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Abstract

To generate high affinity antibodies during an immune response, B cells undergo somatic hypermutation (SHM) of their
immunoglobulin genes. Error-prone translesion synthesis (TLS) DNA polymerases have been reported to be responsible for
all mutations at template A/T and at least a fraction of G/C transversions. In contrast to A/T mutations which depend on
PCNA ubiquitination, it remains unclear how G/C transversions are regulated during SHM. Several lines of evidence indicate
a mechanistic link between the Fanconi Anemia (FA) pathway and TLS. To investigate the contribution of the FA pathway in
SHM we analyzed FancG-deficient B cells. B cells deficient for FancG, an essential member of the FA core complex, were
hypersensitive to treatment with cross-linking agents. However, the frequencies and nucleotide exchange spectra of SHM
remained comparable between wild-type and FancG-deficient B cells. These data indicate that the FA pathway is not
involved in regulating the outcome of SHM in mammals. In addition, the FA pathway appears dispensable for class switch
recombination.

Citation: Krijger PHL, Wit N, van den Berk PCM, Jacobs H (2010) The Fanconi Anemia Core Complex Is Dispensable during Somatic Hypermutation and Class
Switch Recombination. PLoS ONE 5(12): e15236. doi:10.1371/journal.pone.0015236

Editor: Reuben S. Harris, University of Minnesota, United States of America

Received October 5, 2010; Accepted October 31, 2010; Published December 29, 2010

Copyright: � 2010 Krijger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Netherlands Organisation for Scientific Research (http://www.nwo.nl) and the Dutch Cancer Foundation (www.kwf.nl)
(VIDI program NWO 917.56.328 and KWF grant NKI- 2008-4112 to HJ). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: h.jacobs@nki.nl

Introduction

Within the germinal center (GC), antigen activated B cells

undergo class switch recombination (CSR) and somatic hypermu-

tation (SHM). During CSR the immunoglobulin (Ig) heavy chain

constant region is replaced for a downstream constant region, to

generate an antibody with a different effector function. CSR

depends on the introduction of double strand breaks in two active

switch regions of the Ig heavy chain constant regions and involves

nonhomologous end-joining (NHEJ) to ligate the break sites. [1].

To generate high affinity antibody variants, GC B cells can

introduce point mutations into the variable region of their

rearranged immunoglobulin (Ig) genes. This process of SHM

occurs at an extraordinary rate of one in a thousand base pairs per

generation [2]. To model the underlying mechanism, error-prone

polymerases were postulated about half a century ago [3]. Yet,

only the last two decades revealed the existence of such DNA

polymerases. In contrast to replicative DNA polymerases, TLS

polymerases are highly mutagenic when replicating across

undamaged DNA [4,5]. At least polymerase g, Rev1 and to

some degree polymerase k have been related to SHM. Since each

polymerase displays its own mutation signature, alterations in the

nucleotide exchange spectrum can often be attributed retrospec-

tively to the absence of, or failure in activating specific

polymerases. For example, Rev1-deficient B cells display a

selective reduction of G/C to C/G transversions [6–8], a finding

consistent with the restricted dCMP transferase activity of Rev1

[9]. In contrast, the mutation spectra of polymerase g -deficient B

cells from human and mice lack a significant fraction of A/T

mutations [10–12]. While the lack of polymerase k had no effect

on SHM [13], polymerase k was found to generate A/T mutations

in the absence of polymerase g [14]. Recently, it has been

demonstrated that SHM at template A/T is regulated by site

specific monoubiquitination of proliferating cell nuclear antigen

(PCNA) at lysine 164 (PCNA-Ub). In agreement with an

important role for PCNA-Ub in recruiting and activating TLS

polymerases upon replication fork stalling [15–17], analysis of the

mutation spectra of mutated Ig genes in B cells from PCNAK164R

knock-in mice revealed a selective 10-fold reduction of A/T

mutations [18,19]. Consistently, PCNA knock-out mice reconsti-

tuted with a PCNAK164R transgene showed a reduction of A/T

mutations in Ig genes [20], suggesting that during SHM PCNA-

Ub recruits polymerase g and k to introduce mutations at

template A/T. The question remains, what are the molecular

prerequisites that stimulate error-prone polymerases like Rev1 to

establish transversions at template G/C?

Fanconi anemia (FA) is an autosomal recessive genetic disorder,

which at the cellular level is characterized by a hypersensitivity to

DNA cross-linking agents such as Cisplatin [21]. How the FA

pathway mediates resistance to cross-links is largely unknown.

Current models suggest that after replicative DNA polymerases

are stalled at a DNA cross-link, FANCD2 and FANCI become

monoubiquitinated by the FA core complex. The FA core

complex consists of eight essential FA proteins, FANCA, -B, -C,

-E, -F, -G, -L, -M, and two FA-Associated Proteins FAAP100 and

FAAP24. FANCD2 was shown to stimulate incision of one of the

strands containing the cross-link and to recruit TLS polymerases

to enable a direct replicative bypass [22]. In agreement, the TLS

polymerases Rev1 and Rev3 have been demonstrated to act

synergistically with the FA pathway for cross-link repair in chicken
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DT40 B cells [23]. In addition, it has been reported recently, that

FANCD2 modifies the resulting double strand break to prevent

Ku70 from binding and activating NHEJ [24,25].

As the FA pathway has been associated with damage tolerant

TLS polymerases, including Rev1, we questioned whether this

pathway controls the outcome of SHM in mammals. Interestingly,

it has been reported that chicken DT40 B cells deficient for

members of the FA pathway show a decrease in SHM [23,26],

although the precise mechanism for the decrease in the

accumulation of non-templated mutations is currently unclear.

To determine the role of the FA pathway in SHM, we analyzed

SHM in FancG-deficient mice. In addition, given the inhibitory

action of FANCD2 on NHEJ we addressed whether the FA

pathway is involved in CSR.

Results and Discussion

Sensitivity of wild-type and FancG-deficient B cells to
cross-linking agents

To investigate the involvement of the FA core complex in SHM

we first determined if B cells of FancG-deficient mice display a FA

phenotype. Like cells derived from FA patients, mouse embryonic

fibroblasts from FancG-deficient mice are unable to monoubiqui-

nate FANCD2 and are highly sensitivity to cross-linking agents

such as Cisplatin [27]. To reveal the activity and specificity of the

FA pathway in resolving DNA cross-links in primary B cells, B cell

cultures from wild-type and FancG-deficient mice were established

and exposed to Cisplatin and UV-C. Compared to WT cells

FancG-deficient B cells were highly sensitive to Cisplatin, but not

to UV-C (Fig. 1). These data are in agreement with those of

fibroblast cell lines derived from FA patients and FA-deficient

mice. Apparently, the FA pathway is active in primary B cells and

plays a role in response to DNA cross-links.

Mutation frequencies in wild-type and FancG-deficient B
cells

To determine the contribution of the FA pathway in the

regulation of SHM, we sequenced the JH4 intronic region of GC

B cells sorted from the Peyer’s patches of nine FancG-deficient and

nine wild type control mice. By analyzing clonally unrelated

introns, 1356 mutations were found in 164 mutated intronic

sequences from wild-type B cells and 1392 mutations in 195

mutated intronic sequences from FancG-deficient B cells. In

contrast to previous observations made in FA-deficient chicken

DT40 B cells, which demonstrated reduced levels of SHM [23,26],

a high frequency of point mutations in somatically mutated Ig

genes of both, wild-type and FancG-deficient B cells was found

(Table 1). The range of SHM frequencies observed from the

individually analyzed mice is depicted in figure 2A. No significant

difference in accumulating somatic mutations between wild type

and FancG-deficient B cells was found (paired Student’s t-test,

p = 0.3).

Point mutation spectra in wild-type and FancG-deficient
B cells

The decrease in non-templated mutations observed in FA-

deficient DT40 cells [23] may relate to impaired TLS activity.

Genetic studies have indicated a role for the TLS polymerase

Rev1 downstream of the FA pathway upon treatment with cross-

linking agents [23]. Furthermore the recruitment of Rev1 upon

UV treatment was reported to rely in part on the FA pathway

[28]. While DT40 B cells strongly depend on Rev1 for SHM [7],

SHM in mammals depends only partly on Rev1 [6,29]. However,

in both systems Rev1-deficient B cells display reduced frequencies

of G/C to C/G transversions during SHM [6,7,29]. Therefore, if

the FA pathway stimulates Rev1 during SHM, a reduction in these

mutations is expected in FancG-deficient B cells. To address

whether the FA pathway regulates TLS polymerases during SHM

in mammals, we analyzed the pattern of non-selected, nucleotide

substitutions in the non-transcribed strand of the JH4 intronic

region. The spectra of nucleotide substitutions were similar

between wild-type and FancG-deficient mice (x2 test, p,0.01),

indicating that Rev1 and also other TLS polymerases involved in

mammalian SHM do not depend on the FA pathway to generate

mutations (Fig 2.). The decrease in non-templated mutations

found in FA-deficient DT40 cells [23] may relate to an interspecies

difference between avian and mammalian SHM. Alternatively, the

reduction in mutations observed in FA-deficient DT40 cells is not

a consequence of impaired TLS activity, but regulated at a

different level. Analysis of the nucleotide exchange pattern in FA-

deficient DT40 cells is required to distinguish between these

possibilities.

Class switch recombination in FancG-deficient B cells
Recently, it has been reported that double strand breaks created

at cross-links or abasic sites are modified by FANCD2 to prevent

Figure 1. FancG-deficient B cells are sensitive to DNA cross-linking agents. FancG-deficient (red) and wild-type (blue) B cells were
stimulated with LPS and exposed to increasing doses of either UV-C (left panel) or Cisplatin (right panel). The percentage of survival after four days of
culture is shown.
doi:10.1371/journal.pone.0015236.g001

FancG in SHM and CSR
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Ku70 from binding and activating NHEJ [24,25]. As CSR

depends on NHEJ, we questioned whether the FA pathway

regulates class switch recombination by inhibiting NHEJ. To

determine the capacity of wild-type and FancG-deficient B cells to

undergo CSR to IgG3 and IgG1, naı̈ve B cells were cultured with

lipopolysacharide (LPS) in the absence or presence of interleukin-4

(IL-4), respectively (Fig. 3). Inactivation of FancG resulted in a

reduction of IgG3 class switched cells compared to wild-type cells.

However, as we did not observe a difference in class switching to

IgG1, the reduction in IgG3 switching may suggest an isotype-

specific role of FA in CSR. Alternatively, the FA pathway does not

play a direct role in CSR, but affects the switching process only

indirectly. Moreover, as the CSR frequencies did not increase in

FancG-deficient B cells, the formal possibility that the FA pathway

inhibits CSR by blocking NHEJ can be excluded.

Concluding remarks
In conclusion, our data indicate for the first time that SHM in

mammals is not regulated by the FA pathway. While mutations at

template A/T by polymerase g are regulated at the level of PCNA

ubiquitination, future studies will have to reveal the underlying

molecular mechanism how TLS polymerases like Rev1, involved

in the generation of G/C transversions become activated. The

normal switching activity to IgG1 and partial reduction to IgG3

suggests, that overall the FA pathway is dispensable for CSR.

Materials and Methods

Mice
The generation and genotyping of FancG-deficient mice has

been described elsewhere [27]. Mice were maintained on pure

FVB background at the animal facility of the Netherlands Cancer

Institute (Amsterdam, Netherlands). All experiments were ap-

proved by an independent animal ethics committee of the

Netherlands Cancer Institute (ID 08065 and ID 06003) and

executed according to national guidelines.

Isolation of germinal center B cells and mutation analysis
Germinal center (CD19+, PNA high, CD95+) B cells were

sorted from Peyer’s patches. Genomic DNA was extracted using

proteinase K treatment and ethanol precipitation. The JH4

39flanking intronic sequence of endogenous rearrangements of

VHJ558 family members were amplified during 40 cycles of PCR

using PFU Ultra polymerase (Stratagene) [30]. PCR products

were purified using the QIAquick Gel Extraction kit (Qiagen) and

cloned into the TOPO zero blunt vector (Invitrogen Life

Technologies) and sequenced on a 3730 DNA analyzer (Applied

Biosystems). Sequence alignment was performed using Seqman

software (DNAStar). Calculations exclude non-mutated sequences,

insertions and deletions. Clonally related sequences were counted

only once.

Class switch recombination
Naı̈ve splenic B cells from three mice per genotype were

obtained by CD43 depletion using biotinylated anti CD43 (Clone

S7, BD Biosciences), and the IMag system (BD Biosciences), as

described by the manufacturer. Purified B cells were cultured at

105 cells/ml in 24 well plates in IMDM, 8% FCS, 50 mM 2-

mercapthoethanol, penicillin/streptomycin and 50 ug/ml E.Coli

LPS (055:B5, Sigma) either in the presence or absence of IL-4-

containing supernatants generated from X63-m-IL-4 cell cultures.

Flow cytometric analysis of surface Ig expression was performed

on day 4 of culture using goat anti mouse IgM-APC, IgG1-PE and

IgG3-PE (Southern Biotech). Data were analyzed using FlowJo 7.6

software.

Figure 2. Normal SHM in FancG-deficient B cells. A.) Unaltered accumulation of somatic mutations in germinal center B cells of FancG-deficient
mice. The frequency of SHM (% of mutations) as determined from 9 individual mice are shown per genotype (paired Student’s t-test, p = 0.3). The
mean values and SD are indicated. B.) Normal nucleotide exchange pattern in hypermutated Ig genes of FancG-deficient germinal center B cells.
Values are expressed as the total number of mutations (left panel) and percentage of total mutations (right panel). Chi square testing did not reveal
any significant changes in the pattern (p,0.01).
doi:10.1371/journal.pone.0015236.g002

Table 1. Mutated JH4 intronic regions from wild-type and
FancG-deficient GC B cells.

WT FancG 2/2

number of mice 9 9

number of mutated sequences 164 195

total number of point mutations 1356 1392

total number of base pairs sequenced 81606 97418

Mutations/base pair (%) 1.7 1.4

doi:10.1371/journal.pone.0015236.t001

FancG in SHM and CSR
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Survival
Naı̈ve splenic B cells were obtained and cultured as described

above. For UV-C irradiation, 105 B cells were irradiated in 0.5 ml

medium (254 nm, UV StratalinkerH 2400, Stratagene). Following

irradiation, cells were cultured in 1 ml complete medium and LPS.

For the survival upon Cisplatin induced DNA damage, 105 B cells

were grown in 1 ml complete medium and LPS in the continuous

presence of different doses of Cisplatin. For determining the

survival, B cells were harvested after four days of culture and live

(propidium iodine negative) B cells were counted by FACS. Data

were analyzed using FlowJo 7.6 software.
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