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Abstract: Cancer stem cells (CSCs) are in general characterized by higher resistance to cell death
and cancer therapies than non-stem differentiated cancer cells. However, we and others have
recently revealed using glioma stem cells (GSCs) as a model that, unexpectedly, CSCs have specific
vulnerabilities that make them more sensitive to certain drugs compared with their differentiated
counterparts. We aimed in this study to discover novel drugs targeting such Achilles’ heels of GSCs
as anti-GSC drug candidates to be used for the treatment of glioblastoma, the most therapy-resistant
form of brain tumors. Here we report that domatinostat (4SC-202), a class I HDAC inhibitor, is
one such candidate. At concentrations where it showed no or minimal growth inhibitory effect on
differentiated GSCs and normal cells, domatinostat effectively inhibited the growth of GSCs mainly by
inducing apoptosis. Furthermore, GSCs that survived domatinostat treatment lost their self-renewal
capacity. These results suggested that domatinostat is a unique drug that selectively eliminates GSCs
not only physically by inducing cell death but also functionally by inhibiting their self-renewal. Our
findings also imply that class I HDACs and/or LSD1, another target of domatinostat, may possibly
have a specific role in the maintenance of GSCs and therefore could be an attractive target in the
development of anti-GSC therapies.

Keywords: glioma initiating cell; tumor initiating cell; epigenetic modulation; stemness

1. Introduction

Glioblastoma (GBM), the most malignant form of glioma and the most common pri-
mary brain malignancy in adults, remains among the most aggressive of all human cancers.
The standard treatment for GBM consists of surgical resection followed by chemoradiother-
apy. However, even after optimal treatment, disease progression including local and/or
distant recurrence is almost inevitable, which is reflected in the dismal 5-year survival rate
(~10% at best) of GBM [1,2].

Cancer stem cells (CSCs), a small subpopulation of undifferentiated tumor cells en-
dowed with self-renewal and tumor-initiating capacities, give rise to differentiated progeny
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(non-CSCs) that contribute to the heterogeneity of tumor tissues and sustain the growth of
tumors. Similar to normal stem cells, CSCs are characterized by their higher capacity than
non-CSCs to survive stressful conditions, which renders them resistant to conventional
cancer therapies. As such, CSCs survive, for instance, chemotherapy and/or radiotherapy
to initiate tumors and thus play a key role in tumor recurrence after apparently successful
initial treatment [3–5]. Glioma stem cells (GSCs), the CSCs of GBM, are therefore regarded
as a potential therapeutic target to prevent recurrence and achieve long-term survival of
patients with GBM.

While CSCs are in general resistant to cell death compared with non-CSCs [3–5],
emerging evidence now suggests that CSCs have unique vulnerabilities for which they
show higher sensitivity to certain types of drugs than their differentiated progeny. We
previously demonstrated using GSC lines and their isogenic, differentiated counterparts
that licochalcone A, a herbal medicine with known inhibitory activity against complex III
of the mitochondrial electron transport chain, is selectively cytotoxic to GSCs [6], which led
to the subsequent discovery that GSCs are characterized by increased oxidative phosphory-
lation, which they depend on heavily for survival, and can be targeted with verteporfin,
a drug approved for the treatment of macular degeneration [7]. We also found recently
that methotrexate, an antimetabolite which has long been used to treat a variety of human
cancers, exerts preferential cytotoxicity toward GSCs over their differentiated counterparts
due to their dependence on folate metabolism as represented by increased expression of
the reduced folate carrier RFC-1/SLC19A1 in GSCs [8]. This is in line with the reported
dependence of GSCs on purine synthesis [9] and together suggests that folate-dependent
one-carbon metabolism involved in purine synthesis may be one of the vulnerabilities of
GSCs. Thus, these lines of evidence reinforce the idea that GSCs have “druggable Achilles’
heels” that could be targeted to treat GSCs. In an attempt to bring to light such Achilles’
heels of GSCs and to exploit them to develop therapies targeting GSCs, we have been
seeking to find drugs that preferentially inhibit the growth of GSCs compared with their
differentiated counterparts.

Inhibitors targeting one or more of histone deacetylases (HDACs) are known to elicit
anticancer effects. In human, 18 HDACs are subdivided into four classes based on their
amino acid sequences. Class I (HDACs 1–3 and 8), class IIa (HDACs 4, 5, 7, and 9), class
IIb (HDACs 6 and 10), and class IV (HDAC11) are zinc-dependent metallohydrolases,
whereas class III HDACs (sirtuins 1–7) are NAD+-dependent [10]. Domatinostat (4SC-202),
a new class I HDAC inhibitor, is among such HDAC inhibitors developed as an anticancer
agent [11–13]. Here in this study, we identified domatinostat as a drug that preferentially
inhibits the growth of GSCs relative to their differentiated counterparts. Further analysis
revealed that domatinostat not only inhibits the proliferation and survival of GSCs but
also causes loss of their CSC properties, highlighting the potential of domatinostat as an
anti-GSC drug.

2. Results
2.1. Preferential Inhibition of Glioma Stem Cell Growth by Domatinostat

In the course of screening drugs of interest, we tested domatinostat (Figure 1a), a
small molecule epigenetic modulator in clinical development, on pairs of GSCs and their
differentiated isogenic counterparts and determined its effect on cell growth. The results of
the WST assay indicated that the reduction in cell viability after domatinostat treatment
was more pronounced in GSCs, suggesting that domatinostat may have preferential growth
inhibitory effects on GSCs over differentiated GSCs (Figure 1b). To determine whether the
reduction in metabolic activity observed in the WST assay actually reflected a reduction in
the number of viable cells, a trypan blue exclusion test was performed, which demonstrated
that domatinostat inhibited the growth of GSCs more effectively than that of their differen-
tiated counterparts (Figure 1c). Importantly, we also confirmed that the growth-inhibitory
effect of domatinostat on GSCs was evident at concentrations where it did not show any
growth inhibitory effects on IMR90 human lung fibroblasts (Figure 1b,c).
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Figure 1. Effect of domatinostat on the growth of glioma stem cell lines, their differentiated coun-
terparts, and normal fibroblasts. Values are presented as the means + SD of the triplicate samples.
Similar results were obtained from two independent biological replicates. (a) The chemical struc-
ture of domatinostat (4SC-202). (b) Determination of metabolic viability. GS-Y01, GS-Y03, TGS01,
their differentiated counterparts (dGS-Y01, dGS-Y03, dTGS01), and IMR90 human lung fibroblasts
treated with the indicated concentrations of domatinostat for 3 days were subjected to the WST
assay. * p < 0.05 vs. undifferentiated glioma stem cells treated at the same concentration by the
Student’s t-test. (c) Viable cell count determined by dye exclusion. GS-Y01, GS-Y03, their differen-
tiated counterparts (dGS-Y01, dGS-Y03), and IMR90 human lung fibroblasts were treated with the
indicated concentrations of domatinostat for 3 days, and the number of viable cells was determined
by trypan blue dye exclusion. * p < 0.05 vs. cells treated without domatinostat (i.e., at 0 µM) by the
Student’s t-test.

To elucidate the cellular mechanisms underlying the growth inhibitory effects of
domatinostat on GSCs, we next analyzed the impact of domatinostat treatment on the cell
cycle distribution of GSCs and their differentiated counterparts (Figure 2). Remarkably,
domatinostat treatment caused a dramatic increase in the sub-G1 population in GS-Y01
and GS-Y03, suggesting that domatinostat induced massive DNA fragmentation in these
GSCs. Notably, while domatinostat caused a significant, though not as pronounced as in
GS-Y01 and GS-Y03, increase in the sub-G1 population in TGS01, it also increased the G2/M
population at the same time, in line with earlier reports that domatinostat blocked cell cycle
progression at the G2/M transition in human cancer cells [14–16]. These results suggested
that domatinostat may induce either DNA fragmentation in GSCs or cell cycle arrest at the
G2/M border in intact GSCs. Importantly, domatinostat caused no significant changes in
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the cell cycle distribution of differentiated cells, consistent with its lack of growth inhibitory
effects on these cells (Figure 2). Together, the results suggested that domatinostat may
inhibit the growth of GSCs by inducing cell death accompanied by DNA fragmentation
and/or cell cycle arrest at G2/M.

Figure 2. Effect of domatinostat on the cell-cycle distribution of glioma stem cell lines and their
differentiated counterparts. GS-Y01, GS-Y03, TGS01, and their differentiated counterparts (dGS-Y01,
dGS-Y03, and dTGS01) treated with the indicated concentrations of domatinostat for 3 days were
subjected to flow cytometric analysis of cellular DNA content by propidium iodide staining. Results
from a representative experiment repeated in two independent biological replicates with similar
results are shown.

2.2. Domatinostat Activates the Caspase Pathway and Induces Cell Death in GSCs

The increase in the sub-G1 population after domatinostat treatment suggested that
domatinostat may induce cell death accompanied by DNA fragmentation, most likely
apoptosis, in GSCs. Indeed, the results of the propidium iodide (PI) incorporation assay
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indicated that the percentage of dead cells increased with increasing concentrations of
domatinostat in GSCs but not in differentiated GSCs or normal fibroblasts (Figure 3a).
Notably, the expression levels of cleaved caspase 3 and cleaved PARP increased just in
parallel with the increase in the percentage of dead cells (Figure 3b), demonstrating the
activation of the caspase pathway indicative of apoptosis during domatinostat-induced
cell death. Together, these results suggested that domatinostat may have GSC-specific
cytotoxicity via apoptosis induction.

Figure 3. Induction of cell death and apoptotic caspase activation by domatinostat. (a) Induction of
cell death. GS-Y01, GS-Y03, TGS01, their differentiated counterparts (dGS-Y01, dGS-Y03, dTGS01),
and IMR90 human lung fibroblasts treated with the indicated concentrations of domatinostat for
3 days were subjected to the propidium iodide (PI) incorporation assay. Values are presented as the
means + SD of triplicate samples. * p < 0.05 vs. cells treated without domatinostat (i.e., at 0 µM) by
the Student’s t-test. Representative fluorescence images of Hoechst- (upper rows) and PI- (lower
rows) positive cells are also shown. Bars: 50 µm. (b) Activation of the caspase pathway. The indicated
glioma stem cells (GS-Y01, GS-Y03, and TGS01), their differentiated counterparts (dGS-Y01, dGS-Y03,
and TGS01), and IMR90 human lung fibroblasts were treated with the indicated concentrations
of domatinostat for 3 days and then subjected to Western blot analysis for the expression of the
indicated proteins.

2.3. Self-Renewal Capacity Is Lost in GSCs That Survived Domatinostat Treatment

We were next interested in investigating the impact of domatinostat treatment on
the CSC properties of GSCs. To this end, we first examined by Western blot analysis the
expression levels of nuclear (SOX2, Bmi1, and Oct4a) and cytoplasmic (Nestin) stem cell
markers in GSCs treated with domatinostat. Domatinostat caused a uniform decrease in
the expression levels of these stem cell markers (Figure 4a). We also conducted a flow
cytometric analysis of the expression of a cell-surface stem cell marker CD133. Again, we
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found that the proportion of CD133-positive cells decreased with domatinostat treatment
in parallel with the nuclear and cytoplasmic stem cell markers (Figure 4b). These results
strongly suggested that stem cell properties were being lost in GSCs after domatinostat
treatment. To test this idea, we evaluated the ability of GSCs to self-renew as spheres in
the absence of domatinostat after domatinostat pretreatment. The results of the sphere
formation assay clearly indicated that domatinostat pretreatment inhibited the ability of
GSCs to form spheres even in the absence of domatinostat (Figure 4c). Collectively, these
results suggested that domatinostat impaired the self-renewal capacity of GSCs.

Figure 4. Effect of domatinostat on the self-renewal capacity of glioma stem cells. (a,b) Stem cell
marker expression. Cells treated with the indicated concentrations of domatinostat for 3 days were
subjected to Western blot analysis of the expression of the indicated proteins (a), or to flow cytometric
analysis of CD133 expression on the cell surface to determine the percentage of CD133-positive
cells (b). Representative flow cytometric plots together with the percentage of CD133-positive cells
are also shown in (b). (c) Sphere formation assay. GS-Y01, GS-Y03, and TGS01 cells treated with
domatinostat at the indicated concentrations for 3 days were subjected to the sphere formation assay
in the absence of domatinostat. Top: percentage of wells in which a tumorsphere was formed from
a single cell. * p < 0.05 vs. cells treated without domatinostat (i.e., at 0 µM) by the Student’s t-test.
Bottom: photomicrographs of representative wells. Bar: 100 µm.
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3. Discussion

We have shown in this study that domatinostat exhibits preferential inhibitory activity
against GSCs over their differentiated counterparts. Not only did domatinostat interfere
with the survival of GSCs at concentrations where it did not compromise the growth of
differentiated GSCs or normal fibroblasts, it also effectively impaired the self-renewal
capacity of GSCs. Our findings suggest that domatinostat may be more of an anti-GSC drug
than a drug targeting glioma cells in general, which needs to be taken into consideration in
the clinical application of domatinostat for the treatment of glioma patients.

With the increasing interest in HDAC inhibitors as potential cancer therapeutics, the
anti-cancer activity of domatinostat, a novel class I-selective HDAC inhibitor, has been
actively explored in the past several years and has been demonstrated in cancer cells from
solid tumors as well as hematological malignancies. Interestingly, while earlier studies
tested domatinostat mostly using conventional cancer cell lines [11–20], focus has been
directed to its effects on CSCs in recent studies [21–24]. The results of the recent stud-
ies suggested the possibility that CSCs are the favored target of domatinostat, yet this
possibility has not been formally tested and therefore remains to be demonstrated conclu-
sively. In this regard, our study clearly demonstrated that, using pairs of differentiated
and undifferentiated GSC lines, the growth inhibitory effects of domatinostat were more
pronounced in undifferentiated GSCs and that it even impaired the most important prop-
erties of GSCs, namely the self-renewal capacity. The molecular mechanisms accountable
for the differential effects of domatinostat are currently unclear. Differential expression
of class I HDACs, the bona fide targets of domatinostat, in differentiated and undifferenti-
ated GSCs could be a possible explanation. However, this was unlikely to be the case as
there were no significant differences in the expression levels of HDACs 1 and 2 between
undifferentiated and differentiated GSCs. Although there was a trend toward increased
expression of HDAC3 in undifferentiated GSCs, the results were not consistent across cell
lines (Y. N.-S. and M. O., unpublished data). Additionally of interest in this regard was a
recent report that domatinostat reduced the protein levels of FOXM1 in pancreatic cancer
cells [23], which reportedly plays a crucial role in the maintenance of GSCs [25]. However,
although domatinostat did reduce the expression of FOXM1 in GSCs, our preliminary data
also indicated that the knockdown of FOXM1 in GSCs alone failed to mimic the effects
of domatinostat on GSCs (Y. N.-S. and M. O., unpublished data), suggesting that at least
mechanisms other than those involving FOXM1 are at play.

With the accumulating evidence that their expression is deregulated in glioma, HDACs
have drawn increasing attention as promising therapeutic targets and, accordingly, in-
hibitors targeting HDACs have been tested in many preclinical and clinical studies of
glioma [26–28]. However, none of the tested HDAC inhibitors have proven beneficial so far
in patients with glioma, except for valproic acid tested in a phase 2 study in combination
with temozolomide and radiotherapy [26,27]. There could be a number of potential reasons
for their failure to show activity in glioma patients, among which is the high toxicity and
low specificity of the HDAC inhibitors used [29]. To date, 18 HDACs have been identified
and are categorized into four classes (I through IV). To overcome the issues arising from
the lack of selectivity of classical broad-spectrum HDAC inhibitors that target multiple
classes of HDACs (such as trichostatin A and valproic acid), the development of class-
or isoform-selective HDAC inhibitors have been actively sought [29,30]. Domatinostat
(4SC-202), whose effects on glioma cells we tested in the present study, is one such class-
selective HDAC inhibitor that selectively targets class I HDACs [11–13]. Setting aside
romidepsin/depsipeptide/FK228, whose selectivity as a class I-selective HDAC inhibitor
is called into question [31], among known class I-selective HDAC inhibitors, entinostat
(MS-275) has shown growth inhibitory activity against glioma cells so far, albeit in combina-
tion with chemotherapeutic agents or molecular targeting drugs [32,33]. Here in this study,
we have successfully demonstrated that domatinostat is, to the best of our knowledge, the
first class I-selective HDAC inhibitor capable of targeting GSCs alone, which may imply
that class I HDACs have essential roles in GSCs and therefore could be viable molecular
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targets in developing novel therapies aimed at GSCs. However, since domatinostat is
capable of inhibiting lysine-specific demethylase 1 (LSD1), which demethylates lysine
residues of histone H3K4me1/2 and H3K9me1/2 at clinically relevant concentrations in
addition to class I HDACs [12], not only class I HDACs but also LSD1 may comprise a
selective vulnerability (Achilles’ heel) of GSCs.

Although the clinical benefit of domatinostat in cancer patients is yet to be determined,
a phase 1 study was conducted in patients with advanced hematological malignancies to
determine the safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor
activity of domatinostat [34]. The results of the study were promising, demonstrating that
administration of domatinostat was safe and well tolerated with signs of antitumor activity.
Significantly, the results of the pharmacokinetic analysis indicate that the concentration
range of domatinostat required to show anti-GSC effects in the present study (~500 nM) is
clinically achievable. In considering clinical application of domatinostat for the treatment
of brain tumors, it is also of interest whether domatinostat crosses the blood–brain barrier
(BBB), at which efflux transporters excrete anticancer drugs and tight junctions between
the capillary endothelial cells block their entry [35]. There is no data currently available as
to the BBB penetrability of domatinostat. However, since the BBB is known to be disrupted
in brain tumors [36,37], domatinostat is expected to at least cross the BBB and reach tumor
cells present in tumor masses. If domatinostat is to be delivered across the BBB, it might be
an attractive approach, for instance, to conjugate domatinostat with a relevant antibody
so that it may cross the BBB via receptor-mediated transcytosis [35]. In terms of clinical
application, future preclinical animal studies are also desired to confirm whether the
pharmacodynamic profiles of domatinostat delineated in vitro in this study are maintained
in vivo. If domatinostat selectively targets GSCs in vivo, it will effectively inhibit the
formation of new tumors (from implanted GSCs) but not the growth of established tumors,
which is driven primarily by the proliferation of non-GSC tumor cells. Such preclinical
data will help guide rational use of domatinostat in the treatment of patients with glioma;
proper combination with conventional therapies targeting “non-GSC” tumor cells might be
key to maximizing the therapeutic potential of domatinostat. Although it remains to be
shown whether other HDAC inhibitors share the CSC-specific activity of domatinostat, if
indeed they do, it could be one of the unrecognized reasons why HDAC inhibitors appear
to do better as part of a combination therapy than as a monotherapy [26].

In summary, we demonstrated for the first time that domatinostat exhibits anti-cancer
activity in glioma cells, more specifically, GSCs. The ability of domatinostat to effectively
induce cell death and impair the self-renewal capacity of GSCs at the same time makes it a
promising candidate for use in the treatment of GBM to prevent recurrence arising from
residual GSCs after conventional therapies.

4. Materials and Methods
4.1. Reagents and Antibodies

Domatinostat (4SC-202; S7555) was purchased from Selleck Chemicals (Houston, TX,
USA). Domatinostat was dissolved in DMSO to prepare a 10 mM stock solution. The struc-
ture of domatinostat was obtained from DrugBank [38]. Propidium iodide (P3566) and
Hoechst33342 (H3570) solutions were purchased from Thermo Fisher Scientific, (Waltham,
MA, USA). Trypan blue solution (T8154) was purchased form Merck (Darmstadt, Germany).
Antibodies against Bmi1 (05-637) and Nestin (MAB5326) were purchased from Merck. An
antibody against SOX2 (MAB2018) was purchased from R&D Systems Inc. (Minneapo-
lis, MN, USA). Anti-CD133 (W6B3C1) was purchased from Miltenyi Biotech (Bergisch
Gladbach, Germany). Antibodies against, OCT-4a (#2890), GAPDH (#5174), cleaved PARP
(#9541), and cleaved caspase 3 (#9661) were purchased from Cell Signaling Technology Inc.
(Beverly, MA, USA).
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4.2. Cell Culture

The human GSCs used in this study (GS-Y01, GS-Y03, and TGS01) were maintained
under previously reported monolayer stem cell culture conditions [8,39]. The differentiation
of GSCs was induced by culturing cells in a DMEM/F-12 medium supplemented with 10%
fetal bovine serum (FBS), 100 units/mL of penicillin, and 100 µg/mL of streptomycin for
2 weeks [8,39]. IMR90, a human normal fetal lung fibroblast cell line, was obtained from
the American Type Culture Collection (Manassas, VA, USA) and maintained in DMEM
supplemented with 10% FBS. All IMR90 experiments were performed using cells with a
low passage number (<8).

4.3. Cell Viability Assay

Cell viability was evaluated using the WST-8 assay [7,8]. Cells (0.5–1 × 104/well)
plated on 96-well collagen I-coated plates (GSCs) or non-coated plates (differentiated GSCs
and IMR90) were treated with domatinostat, as described in the figure legends. The WST-8
reagent (Cell Counting Kit-8, DOJINDO LABORATORIES, Kumamoto, Japan) was then
added and cells were incubated at 37 ◦C for 1–3 h. Absorbance at 450 nm was measured
using a microplate reader (iMark; Bio-Rad, Hercules, CA, USA). Relative cell viability was
calculated as a percentage of the absorbance of treated samples relative to that of controls.

4.4. Trypan Blue Dye Exclusion Assay

The numbers of viable and dead cells were determined using trypan blue dye exclu-
sion assay [40,41]. Cells treated with domatinostat as described were pipetted (GSCs) or
trypsinized (differentiated GSCs and IMR90) and suspended in phosphate-buffered saline
(PBS), and then cells were stained with 0.2% trypan blue for 1 min. Viable and dead cells
were identified by their ability and inability, respectively, to exclude trypan blue using
a hemocytometer.

4.5. Propidium Iodide Incorporation Assay

To assess cell death, the propidium iodide (PI) incorporation assay was used [40,41].
Cells treated with domatinostat as indicated in the figure legends were incubated with
PI (1 µg/mL) and Hoechst33342 (10 µg/mL) for 5 min at 37 ◦C. To calculate the ratio
of PI-positive cells (dead cells) to Hoechst-positive cells (total cells), fluorescent images
were obtained using a fluorescence microscope (CKX41; Olympus, Tokyo, Japan) equipped
with iPhone and scored. More than 170 cells were counted to calculate the percentage of
PI-positive cells.

4.6. Flow Cytometric Analysis

Cell surface expression of CD133 was assessed using flow cytometric analysis [40,42].
The dissociated cells were washed with PBS, fixed with 4% (w/v) paraformaldehyde at
room temperature (RT) for 10 min, and washed again with PBS. Cells were blocked in FCM
buffer (0.5% (w/v) bovine serum albumin and 0.1% (w/v) NaN3 in PBS) for 1 h, followed by
three PBS rinses, a further incubation with the anti-CD133 antibody in FACS buffer at 4 ◦C
overnight, and then an incubation with Alexa Fluor® 488 goat anti-mouse IgG at RT for 1 h
in the dark. Cells exhibiting a signal for CD133 above the gate established by the isotype
control were considered to be positive for CD133. At least 1 × 104 cells were evaluated and
gated using side and forward scatters to identify viable cell populations.

Cell cycle status was analyzed by the standard PI staining protocol using flow cytome-
try [43,44]. Cells treated with domatinostat were suspended with ice-cold PBS and fixed in
70% ethanol. Tubes containing the cell pellets were stored at −20 ◦C. The fixed cells were
washed with ice-cold PBS three times and treated with RNase A (20 ug/mL) for 30 min at
37 ◦C, and then an incubation with PI (20 µg/mL). After incubation, at least 1 × 104 cells
were analyzed. All flow cytometry experiments were run on the FACSMelodyTM flow
cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and data were analyzed using FlowJo
software, version 10.8.1 (FlowJo LLC, Ashland, OR, USA).
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4.7. Western Blot Analysis

Western blot analysis was conducted as previously described [8,45]. Cells were har-
vested and washed with ice-cold PBS and lysed in RIPA buffer (10 mM Tris/HCl (pH 7.4),
0.1% sodium dodecyl sulfate (SDS), 0.1% sodium deoxycholate, 1% Nonidet P-40, 150 mM
NaCl, 1 mM EDTA, 1.5 mM sodium orthovanadate, 10 mM sodium fluoride, 10 mM sodium
pyrophosphate, and protease inhibitor cocktail set III (FUJIFILM Wako Chemicals, Osaka,
Japan)). The lysates were immediately mixed with the same volume of 2 × Laemmli buffer
(125 mM Tris/HCl (pH 6.8), 4% SDS, and 10% glycerol) and boiled at 95 ◦C for 10 min.
After the protein concentrations of the cell lysates were measured using a BCA protein
assay kit (Pierce Biotechnology, Inc., Rockford, IL, USA), samples containing equal amounts
of protein were separated by SDS/polyacrylamide gel electrophoresis and transferred
to polyvinylidene difluoride membranes. Membranes were probed with the indicated
primary antibodies followed by appropriate HRP-conjugated secondary antibodies as rec-
ommended by the manufacturer of each antibody. Immunoreactive bands were visualized
using Immobilon Western Chemiluminescent HRP Substrate (Merck Millipore, Burlington,
MA, USA) and detected by a ChemiDoc Touch device (Bio-Rad).

4.8. Sphere Formation Assay

The sphere formation assay was performed as previously described [40,42]. Cells in
the monolayer culture were dissociated, serially diluted in the stem cell culture medium,
and then seeded onto non-coated 96-well plates such that each well contained a single cell.
Wells containing a single cell were marked under a phase-contrast microscope the next day,
and the percentage of marked wells with a sphere relative to the total number of marked
wells was calculated 7–10 days after seeding.

4.9. Statistical Analysis

Results are shown as means + standard deviations (SD). Data were analyzed using
the Student’s t-test for comparisons between two groups. Differences with a p-value <0.05
were considered to be significant and are indicated with asterisks in the figures.
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