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ARTICLE

Blood- Based Biomarkers of Quinpirole Pharmacology: 
Cluster- Based PK/PD and Metabolomics to Unravel the 
Underlying Dynamics in Rat Plasma and Brain

Willem J. van den Brink1, Robin Hartman1, Dirk-Jan van den Berg1, Gunnar Flik2, Belén Gonzalez-Amoros1, Nanda Koopman1, 
Jeroen Elassais-Schaap1, Piet Hein van der Graaf1,3, Thomas Hankemeier1 and Elizabeth C.M. de Lange1,*

A key challenge in the development of central nervous system drugs is the availability of drug target specific blood- based 
biomarkers. As a new approach, we applied cluster- based pharmacokinetic/pharmacodynamic (PK/PD) analysis in brain 
extracellular fluid (brainECF) and plasma simultaneously after 0, 0.17, and 0.86 mg/kg of the dopamine D2/3 agonist quinpirole 
(QP) in rats. We measured 76 biogenic amines in plasma and brainECF after single and 8- day administration, to be analyzed 
by cluster- based PK/PD analysis. Multiple concentration- effect relations were observed with potencies ranging from 0.001–
383 nM. Many biomarker responses seem to distribute over the blood- brain barrier (BBB). Effects were observed for dopa-
mine and glutamate signaling in brainECF, and branched- chain amino acid metabolism and immune signaling in plasma. 
Altogether, we showed for the first time how cluster- based PK/PD could describe a systems- response across plasma and 
brain, thereby identifying potential blood- based biomarkers. This concept is envisioned to provide an important connection 
between drug discovery and early drug development.

One of the key challenges in central nervous system (CNS) 
drug development is the discovery of blood- based bio-
markers that reflect the central response.1,2 Such biomark-
ers enhance the evaluation of the proof of pharmacology of 
CNS drugs, which is crucial for successful drug develop-
ment.3 It is particularly important to dynamically evaluate 
the biomarker responses in relation to the systems phar-
macokinetics (PKs) of the drug, given that the interaction 
between PKs and pharmacodynamics (PDs) typically is 
nonlinear and time- dependent.4,5

Although currently biomarker discovery is typically 
driven by the known pharmacological mechanisms, me-
tabolomic fingerprinting is not limited to these pathways. 
Metabolomic analysis has revealed multiple new biochem-
ical pathways in relation to drug responses.6–11 Biomarker 
discovery for early CNS drug development is facing two 
challenges: (i) how could we evaluate the PK/PD interac-
tion of an “omics” response; and (ii) how could we iden-
tify blood- based biomarkers that reflect drug effects in the 
brain?
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Metabolomic analysis provides an unbiased method of 
pharmacological biomarker discovery. Recently, cluster- 
based PK/PD modeling has been developed integrating 
PK/PD modeling and metabolomics analysis. There are 
no reliable blood- based biomarkers that reflect a specific 
drug effect in the brain.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  How cluster- based PK/PD modeling could be used to 
study biomarker responses across the BBB in order to 
identify blood- based biomarkers.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Multiple biogenic amines respond to the D2 agonist QP 
in plasma and brainECF showing different pharmacological 
patterns. Many of these potential biomarkers are trans-
ported over the BBB and five potential blood- based bio-
markers were identified. Moreover, peripheral effects 
were found to propagate to the brain, putatively via the 
BBB.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The discovery of blood- based biomarkers is envisioned 
to improve early CNS drug development by providing a 
method to monitor pharmacological effects in the brain.
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One of the techniques being used in CNS biomarker dis-
covery is intracerebral microdialysis. It is a well- established 
technique that has been successfully applied to study drug 
concentrations as well as drug response biomarkers in 
brain extracellular fluid (brainECF) to evaluate CNS PK and 
PD.12–14 Therefore, microdialysis is the method of choice to 
dynamically evaluate a metabolomics fingerprint in brainECF 
simultaneously upon CNS drug treatment. Such dynami-
cal evaluation would improve the quantitative insights into 
systemwide responses (i.e., changes in biomarker concen-
trations), thereby shifting CNS drug development from an 
empirical toward a mechanistic discipline.15,16

In an earlier study, we have already shown that a cluster- 
based PK/PD evaluation of a metabolomic response in 
plasma reveals multiple dynamics underlying a system re-
sponse upon treatment with remoxipride.17 Although other 
methods exist to evaluate time- course metabolomics data, 
the cluster- based PK/PD methodology improves pharma-
cological interpretation (see ref. 17 for discussion). In the 
current study, we set out to extend this methodology with 
a simultaneous evaluation of a metabolomic response in 
both plasma and brainECF, using the selective dopamine D2/3 
receptor agonist quinpirole (QP) as paradigm compound 
with well- known PK/PD characteristics18,19 to develop the 
methodology. Overall, the purpose is to develop a proof- of- 
concept methodology to provide insight into the biochemical 
responses of CNS drugs in brainECF and plasma, combined 
with PK/PD modeling as a new approach to discovering 
blood- based biomarkers of central responses.

METHODS
Animals, surgery, and experiment
Animals. Animal studies were performed in agreement with 
the Dutch Law of Animal Experimentation and approved by 
the Animal Ethics Committee in Leiden, The Netherlands 
(study protocol DEC12247). For details on animals, surgery, 
and experiment, we refer to ref. 19.
Surgery. In short, male Wistar rats (n  =  44) underwent 
surgery while anesthetized, to receive cannulas in the femoral 
artery and vein for blood sampling and drug administration, 
respectively. The microdialysis probe guides (CMA/12 Elite 
PAES, Schoonebeek, The Netherlands) and their dummy 
probes were implanted in both hemispheres of the caudate 
putamen that highly expresses D2 receptors and has a 
large volume for implantation of a microdialysis probe. 
The probes (CMA/12 Elite PAES 4 mm, Schoonebeek, The 
Netherlands) were placed 24 hours before the experiment.
Experiment. The animals were subjected to an experiment 
on 2 days with 7 days in between (Figure S1). On the 
days of experiment, the rats were randomly assigned to 
receive 0 mg/kg (n = 12), 0.17 mg/kg (n = 16), or 0.86 mg/
kg (n = 16) QP. Microdialysate samples were collected in 
anti- oxidant (10 μL 0.02 M formic acid/0.04% ascorbic acid 
in water) containing vials from −200 to 180 min (20- minute 
intervals, 1.5 μL/min, 120 minutes equilibration time). Blood 
samples were taken at −5, 5, 7.5, 10, 15, 25, 45, 90, 120, 
and 180 minutes and centrifuged to separate the plasma 
(1000 g, 10 minutes, 4°C). Samples were stored at −80°C 
until analysis. Between the experiment days, the same 
doses were administered subcutaneously.

Chemical analysis of the samples
As to develop a proof- of- concept methodology, two biogenic 
amine platforms were selected that had been validated for 
metabolomics analysis in both plasma and microdialysate 
samples. All compound identities were confirmed by high- 
resolution mass spectroscopy (MS) and identical retention 
times as authentic standards according to the proposed 
minimum standards of metabolomic analysis.20

Monoamine + metabolite analysis (platform A). A 
selection of plasma and microdialysate samples collected 
on experiment day 1 were analyzed by BrainsOnline 
(Groningen, The Netherlands; see refs. 21 and 22 for 
details). The samples were delivered on dry ice and stored 
at −80°C until analysis. After randomization of the samples, 
monoamines, and their metabolites (serotonin, 5- hydroxy 
indoleacetic acid, dopamine (DA), 3,4- hydroxyphenylacetic 
acid (DOPAC), homovanillic acid (HVA), glutamate, and 
glycine) were analyzed using the SymDAQ derivitization 
agent.21,22 Data were calibrated and quantified using the 
Analyst data system (Applied Biosystems, Bleiswijk, The 
Netherlands) to report concentrations of the analytes (nM 
for all metabolites, except glutamate and glycine, which 
were reported in μM).
Biogenic amine analysis (platform B). The biogenic 
amines were analyzed in microdialysate and plasma 
samples of experiment on days 1 and 8 according to a 
previously described method.23 Samples were randomized 
and amino acids and amines were derivatized by an 
Accq- tag derivatization strategy. Plasma samples (5  μL) 
were reduced with tris(2- carboxyethyl)phosphine and 
deproteinated by MeOH. Microdialysate samples (30 μL) 
were only reduced with tris(2- carboxyethyl)phosphine. 
The samples were dried under vacuum while centrifuged 
(9400 g, 10 minutes, room temperature), and reconstituted 
in borate buffer (pH 8.8) with 6- aminoquinolyl- N- 
hydroxysuccinimidyl carbamate derivatization reagent. 
The reaction mixtures were injected (1  μL) into an 
ultraperformance liquid chromatography- tandem MS 
system, consisting of an Agilent 1290 Infinity II LC system, 
an Accq- Tag Ultra column, and a Sciex Qtrap 6500 
MS. The peaks were assigned using Sciex MultiQuant 
software version 3.0.2, integrated, normalized for their 
internal standards, and corrected for background signal. 
Only compounds with a QC relative SD under 30% were 
reported to assure the quality of the data.

Data analysis
Pharmacokinetic model. The PK model has been 
published previously and described the free QP 
concentrations in plasma and brainECF with QP doses 
ranging from 0.17−2.14 mg/kg.19 The visual predictive check 
and external validation have been added as Figures S2 
and S3.
Pharmacodynamic models. A PD model was developed 
for every single metabolite (hereafter called biomarkers) 
using a population approach in NONMEM version 7.3.0 
using subroutine ADVAN13. The interindividual variability 
around the parameters and the residual error were 
described by an exponential distribution (Supplementary 
Eqs. S1 and S2). A combination of submodels was 



109

www.psp-journal.com

Cluster- Based PK/PD and Blood- Based CNS Biomarkers
van den Brink et al.

evaluated for each single biomarker consisting of (i) a 
straight baseline, an exponential decay, or a linear slope 
model (Supplementary Eq. S3); (ii) a linear or a sigmoid 
maximum effect (Emax) concentration- response model; (iii) a 
transit or no transit compartment model; and (iv) a turnover 
or a pool model (Supplementary Eqs. S4–S7). In addition, 
a model with no drug response function was evaluated 
(Supplementary Eq. S8). The models were selected on 
basis of the objective function value (OFV; χ2 test, P < 0.05), 
the condition number, successful convergence, and visual 
evaluation of goodness- of- fit plots.

Exploration of target site. For biomarkers showing a 
response in either plasma or brainECF, the site with the 
response was identified as effect target site. In case a 
biomarker showed a response both in plasma and brainECF, 
two PD models were developed. One model (A) with QP 
in brainECF driving the biomarker response in brainECF. The 
biomarker response in plasma was linked to the brainECF 
biomarker response by a linear or a nonlinear brain transport 
model following Michaelis Menten kinetics (Supplementary 
Eq. S9). In another model (B), QP in plasma was driving the 
biomarker response in plasma. The biomarker response in 
brainECF was then linked to the plasma biomarker response 
following the brain transport model (Supplementary Eq. 
S9). The model with the lowest Akaike Information Criterion 
(AIC) was selected as the best model. This was done by 
subtracting the AIC of the “brainECF target site model” from 
that of the “plasma target site model” to calculate the ΔAIC. 
A negative ΔAIC indicated plasma as the target site of effect, 
whereas a positive ΔAIC suggested brainECF as the target 
site of effect.
Clustering. The longitudinal biomarker responses were 
simulated for their determined target site and subsequently 
clusters of the dynamical pharmacological responses were 
identified in plasma and brainECF using k- means clustering 
(R version 3.3.1, package “stats,” function “kmeans”). The 
number of clusters was selected in two steps. First, an 
elbow plot depicting the number of clusters against the 
within- cluster sum of squares was used to identify the range 
of the potential number of clusters to be used in the cluster- 
based PK/PD model. Second, a cluster- based PK/PD model 
was developed describing the PK/PD profile of the clusters 
for each scenario. The AIC was used to select the model 
with the optimal number of clusters. Subsequently, a step- 
wise parameter sharing procedure was applied as previously 
described.17 In short, a single parameter (e.g., half- maximal 
effective concentration (EC50)) was estimated for multiple 
clusters and evaluated by the change in OFV (χ2 test, 
P < 0.05) to determine whether this was statistically different 
from a model with separate parameters. If no difference was 
found, the shared parameter was kept in the model.
Significance score calculation. The cluster- based model 
was compared to a model with no drug effect model 
included (i.e., assuming no effect of QP). A significance 
score was calculated by the change in OFV corrected 
for the degrees of freedom with a Bonferroni- corrected 
significance threshold of α  =  0.01 (Supplementary 
Eq.  S10). A significance score  >  0 reflects a significant 
effect of QP on a biomarker response.

Effect of 8- day QP administration
Basal biomarker levels (t = 0) in both brainECF and plasma 
at experiment day 1 and experiment day 8 were compared 
using two- way analysis of variance with interaction between 
dose and experiment day. The Tukey- honest significant dif-
ference test was used for post hoc analysis. BrainECF basal 
biomarker levels were averaged per animal, given that there 
were 4–6 baseline samples for each animal. For the bio-
markers that revealed a significant change with experiment 
day, a covariate analysis was performed in the single bio-
marker models by estimating a separate baseline parameter 
per combination of the treatment group and the day of the 
experiment. Only if the covariate analysis revealed a differ-
ence, the effect was considered significant.

RESULTS
Exploration of the target site of effect
A total of 7 metabolites were reported from platform A, 
whereas 54 metabolites were found having an QC relative 
SD below 30%. From those metabolites, the combined PK/
PD analysis in plasma and brainECF revealed 23 biomarkers 
primarily responding to QP in plasma, and 15 biomarkers 
primarily affected by QP in the brain (Table 1, Figure 1). DL- 
3- aminobutyric acid and serotonin could only be measured 
in plasma, whereas L- glutamine could only be measured 
in brainECF. From all the biomarkers that reflected an effect 
of plasma QP, 19 showed a net transport to the brainECF. 
Inversely, five biomarkers exhibited a net transport from 
brainECF into plasma, being indicated as potential blood- 
based biomarkers of drug effect in the brain. The intercom-
partmental transport rates between plasma and brainECF of 
many biomarkers were described by nonlinear Michaelis- 
Menten kinetics (Table 1).

Clustered response patterns in brainECF and plasma
A total of seven clusters of dynamical biomarker 
responses in brainECF were selected (Figure S4, Table 2).  
Using parameter sharing, it was observed that the 
biomarkers responded with either a high or a low 
potency (EC50  =  0.01  nM or EC50  =  122  nM; Table 3, 
Data S1, Figure 2). The turnover of these biomarkers 
was low (0.031–0.056  min−1) or high (0.13–0.44  min−1) 
as a reflection of their different time- courses (Figure 3,  
Table 3). The responses in plasma were also separated into 
seven clusters (Figure S4, Table 2) described by models 
with transit compartment models (clusters 1 and 4), pool 
models (clusters 5 and 6), and turnover models (clusters 
2, 3, and 7; Table 3, Data S2). Thus, the time courses of 
the biomarker responses in plasma were different among 
the clusters, not only indicated by the turnover rates being 
low (0.057–0.060 min−1) or high (0.11 min−1), but also by 
the fact that their description needed different dynamic 
models (Figure 3, Table 3). A wider variety of potency 
parameter estimates was identified in plasma as compared 
to brainECF: 0.01 nM, 17.2 nM, and 113–383 nM (Table 3, 
Figure 2). Moreover, the direction of response was both up 
(clusters 1 and 4) and down (clusters 2, 3, and 5–7). The 
responses in brainECF and plasma were well described by 
the cluster- PK/PD models (Figure 3, Figure S5).
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Table 1 Overview of biogenic amines and their target site that showed a response upon QP treatment

Biomarker Target site ΔAIC Brain transport

Platform A (BrainsOnline)

 DA BrainECF – No

 DOPAC BrainECF – No

 HVA BrainECF – No

 Glycine Plasma −56.216 Yes – NonLinP→B

 5- HIAA Plasma – No

 L- Glutamic acid Plasma – No

Platform B (BMFL)

 L- Phenylalanine Plasma −75.811 Yes – NonLinB→P

 L- Valine Plasma −73.682 Yes – NonLinB→P

 L- Methionine sulfoxide Plasma −55.917 Yes – NonLinP→B

 Taurine Plasma −48.638 Yes – NonLinB→P

 S- Methylcysteine Plasma −46.564 Yes – Linear

 L- Alpha- aminobutyric acid Plasma −40.634 Yes – NonLinP→B

 L- Asparagine Plasma −37.597 Yes – NonLinB→P

 L- Alanine Plasma −35.086 Yes – NonLinP→B

 Gamma- L- glutamyl- L- alanine Plasma −33.872 Yes – NonLinP→B

 L- Threonine Plasma −31.734 Yes – Linear 

 L- Methionine Plasma −24.946 Yes – Linear 

 L- Histidine Plasma −24.715 Yes – Linear 

 L- Arginine Plasma −24.469 Yes – NonLinP→B

 L- Isoleucine Plasma −13.582 Yes – NonLinB→P

 Glycine Plasma −12.572 Yes – Linear 

 Homocysteine Plasma −10.954 Yes – Linear 

 L- Serine Plasma −8.129 Yes – Linear 

 Citrulline Plasma −5.407 Yes – NonLinB→P

 L- Leucine Plasma −2.462 Yes – NonLinB→P

 DL- 3- aminoisobutyric acid Plasma – N.A.

 Histamine Plasma – No

 L- Glutamic acid Plasma – No

 L- Homoserine Plasma – No

 Methionine sulfone Plasma – No

 Serotonin Plasma – N.A.

 L- Proline BrainECF 41.574 Yes – NonLinB→P

 N6,N6,N6- Trimethyl- L- lysine BrainECF 27.282 Yes – NonLinB→P

 Hydroxylysine BrainECF 8.103 Yes – Linear

 L- Lysine BrainECF 4.747 Yes – NonLinB→P

 L- 4- hydroxy- proline BrainECF 1.111 Yes – NonLinB→P

 Homocitrulline BrainECF 0.261 Yes – NonLinB→P

 3- Methoxytyramine BrainECF – No

 5- Hydroxy- L- tryptophan BrainECF – No

 Cystathionine BrainECF – No

 Gamma- aminobutyric acid BrainECF – No

 L- 2- aminoadipic acid BrainECF – No

 L- Glutamine BrainECF – N.A.

 L- Tryptophan BrainECF – No

 L- Tyrosine BrainECF – No

 Ornithine BrainECF – No

 Putrescine BrainECF – No

 Sarcosine BrainECF – No

The Delta Akaike Information Criterium (ΔAIC) indicates the target site (see Methods). In addition, the type of brain transport is indicated (yes, no or not available (N.A.)). 
P → B and B → P stand for plasma- to- brain and brain- to- plasma, respectively. Only biomarkers presented in black showed a significant response in the cluster 
models
BrainECF, brain extracellular fluid; DA, dopamine; DOPAC, 3,4- hydroxyphenylacetic acid; HIAA, 5- hydroxy indoleacetic acid; HVA, homovanillic acid; QP, quinpirole.
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Effect of QP on the dopamine pathway
DA, DOPAC, and HVA, the key constituents of the DA path-
way, were decreased in brainECF upon QP treatment. Whereas 
the in vivo potency was found to be similar for these bio-
markers (122 nM), the maximal inhibition values (DA: 67%, 
DOPAC: 41%, and HVA: 60%) and the turnover rates (DA: 
0.44 min−1, DOPAC: 0.13 min−1, and HVA: 0.031 min−1) were 
different (Table 3, Figure 2). No responses of QP treatment 
were observed for DA and HVA in plasma, whereas DOPAC 
could not be measured in plasma due to assay lower limit of 
detection of 50 nM.

Effect of QP on other pathways in brainECF
In brainECF, QP was found to interact with the polyamine 
metabolism24 (ornithine, putrescine), the proline metabolism 
(proline, L- 4- hydroxyproline), neurotransmitter precursors 
(tryptophan and tyrosine), and lysine metabolism (lysine, hy-
droxylysine; Table 1, Figure 1).

Effect of QP on metabolic pathways in plasma
The systemic response on amino acid metabolism in plasma 
indicated interactions between QP and the branched chain 
amino acid (BCAA) metabolism (leucine, isoleucine, and 

valine), neurotransmitter synthesis (phenylalanine), serine- 
glycine- threonine metabolism (serine, glycine, threonine), 
and histamine metabolism (histidine, histamine; Table 1, 
Figure 1). Furthermore, alpha- aminobutyric acid and DL- 3- 
aminoisobutyric acid strongly responded to QP treatment 
(Table 1, Figure 1).

Effect of 8- day QP administration on basal biomarker 
levels
Eight- day QP administration did not result in significant 
changes in basal brainECF biomarker levels but showed a sig-
nificant change in plasma levels of alpha- aminobutyric acid 
and DL- 3- aminoisobutyric acid after 0.17 mg/kg (P < 0.05), 
but not after 0.86 mg/kg QP (P > 0.05; Figure 4). However, in-
cluding the interaction between treatment and day as a covari-
ate in the PK/PD models for these biomarkers did not result in 
a significant improvement of the model (P > 0.05), potentially 
related to the lack of a dose- response relation (Figure 4).

DISCUSSION

In this study, we aimed for combining metabolomics in 
brainECF and plasma as an extension to the earlier developed 

Figure 1 Significance score of metabolites responding to quinpirole (QP) in brain extracellular fluid (brainECF) (left) and plasma (right) 
indicating their potential as a biomarker of the QP systems effect. The gray line marks the significance threshold; metabolites to the 
right of the line were significantly affected by QP. The red circles indicate the metabolites that distribute from brainECF to plasma and 
vice versa. *Cluster 1 of brainECF was excluded from this figure because no effect was observed. BO refers to the amines analyzed by 
BrainsOnline. DOPAC, 3,4- hydroxyphenylacetic acid; HVA, homovanillic acid.
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cluster- based PK/PD modeling approach (see ref. 17), in 
order to obtain insight into the systems- response, as well as 
to explore the target site of the effect upon CNS drug admin-
istration. By evaluating time- resolved metabolomics in both 
brainECF and plasma, we revealed a few potential blood- 
based biomarkers reflecting effects in brainECF. Interestingly, 
it was also observed that many biochemical responses of 
QP have their main origin in the periphery rather than in the 
brainECF. Additionally, the integration of time- resolved me-
tabolomics analysis with cluster- based PK/PD revealed the 
diverse dynamical responses of biogenic amines and amino 
acids in brainECF and plasma upon administration of the D2/3 
agonist QP. Indeed, the quantitative characterization of the 
systemwide biomarker responses showed a variety of in 
vivo potency and maximal response values in both brainECF 
and plasma. Furthermore, in addition to the dopamine path-
way, several other biochemical pathways were potentially 
affected by QP. Finally, our study showed no response of 8- 
day administration on biogenic amine and amino acid levels. 
Here, we will discuss each of these observations to finish the 
discussion with the limitations of our study and suggestions 
for further investigations.

Exploration of the target site and identification of 
blood- based biomarkers
It is a great challenge to identify blood- based biomarkers 
that reflect neurochemical responses in the brain. Often, 
these measurements are done at a single timepoint lim-
iting the identification of causality. In the current study, 
we were able to use the time- delay between the brainECF 
and plasma biomarker responses to identify the potential 
causal relationship between them. With this, we assume 
that the delay represents transport of a biomarker over 
the BBB. The BBB has multiple transport systems that 
transport biogenic amines and amino acids, for example, 
the large neutral amino acid transporter 1 (for transport 
of e.g., glutamine, tyrosine, and tryptophan), the cat-
ionic amino acid transporter 1 (for transport of arginine 
and lysine), or the serotonin transporter (for transport of 
serotonin).25,26 These transport systems exist at both the 
luminal and abluminal site of the BBB, whereby biogenic 
amines and amino acids can be transported from plasma 
to brain and vice versa. It is, therefore, likely that the par-
allel responses in plasma are, at least partially, explained 
by BBB transport.

Interestingly, the number of biogenic amines transported 
from brainECF to plasma was lower than those transported 
from plasma to brain (Figure 1, Table 1). This observation 
suggests, first of all, that even if a drug does not cause a di-
rect response in the brain (e.g., because there is no drug ex-
posure in the brain), biochemical responses may propagate 
from plasma to brainECF and cause secondary responses. 
Second, the observed asymmetry confirms the well- known 
difficulty of finding blood- based markers reflective of drug 
responses in brainECF.

Nevertheless, five potential blood- based biomark-
ers reflected a response in brainECF (Table 1, Figure 1). 
Importantly, four of them showed nonlinear transport over 
the BBB. This is relevant when evaluating blood- based bio-
markers as a surrogate for an effect in brainECF; a nonlinear 

Table 2 Determination of optimal number of clusters in plasma and 
brainECF using the AIC

Plasma BrainECF

# Clusters AIC # Clusters AIC

4 65500.76 6 78140.64 

5 64991.03 7 76518.12

6 64966.79 8 76523.49

7 64876.42 9 78319.55

8 66314.62 10 76535.81

In bold are the selected number of clusters.
AIC, Akaike information criterion; brainECF, brain extracellular fluid.

Table 3 Parameter estimates of the cluster models

Plasma BrainECF

Parameter Estimate (RSE) Parameter Estimate (RSE)

Cluster 1a

Emax (%) 4650 (41.1%)

EC50 (nM) 383 (54.3%)

kout (min−1) 0.035 (42.3%)

ktransit (min−1) 0.044 (33.1%)

ntransit 8.3 (19.2%)

Cluster 2

 Imax (%) −20 (30.1%) Imax (%) −20 (6.1%)

 IC50 (nM) 113 (98.5%) IC50 (nM) 0.001 (fix)

 kout (min−1) 0.057 (38.3%) kout (min−1) 0.056 (27.9%)

Cluster 3

 Imax (%) −20 (30.1%) Imax (%) −29 (7.1%)

 IC50 (nM) 17.2 (50.6%) IC50 (nM) 0.001 (fix)

 kout (min−1) 0.11 (12.2%) kout (min−1) 0.13 (13.3%)

Cluster 4

 Emax (%) 363 (67.5%) Imax (%) −15 (13.5%)

 EC50 (nM) 113 (98.5%) IC50 (nM) 0.001 (fix)

 kout (min−1) 9.58 (104%) kout (min−1) 0.14 (32.7%)

 ktransit 
(min−1)

0.0052 (46.8%)

 ntransit 1.79 (17.9%)

Cluster 5

 Imax (%) −41 (14.6%) Imax (%) −41 (9.0%)

 IC50 (nM) 339 (32.8%) IC50 (nM) 122 (51.4%)

 kout (min−1) 0.11 (12.5%) kout (min−1) 0.13 (13.3%)

 krel (min−1) 0.018 (27.5%)

Cluster 6

 Imax (%) −90 (0.3%) Imax (%) −67 (4.9%)

 IC50 (nM) 0.001 (fix) IC50 (nM) 122 (51.4%)

 kout (min−1) 0.10 (18.4%) kout (min−1) 0.44 (47.9%)

 krel (min−1) 0.89 (19.7%)

Cluster 7

 Imax (%) −41 (6.4%) Imax (%) −60 (9.3%)

 IC50 (nM) 17.2 (50.6%) IC50 (nM) 122 (51.4%)

 kout (min−1) 0.060 (13.5%) kout (min−1) 0.031 (28.9%)

brainECF, brain extracellular fluid; EC50, half- maximal effective concentra-
tion; Emax, maximum effect; IC50, half- maximal inhibitory concentration; 
Imax, maximum unbound systemic concentration.
aCluster 1 of brainECF was excluded from this table because no dose- 
response was observed. Consequently, parameter estimates were not 
informative.
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relation between drug concentration and plasma biomarker 
response may reflect nonlinear BBB transport and, hence, 
affect the estimation of the Emax parameter. Therefore, in 
order to understand the dynamics of the blood- based bio-
marker response in a clinical context, it is recommended 
to first determine the relationship between the plasma and 
brainECF biomarker response in a preclinical setting with pos-
sibilities of simultaneous sampling of plasma and brainECF in 
a continuous manner.

A diverse pharmacological range of PK/PD clusters
Both the brainECF and plasma biomarker responses were 
combined into seven clusters. These clusters represented 
different pharmacological characteristics (e.g., the poten-
cies in brainECF ranged from 0.01−122 nM), whereas those 
in plasma ranged from 0.01−383 nM (Table 3). An import-
ant question is what these pharmacological parameters 
represent. First of all, the cluster- based PK/PD approach 
improved the robustness of the model by a dramatic reduc-
tion in the number of parameters without compromising the 
quality of the model. Second, although it is not possible to 
determine whether the potency differences are related to 
off- target effects or different signal transduction efficiencies 
(see ref. 19 for discussion), the cluster- based PK/PD model 
can define a therapeutic range on basis of a system re-
sponse in plasma and brainECF. Elements of this model may 
be selected as input for mechanistic systems pharmacology 
models. For example, the dopamine pathway is represented 
by DA, DOPAC, and HVA, which all have an estimated potency 
of 122 nM, whereas the turnover rates differ (Table 3). Thus, 
it seems that they are driven by the same drug- target inter-
action, with no differences in signal transduction efficiency. 

This confirms what we know from a biochemical point of 
view, and, indeed, these biomarkers have been described 
by a mechanistic systems pharmacology model in an inte-
grated manner.13

The effects of QP on multiple pathways
The QP seemed to have an overall inhibiting response on 
multiple biogenic amine pathways. First of all, the DA metab-
olism in the brainECF was inhibited, which could be explained 
by the response of QP on the D2 autoreceptors located on 
the presynaptic neuron.27 Moreover, QP reduced peripheral 
phenylalanine concentrations, thereby possibly lowering the 
brain levels of phenylalanine and tyrosine that constitute 
the basis of the DA metabolism. Second, although QP did 
not significantly affect cerebral glutamate levels, glutamate 
signaling may be inhibited by QP, given that glycine, serine, 
proline, and putrescine levels in brainECF were decreased, all 
presumably influencing the N- methyl- D- aspartate receptor 
in a direct or indirect manner.28–30

Furthermore, the reduction of the BCAA levels and the 
increase of DL- 3- aminoisobutyric acid in plasma may 
both be associated with increased activity of the animals. 
BCAA levels were found negatively correlated with activ-
ity,31 whereas DL- 3- aminoisobutyric acid was observed 
positively associated with the level of activity.32 Indeed, QP 
does induce locomotion as a measure of increased activity 
and movement,33 and the modified levels of BCAA and DL- 
3- aminoisobutyric acid in our study may be a reflection of 
that.

Finally, the reduction of histidine and histamine in plasma 
may reflect an inhibitory effect of QP on the immune sys-
tem. Histamine is directly released from dendritic cells, 

Figure 2 An overview of the concentration- effect relations that underlie the systems responses in brain extracellular fluid (brainECF) 
(left) and plasma (right). Thick line parts represent the range of observed biomarker concentrations. Cluster 1 was excluded for 
brainECF because no effect was observed.
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macrophages, and neutrophils upon production from histi-
dine by the enzyme histidine decarboxylase.34 Interestingly, 
DA receptors are expressed in various immune cells, such 
as dendritic cells, neutrophils, and natural killer cells,35 indi-
cating a potential mechanism through which QP may have 
influenced the histamine metabolism.

The effects of 8- day QP administration
Interestingly, although there was a significant response upon 
8- day administration of QP in PK/PD parameters describing 
the neuroendocrine response,19 no significant impact on basal 
biomarker levels was identified in the current study, although 
DA, DOPAC, and HVA were only analyzed for experiment 
day 1. Our hypothesis to see an effect after 8 days was based 
on a study in which behavioral tolerance and sensitization were 
observed within a period of 1 week after administration of a D2 
agonist in mice.36 A possible explanation for the lack of an 8- 
day response in our study could be that the biological systems 
that underlie the amino acid and biogenic amine responses 
have greater flexibility than the neuroendocrine system in 
adapting to perturbations, such as QP administration. Longer 
studies should be performed to provide conclusive evidence 
of absence of the long- term effects of QP on biogenic amines.

Limitations of the current study and future 
investigations
We are aware of the limitations of this study. First of all, al-
though the results in our study strongly indicate a systemwide 

response for the D2/3 receptor agonist QP, it should be con-
firmed by using other D2 agonists whether the observed re-
sponses are related to dopaminergic activity, and to which 
receptor subtype they are related. Such analysis would give 
insights into drug- class specific systemwide responses. For 
example, a multivariate analysis of several antipsychotic D2 
receptor antagonists showed large neurochemical and be-
havioral overlap of clozapine with 5- HT2a antagonists, but 
not haloperidol.37 Ultimately, the cluster- based PK/PD ap-
proach may link in vitro and in vivo characterizations of drug- 
class related pharmacology by connecting the pattern of in 
vivo potencies to in vitro affinities.

Second, although the analytical platforms that have been 
used in the current study are well- developed with proven 
robustness,21,23 glycine measured by platform A was de-
scribed by cluster 3 dynamics, whereas the glycine response 
as analyzed by platform B was closer to the cluster 2 pattern 
(Figure 1). Interlaboratory reproducibility is currently a topic 
of investigation in the field of metabolomics, although early 
research suggests good robustness of metabolomics plat-
forms toward this type of variation.38 An explanation could 
be nonlinearity of the apparatus response given the fact that 
platform B provided response ratios (analyte peak area/ 
internal standard peak area), whereas platform A presented 
concentrations.

Third, although not only biogenic amines and amino acids 
are expected to respond to QP, we were limited by sample 
volume of the microdialysates. It would be valuable to extend 
the current approach with multiple platforms integrated to 
obtain a comprehensive insight into the systemwide effects 
of CNS drugs. Fortunately, the microdialysis- metabolomics 
technology is rapidly evolving, requiring lower sample vol-
umes for metabolomics analysis.39,40 Furthermore, to coun-
teract the high attrition rates in CNS drug development, it 
will be important to accurately monitor the pharmacology 
in early clinical drug development.3 Such monitoring needs 
accessible biomarkers that can be obtained from the blood, 
for example. The combined microdialysis- metabolomics 
technology is envisioned valuable and relatively low- cost to 
develop specific biomarker panels for CNS drugs (or drug 
classes).

Finally, all brainECF measurements were made in the stri-
atum. To gain insight into the higher hierarchy of the brain, 
the brain circuitry, it is essential to do measurements in 
multiple brain regions that are relevant to the drugs’ mech-
anism of action. Indeed, CNS diseases and treatment 
responses are determined by the balance among signal-
ing of multiple neurotransmitters in multiple regions.41–43 
Moreover, in some disease conditions, cerebral spinal 
fluid (CSF) may provide a good alternative as a sampling 
site if plasma sampling does not provide biomarkers of 
central effect. Moreover, to gain a good understanding of 
the kinetics of endogenous compounds, such as biogenic 
amines, it will be important to include CSF. Indeed, this 

Figure 3 Goodness- of- fit of the cluster responses as change from baseline in brain extracellular fluid (top) and plasma (bottom). Dots 
and error bars mark the geometric mean ± SD of the observed cluster responses, light lines represent the geometric mean of the 
single metabolite responses, and dark lines show the predicted cluster responses. The facet labels show the number of metabolites 
between the parentheses.

Figure 4 Relative change of L- alpha- aminobutyric acid levels 
in plasma after 8- day administration as compared to a single 
administration. *Denotes a significant effect with P < 0.05.
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has been shown for physiology- based PK models describ-
ing drug concentrations in plasma, brainECF, and CSF.44–46 
The addition of multiple brain regions to a cluster- based 
PK/PD model is, therefore, envisioned to further elucidate 
the systems PDs of CNS drugs.

CONCLUSION

CNS drug development is challenged by low success rates 
and high development costs. Biomarker- driven drug devel-
opment is seen as a logical step to improve these success 
rates, and metabolomics holds great promise in this regard. 
It provides a relatively low- cost method to comprehensively 
screen for drug response biomarkers. In this study, we 
showed for the first time how time- resolved metabolomics 
analysis in combination with cluster- based PK/PD describes 
the diverse dynamical patterns in brainECF and plasma in 
terms of pharmacological parameters (e.g., Emax and EC50) 
to evaluate multibiomarker (eventually systemswide) CNS 
drug effects. Moreover, our approach also enables to identify 
the potential target site of effect, as well as to identify blood- 
based biomarkers that are reflective of drug responses in 
brainECF. Although the identified biomarkers warrant vali-
dation, further application and development of this method 
are envisioned to provide an important connection between 
drug discovery and early drug development.
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