in both groups. More new bone was observed in the PTE + SA group
than in the PTE group. RT–PCR and Western blot showed increased expression of bone
proteins in both groups, and the increase was higher in the PTE + SA group than in the PTE
group. These findings suggested that 3D-printed PCL/β-TCP/bdECM biomaterial and
ADSC aggregates were more effective in reconstructing the mandibular defect of beagle
dogs. Unlike in previous studies, macroscopical and histological results demonstrated
better outcomes in those injected with ADSC aggregates after coating of bdECM.

Despite various contents and methods, the follow-up period after surgery was short
(eight weeks). As a result, possible chronic immune rejections could not be evaluated.
Second, the scaffolds were undissolved until eight weeks after surgery. Ossification in the
bone healing process can replace the biomechanical properties of the scaffold. Assessment
of the optical density through tissue slides showed that the optical density of the tissue
inside the pores was significantly increased. However, the relative optical density in the
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pores was always less than that of the normal bone tissue. Compared to the surrounding
periosteum, the optical density was greater and lesser in different cases. Additionally,
relatively different results were observed at the same site depending on the differences
between G/T and hematoxylin and eosin (H/E) staining. A certain level of variation may
have occurred as the measurement site was randomly chosen in an arbitrary size.

4. Materials and Methods
4.1. Materials
4.1.1. 3D Printing Scaffold Manufacturing of PCL/TCP/bdECM

Biodegradable PCL (Evonik Industries, Germany) was dried sufficiently at 105 ◦C for
one day to make a hydrophilic polymer. TCP power (Sigma-Aldrich Co., St. Louis, MI,
USA) was manufactured with a particle size of 100 nm or less.

A 3D-printed scaffold of PCL/TCP was manufactured using a heating jacket and
stainless-steel cylinders through micro-nozzles along the X–Y–Z-axis. IMS computer
software (Pohang University of Science and Technology, Korea) was used as the produc-
tion system. Fused Deposition System was used for designing the 3D-printed scaffold
(Figure 7).
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For coating of bdECM, porcine bone was freeze-dried at −85 ◦C for 24 h to adjust the
size particles of porcine bone (SPB). Then, 70% ethanol was used to wash off fat, and it
was dechlorinated with 0.5 N hydrochloric acid (HCL). The HCL solution was replaced
every two hours, three times in total, to remove impurities. The decontaminated SPB was
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washed three times with distilled water (DW), put in a solution containing 0.05% trypsin
and 0.02% EDTA and kept at 37 ◦C for 2 h, and washed again with DW. This process was
repeated three times. Then, SPB was freeze-dried at −85 ◦C for 24 h and powdered in a
freeze-mill (6875D, SPEX SamplePrep, Metuchen, NJ, USA). The porcine bone was then
dissolved in an acidic pepsin solution to be manufactured into a bdECM gel coated on a
3D-printed scaffold of PCL/TCP.

4.1.2. Identification of ADSCs and Aggregates Formation

The adipose tissue collected from the abdominal cavity of a beagle dog was washed
with the same volume of phosphate-buffered saline (PBS) before tissue degradation. The
adipose tissue was then degraded using 0.075% collagenase type I (Worthington Biochem-
ical, Lakewood, NJ, USA) for 30 min at 37 ◦C. The decomposed tissue was filtered to
remove debris from the connective tissue. After separation of the fat cell layer floating on
the upper layer, the cell suspension was centrifuged for 10 min at 200 G. Contaminated
red blood cells were removed by adding erythrocyte lysis buffer of pH 7.3. The stromal
cells were washed twice with PBS, and ADSCs were collected. The ADSCs were cultured
in Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) and 1%
penicillin and streptomycin in a CO2 incubator at 37 ◦C. ADSCs cultured were incubated
at 37 ◦C exposed to 5% CO2 in an incubator for 24 h and 4 weeks, respectively. The ADSCs
were treated with a trypsin-EDTA enzyme to separate them into single cells. They were
then suspended in 0.2 mL microtubes (8-strip PCR tube) and centrifuged at 3000 rpm for
five minutes to collect cell aggregates.

4.1.3. Experimental Animals and Groups

Ten 36-months-old healthy beagles were selected. Before the 3D-printed model experi-
ment, spiramycin and metronidazole were injected into the blood vessels under general
anesthesia. Tooth scaling was performed and left molar and premolar teeth were removed.

The beagles were assigned into two groups (N = 5 for each group) based on the
application method of the adipose stem cell aggregate before implantation of the 3D-
printed PCL/TCP/bdECm biomaterial.

PCL/TCP/bdECM + ADSC aggregate administration group (PTE + SA group): 3D-
printed PCL/TCP/bdECM biomaterial was placed and fixed in the mandibular defect of
beagles. Then, 0.1 mL of the adipose stem cell aggregate at a concentration of 1 µg/mL
was added to the 3D-printed PCL/TCP/bdECM biomaterial through 10 pores distributed
across two rows at regular intervals using a micropipette. 0.01 mL of ADSC aggregates
was administered to each pore.

PCL/TCP/bdECM group (PTE group): Unlike the PTE + SA group, 3D-printed
PCL/TCP/bdECM biomaterial was placed and fixed in the mandibular defect of beagles,
and ADSC aggregates were not administered.

4.2. Experimental Methods

Thiopental sodium (Pentothal, Choongwae Parma Co., Seoul, Korea) was intra-
venously injected for anesthesia during surgery, followed by general anesthesia using
Halothane (Ilsunghalothane, Ilsung, Seoul, Korea). During surgery, lactated Ringer’s so-
lution and 1 g of cephalosporin antibiotics were administered. Hair on the left facial side
of the beagles was removed, and betadine and alcohol were used for sterilization. After
exfoliating and exposing the mandible, the mandibular defect was induced according to
the size of the model previously produced using the 3D printing technology.

Extraction was performed first, and it was implemented so that mandible is exposing.
As the extracted part, the sagittal section of the mandible was prepared, and the inferior
part was divided with an osteotome. It was separated into periosteo-elevator, and the
pedicle vessels were preserved. Afterward, the pores at the bottom of the 3D-printed
PCL/TCP/bdECm biomaterial were blocked with fibrin glue. Then, ADSC aggregates
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were injected into the pores of the 3D-printed model in the appropriate group, and fibrin
glue was sprayed on the outer pores to prevent possible leakage of ADSCs. No treatment
was provided for the PTE group.

The prepared 3D-printed model was inserted into the mandibular defect and fixed
using a plate and screws. The skin was then sutured back (Figure 8). In both groups, the
dressing was performed once every day from the day of surgery, and no dressing was
done after the removal of the stitches on the 7th day. The study was approved by the
Institutional Animal Care and Use Committee of Chonnam National University (Approval
No. CNU IACUC-YB-2016-43, The approval date is 28 September 2016). It was conducted
in compliance with the recommendations of the relevant committee.
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4.3. Outcome Evaluation
4.3.1. Evaluation Using CT

CT scans were performed on nine beagles immediately after surgery and before
ossification progressed to evaluate the ossification of the 3D-printed model. Coronal, axial,
and sagittal view CT images were obtained (Figure 7). At four and eight weeks after
surgery, CT scans were taken again. Ossification activity of the implanted 3D-printed
model was determined by evaluating the extent of calcification of the marginal area on CT,
increase in bone density, and decrease in the size of the internal pores.

For the quantitative evaluation of ossification, bone density in five grafts of both
groups was measured by Hounsfield unit (HU) after CT scan. The average HU was
compared between the two groups [27].

4.3.2. Histological Evaluation

All beagles were euthanized eight weeks after implantation of the 3D-printed model
for histological evaluation. The grafts were excised, including 1 cm of the marginal bone
tissue. A total of four histological evaluations were performed for each beagle. Two joints
with normal bones and two tissues in the center of the scaffold were divided into quadrants.
One quadrant was fixed in 10% neutral formalin and embedded in paraffin to make a
tissue section. It was stained with Goldner’s trichrome stain. Under an optical microscope
(SkyScan1173 (Ver. 1.6); Bruker-CT, Kartuizersweg 3B 2550 Kontich, Belgium), the extent of
new ossification of the whole graft, thickness and level of periosteal formation, the extent
of bone ingrowth into the pores, inflammatory cell infiltration of the graft, and formation
of collagen fibers were observed. The optical density of each biopsy slide was measured
using an image analysis system (i-SOLUTION LITETM, Image & Microscope Technology
Inc., Cicero, NY, USA). In each group, the optical densities of the normal bone tissue, tissue
in the pore, and soft tissue, including the periosteum formed around the scaffold, were
randomly measured in five places to obtain an average [27].

4.3.3. RT–PCR

Left-over tissues after histological evaluation were frozen with liquid nitrogen and
crushed using a tea bowl. RNA was separated using Trizol and reverse-transcribed into
cDNA using reverse transcriptase of a RevertAid first-strand cDNA synthesis kit (Thermo).
Polymerase chain reaction (PCR) was subsequently performed using a PCR kit (Bioneer,
Korea). Repetitive collagen type I (Col I), Osteocalcin, Runt-related transcription factor2
(Runx2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression levels
were measured in the RT–PCR amplified product (Table 1). The RT–PCR reactions were
performed through 35 cycles of denaturation (94 ◦C, 45 s), annealing (62 ◦C, 60 s), and
extension (72 ◦C, 60 s) for gene amplification.

Table 1. Sequences of primers used for reverse transcription–polymerase chain reaction (RT–PCR).
COL1, type 1 collagen; OCN, Osteocalcin; RUNX2, Runt-related transcription factor 2.

Gene Name Sequence (5′-3′)

COL1-dog-F CTCGTCACAGTTGGGGTTGA
COL1-dog-R GGTGCAAGTATGAAGCGGGA
OCN-dog-F AATTGCGCTCGAGCATCTCT
OCN-dog-R ATTGCCACGGTTGCTACTGA

RUNX2-dog-F GGCGGCTATAACTCTTCCCA
RUNX2-dog-R ACGCAGCGGCTTTTTATTTCA

GAPDH-F GTCGGAGTCAACGGATTTGG
GAPDH-R GGGTGGAATCAATTGGAACAT

4.3.4. Western Blot

After histological evaluation, some of the remaining tissues were used to extract
proteins for examining protein expression. The tissue was subject to reaction with PRO-
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PREP (iNtRON) lysis buffer for 30 min at 4 ◦C and centrifuged for 10 min at 13,000 rpm to
observe the effects of bone differentiation induction at the protein level in each group. The
extracted protein was quantified, heated at 100 ◦C for 5 min, and subject to electrophoresis
in a 10% SDS-polyacrylamide gel. The extracted protein was transferred to a nitrocellulose
membrane and isolated with 5% skim milk powder. The membrane was treated with
primary antibodies, such as OCN (ab13420, 1 g/mL; Abcam, Cambridge, MA, USA), COL1
(ab6308, 1 g/mL; Abcam, Cambridge, MA, USA), RUNX2 (ab23981, 1 g/mL; Abcam,
Cambridge, MA, USA), β-actin (ab8226, 1:10,000; Abcam, Cambridge, MA, USA). β-actin
was used as a housekeeping protein. The membrane was then washed three times for
10 min with Tris-buffered saline Tween-20 (TBST) washing solution and reacted for two
hours with horse-radish peroxidase-conjugated secondary antibody. The nitrocellulose
membrane was washed three times again for 10 min using the same washing solution and
reacted with ECL substrate solution for one minute. The membrane was then exposed to
the X-ray film for development.

5. Conclusions

We implanted 3D-printed PCL/TCP/bdECM biomaterial into the artificial mandibular
defect of beagles. ADSC aggregates were injected into the 3D-printed implants. The extent
of ossification was analyzed via macroscopical assessment using 3D CT and histological
and immunological stains. There were no immune rejections in the beagle model with
scaffolds. Ossification was more abundant in the scaffold of those beagles that received
ADSC aggregates.

In this study, macroscopical assessment using 3D CT and bone density measurement
showed that ossification was relatively more pronounced in the beagles injected with ADSC
aggregates. Additionally, bone density was also higher. The histological evaluation also
demonstrated increased ossification in those that were administered with ADSC aggregates.
RT–PCR and Western blot results also indicated that the levels of ossification proteins were
relatively higher in the PTE + SA group.

This study confirmed that the fixation of bdECM-coated 3D PCL/TCP scaffold with
ADSC aggregates could be an easy and effective technique for ossifying bone defect sites.
A large-scale study is required to confirm the findings. We expect to develop 3D-printed
tissue engineering and regenerative medicine through various attempts and collaboration
with related systems.
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