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C o m m u n i c a t i o n

I N T R O D U C T I O N

Ion channels gated by mechanical stimuli are found in 
bacteria, animals, and plants, where they are proposed to 
mediate the perception of sound, touch, pain, gravity, and 
osmotic stress (Monshausen and Gilroy, 2009; Arnadóttir 
and Chalfie, 2010; Kung et al., 2010). The best-studied 
prokaryotic mechanosensitive ion channels are mechano-
sensitive channel of small conductance (MscS) and mech-
anosensitive channel of large conductance (MscL) from 
Escherichia coli. MscS and MscL are often described as 
 “osmotic safety valves,” as they are redundantly required 
for cell survival of extreme hypo-osmotic shock (Levina  
et al., 1999). MscS forms a homoheptameric channel that 
is gated directly by membrane stretch (Bass et al., 2002; 
Okada et al., 2002; Sukharev, 2002; Wang et al., 2008).

Electrophysiological studies of MscS have tradition-
ally been performed in one of two systems. MscS activity 
was first described in giant E. coli spheroplasts, which 
are produced from multiple cells by enzymatic inhibi-
tion of septation and subsequent digestion of the cell 
wall (Ruthe and Adler, 1985; Martinac et al., 1987). The 
cloning of MscS (Levina et al., 1999) made the reconsti-
tution of liposomes with purified channel protein possi-
ble (Okada et al., 2002; Sukharev, 2002; Vásquez et al., 
2007). Giant spheroplasts are the system of choice when 
a native lipid environment is critical, whereas reconsti-
tuted liposomes allow modulation of membrane lipid 
composition and the complete absence of any cell- 
related structures.

In general, the electrophysiological characteristics of 
MscS in giant spheroplasts are the same as in reconstituted 
patches. For the most part, the channel is nonselective, 
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exhibiting only a slight preference for anions (Li et al., 
2002; Sukharev, 2002; Sotomayor et al., 2007). MscS 
single-channel conductance is 1.2 nS in giant sphero-
plasts (measured in 200 mM KCl; Akitake et al., 2005; 
Edwards et al., 2005; Sotomayor et al., 2007) and 0.5 nS 
in liposomes (measured in 100 mM salt; Sukharev, 2002; 
Vásquez et al., 2007). At negative pipette potentials, the 
single-channel conductance of MscS is approximately 
half of that measured at positive potentials (Sukharev, 
2002). Although gating of MscS by membrane stretch is 
voltage independent, at higher membrane potentials the 
channel produces multiple subconducting states that 
somewhat complicate its characterization (Li et al., 2002; 
Sukharev, 2002; Shapovalov and Lester, 2004; Akitake  
et al., 2005; Sotomayor et al., 2007; Edwards et al., 2008). 
In excised patches or reconstituted liposomes, or in the 
cell-attached configuration, MscS is subject to desensiti-
zation, the reversible loss of response to a sustained 
stimulus (Levina et al., 1999; Li et al., 2002; Sukharev, 
2002; Schumann et al., 2004; Akitake et al., 2005;  
Grajkowski et al., 2005; Sotomayor et al., 2007; Edwards 
et al., 2008; Koprowski et al., 2011), although the physi-
ological significance of this phenomenon has been 
questioned (Belyy et al., 2010b; Booth et al., 2011). An 
asymmetric response to tension during the opening 
and closing transitions (hysteresis) also appears to be 
an intrinsic feature of MscS and has been attributed  
to the hydration characteristics of the channel pore 
(Sukharev, 2002, 2007; Anishkin et al., 2010).

We have tested a third system for the study of MscS that 
exploits the promiscuous transcription and translation 
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QIAprep Miniprep kit (QIAGEN). Capped cRNA was transcribed 
in vitro by SP6 polymerase using the mMessenger mMachine kit 
(Invitrogen) and stored at 80°C at 1,000 ng/µl until use.

Spheroplast preparation
Cells from the wild-type E. coli strain Frag-1 were used for making 
spheroplasts, as described in Martinac et al. (1987). Isolated sphe-
roplasts were stored at 80°C, and thawed spheroplast prepara-
tions were discarded after 1 d.

Oocyte preparation
Xenopus oocytes (Dumont stage V or VI) were collected and iso-
lated as described elsewhere (Yang and Sachs, 1990; Stuhmer and 
Parekh, 1995) and incubated in complete ND96 buffer (96 mM 
NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, and 5 mM HEPES, 
pH 7.4) supplemented with 50 mg/l gentamicin at 18°C overnight. 
The next day, cells were injected with cRNA, typically 50 nl of 
1,000 ng/µl of RNA prep per cell. Oocytes injected with pOO2-
MscS or pOO2-MscS-GFP RNAs were patched 3–7 d after injec-
tion. Vitelline membranes were removed from the cells before 
patching using a pair of dull forceps in complete ND96 buffer.

Confocal microscopy
2–4 d after injection with pOO2-MscS-GFP cRNA, de-vitellinized 
oocytes were placed onto cavity slides and covered with thin cov-
erslips. A Fluoview-1000 confocal with BX-61 microscope and 
FV10-ASW application software suite (all from Olympus) were 
used for imaging and image acquisition and handling.

Electrophysiology
De-vitellinized oocytes were patched in symmetric complete ND96 
buffer using pipette bubble number (BN) 6.5–7, unless otherwise 
specified. Giant spheroplasts were patched in symmetric potas-
sium (200 mM KCl, 90 mM MgCl2, 5 mM CaCl2, and 5 mM HEPES, 
pH 7.4); the bath solution also included 300 mM sucrose. Pipette 
BN was 4.5–5. All the traces presented in this report except for 
that shown in Fig. 1 A were obtained from inside-out (excised) 
patches. Pressure ramps and steps were generated by means of a 
high speed pressure system (HSPS-1; ALA Scientific Instruments). 
Recordings were made and digitized with the Axopatch 200B 
patch-clamp amplifier and the Digidata 1440A digitizer (Molecu-
lar Devices). Data were collected at 20 kHz and filtered at 5 kHz. 
Data were acquired and analyzed with the pClamp10 software 
suite (Molecular Devices). For pipette fabrication, patch glass 
(Kimax 51; Kimble Products) and a puller (P-97; Sutter Instrument) 

apparatus of the oocytes of the African clawed frog Xen-
opus laevis (Gurdon et al., 1971; Stuhmer and Parekh, 
1995). Xenopus oocytes have proven to be a very effective 
tool for the study of ion channels from a variety of  
eukaryotic systems, including mammals, insects, and 
plants (Miller and Zhou, 2000; Sigel and Minier, 2005). 
Several prokaryotic ligand-gated ion channels have 
been successfully expressed and characterized by two-
electrode voltage clamp in Xenopus oocytes (Bocquet 
et al., 2007; Choi et al., 2010; Hilf et al., 2010; Weng et al., 
2010). Furthermore, oocytes have been used for the ex-
pression and study of mammalian mechanosensitive 
channels, including TREK-1, TRPC1, and TRPV4 (Patel 
et al., 1998; Maroto et al., 2005; Loukin et al., 2010). 
Here, we describe the expression of MscS–green fluo-
rescent protein (GFP) in Xenopus and use single-channel 
patch-clamp electrophysiology to show that the mecha-
nosensitive behavior of untagged MscS in oocyte mem-
branes is comparable to that of MscS in E. coli membranes 
and in reconstituted liposomes. We anticipate that this 
system will provide a useful tool for future studies of 
MscS structure and function.

M AT E R I A L S  A N D  M E T H O D S

Molecular biology
To obtain pOO2-MscS, MscS was amplified from pFLAG-CTC-MscS 
(Haswell and Meyerowitz, 2006) using the primers 5-GCTCTAGA-
ATGGAAGATTTGAATGTTGTCGATAGC-3 and 5-GGGG TACC-
TTACGCAGCTTTGTCTTCTTTCAC-3, and introduced into the 
pOO2 vector (a pBF-derived oocyte expression plasmid; Ludewig 
et al., 2002) between the XbaI and KpnI sites. To obtain pOO2-
MscS-GFP, GFP was subcloned into pOO2 between the EcoRI and 
BglII sites. Next, MscS was amplified from pB10b-MscS using the 
primers 5-ATAAGCTTATGGAAGATTTGAATGTTGTC-3 and 5-ATG-
A ATTCCGCAGCTTTGTCTTCTTTCAC-3, and introduced into 
pOO2-GFP between the HindIII and EcoRI sites, resulting in a 
construct without the -globin 5UTR upstream of the MscS ATG. 
The sequences were verified and plasmid DNA isolated using the 

Figure 1. Suitability of Xenopus oocytes for the expression of bacterial mechanosensitive channel MscS. (A) Inactivation of endogenous 
mechanosensitive channels upon patch excision. Traces from the same water-injected oocyte are shown in cell-attached configuration 
(top) and excised-patch (bottom). Pipettes with BN 7 at a potential of +40 mV were used. (B) Confocal scan showing a portion of an 
oocyte expressing MscS-GFP 4 d after injection. Bright field and GFP signal (in green) are superimposed. (C) MscS activation by nega-
tive and positive pressure in the pipette, as recorded from the same excised patch in symmetric ND96 buffer. Pipette potential was +30 mV 
with BN 6.
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indicated that an untagged version of MscS had reproduc-
ibly higher activity than MscS-GFP under identical ex-
perimental conditions (n = 21 oocytes for MscS-GFP; 
n = 40 oocytes for untagged MscS); therefore, we used 
untagged MscS for electrophysiological characterization 
in oocytes. Oocytes expressing untagged MscS reproduc-
ibly exhibited channel response to membrane stretch 
generated both by negative and positive pipette pressures 
(Fig. 1 C). As has been observed with other mechano-
sensitive channels (Suchyna and Sachs, 2007; Suchyna 
et al., 2009), we saw a characteristic difference in the 
number of channels per patch at positive versus nega-
tive pressure, with fewer channels activated at subsat-
urating pressure. Thus, untagged MscS can be easily 
expressed in Xenopus oocytes and is capable of forming 
a functional tension-gated channel within the context 
of a metazoan membrane.

We next compared number and conductance of MscS 
channels expressed in Xenopus ooctyes to that of endog-
enous MscS in giant E. coli spheroplasts (Fig. 2 A). In 
oocytes, the number of channels per patch ranged from 
the hundreds to only a few (Fig. 2, B and C), depending 
on the patch size (pipette BN 5–7) and time of incuba-
tion after cRNA injection. These expression levels were 
similar to that of native MscS in wild-type E. coli Frag-1 
spheroplasts, although lower than the number of chan-
nels previously observed in spheroplasts derived from  

were used. A micromanipulator system was used for membrane 
patching (PatchStar 700; Scientifica). All measurements were per-
formed at +30-mV command potential or as specified in the text.

R E S U LT S

To begin to evaluate Xenopus oocytes as an appropriate 
system for the analysis of MscS, we first considered pos-
sible interference by endogenous mechanosensitive 
channels, which have been characterized by several au-
thors (Methfessel et al., 1986; Sobczak et al., 2010; 
 Terhag et al., 2010). In the cell-attached configuration, 
these channels have an amplitude of 5 pA at 50-mV 
pipette potential and are activated at relatively low mem-
brane tensions (Yang and Sachs, 1990). In our hands, 
endogenous mechanosensitive channel activity either 
was not detected in the oocyte membranes at all (in 
30–40% of patches), or became inactive upon patch  
excision in ND96 (Fig. 1 A). In all subsequent experi-
ments, water-injected oocytes were routinely tested for 
endogenous activity; in rare cases when the latter was 
observed after patch excision (2/17 batches), the entire 
batch of oocytes was discarded.

Oocytes injected with MscS-GFP cRNA exhibited 
strong GFP signal at the periphery of the cell within  
48 h of incubation, indicating efficient translation of  
the injected cRNA (Fig. 1 B). Preliminary observations  

Figure 2. MscS conductance in oocytes is comparable to that in E. coli. (A) MscS and MscL channel activities in spheroplasts, recorded 
in 200 mM KCl plus 90 mM MgCl2. (B) MscS channel activity in oocytes, recorded in 96 mM NaCl plus 2 mM KCl (ND96). (C) Opening 
and closing of single MscS channels in response to stretch in an excised Xenopus oocyte patch. Pipette, BN 5. (D) Single-channel conduc-
tance measured in 98 mM TEA-Cl. Pipette, BN 7. Pipette potential was +40 mV in A and B, +30 mV in C and D.
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data shown in Figs. 2, B and C, and 3 A demonstrate 
that the conductance of MscS in oocytes is similar to 
that of MscS in giant spheroplasts and in liposomes.

We also tested the effect of replacing the KCl in pipette 
and bath solutions with TEA-Cl, a specific blocker of  
K+ channels (Armstrong, 1971; Stanfield, 1983). The single-
channel conductance of MscS was almost unchanged in 
Na+-, K+-free symmetric buffer (98 mM TEA-Cl, 1.8 mM 
CaCl2, 1 mM MgCl2, and 5 mM HEPES, pH 7.4) at neg-
ative pipette potentials (233 ± 3 pS), whereas at positive 
potentials, it decreased slightly to 280 ± 4 pS (Figs. 2 D 
and 3 A). These results imply that the TEA+ ion, with a 
predicted diameter of 8 Å, similar to that of a hydrated 
potassium ion (Bezanilla and Armstrong, 1972), can pass 
relatively efficiently through the MscS channel pore. This  
interpretation is consistent with molecular dynamics 
simulations and a recent crystal structure of MscSA106V 
that indicate a pore diameter of at least 10–15 Å in the 
open state (Anishkin et al., 2008; Vásquez et al., 2008; 
Wang et al., 2008).

A characteristic of MscS activity in both spheroplasts 
and liposomes is the appearance of conducting sub-
states at high potentials, although the relationship of 
these substates to the normal gating cycle of MscS is un-
clear (Li et al., 2002; Sukharev, 2002; Shapovalov and 
Lester, 2004; Akitake et al., 2005; Sotomayor et al., 2007; 
Edwards et al., 2008). MscS expressed in Xenopus 
oocytes also exhibited conducting substates at high poten-
tials (Fig. 3 B); in fact, their appearance prevented us 
from plotting a current–voltage relationship at pipette 

E. coli–overexpressing MscS (Levina et al., 1999; Akitake 
et al., 2005).

We consistently observed the expected tension-sensitive 
channels of 1.2-nS conductance when wild-type E. coli 
spheroplasts were patched under the standard conditions 
for MscS (n = 6 patches). The buffer used for oocyte read-
ings had fourfold lower ionic strength than the buffer 
used for spheroplasts; taking into account MscS’s prefer-
ence for anions over cations, we expected a nearly four-
fold decrease in current from MscS channels expressed in 
oocytes, or a single-channel conductance of 300 pS. 
Our experimental values are in good agreement with this 
prediction, as MscS in oocytes exhibited a single-channel 
conductance of 330 pS at +30 mV (Fig. 2 C).

Although MscS is largely voltage independent, slight 
inward rectification has been previously reported in 
both spheroplasts and in liposomes (Li et al., 2002; 
Sukharev, 2002; Sotomayor et al., 2007; Edwards et al., 
2008), and has been attributed to the production of 
conducting substates (see below). We therefore estab-
lished the current–voltage relationship for MscS in 
oocytes under symmetric salt, as shown in Fig. 3 A. At 
positive pipette potentials, the single-channel conduc-
tance for MscS derived from the slope of the current–
voltage curve was 351 ± 3 pS, whereas at negative pipette 
potentials, the slope of the current–voltage curve was 
218 ± 2 pS. The ratio of the conductance of MscS in 
oocytes at positive to negative pipette potentials is 1.6, 
close to the value of 2.0 obtained with purified MscS 
reconstituted into liposomes (Sukharev, 2002). Thus, the 

Figure 3. MscS exhibits low voltage dependence when expressed in oocytes. (A) The current–voltage relationship for MscS in sym-
metric ND96 (squares; n = 7 patches) and in TEA-Cl (diamonds; n = 4 patches). Error bars indicate standard deviation. (B) Example of 
conductive substates as recorded at +40-mV pipette potential. (C) Nearly symmetric activation curves recorded at opposite potentials in 
the same excised patch.
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and inactivation midpoint pressure of 32.6 ± 6.4 mmHg 
(n = 7 patches) when measured with a pipette of BN 7 
(Fig. 4 A). This result is therefore consistent with the 
previously reported midpoint pressure for MscS. The 
average activation threshold pressure (defined as the 
pressure at which the first stable channel opening is  
detected) in these experiments was 19.1 ± 5.1 mmHg, 
and the average inactivation threshold pressure (clo-
sure of the last channel) was 15.8 ± 5.3 mmHg. The 
average activation/inactivation midpoint ratio was 
0.89 ± 0.14, whereas the average activation/inactivation 
threshold ratio was 1.48 ± 0.50 (n = 7 patches). This 
mild hysteresis, wherein MscS channels required lower 
tension to open than to close, and opened at a faster 
rate, is similar to that reported previously (Sukharev  
et al., 2007; Anishkin et al., 2010; Belyy et al., 2010a).

We observed more prominent hysteresis in about half 
of recordings made with smaller (BN 5) pipettes. Con-
trary to the results reported above with large patches, in 
these recordings MscS channels required a lower ten-
sion to open than to close, and opened at a slower rate. 
In the example shown in Fig. 4 B, the threshold and 
midpoint pressures for channel opening were 39.7 
and 50.1 mmHg, respectively, whereas for channel 
closing they were 27.4 and 34.8 mmHg. This phe-
nomenon could be caused by differences in membrane 

voltages over +40 mV and below 40 mV. We occasion-
ally observed “flickering” at negative pipette potentials, 
which may be a result of an increased rate of switching 
between subconducting states (Akitake et al., 2005). Im-
portantly, the number of channels activated in excised 
patches under negative and positive potentials was the 
same (Fig. 3 C), as reported previously for MscS ex-
pressed in E. coli spheroplasts (Akitake et al., 2005).

To compare the activation dynamics of MscS ex-
pressed in oocytes with that in giant spheroplasts, we 
calculated the midpoint gating pressure (Fig. 4 A). The 
previously reported midpoint pressure for MscS was 
120–150 mmHg when measured with a pipette of BN 4 
(Akitake et al., 2005; Belyy et al., 2010b). These pipettes 
should have inner tip diameters of <0.5 µm, whereas the 
pipettes of BN 7 used in our oocyte patches should have 
diameters of 2 µm (Schnorf et al., 1994). According 
to the law of Laplace ( = Pr/2), and assuming that the 
curvature radius of the membrane patch changes pro-
portionally to the diameter of the pipette, we expected 
to see approximately fourfold less pressure (P) required 
to produce the same linear tension () in oocytes than 
in spheroplasts, or 30–50 mmHg. Opening and closing 
curves fitted with a Boltzmann distribution function 
(Fig. 4 A, red and blue, respectively) indicated an aver-
age activation midpoint pressure of 27.0 ± 5.5 mmHg 

Figure 4. Activation and inactivation behavior of MscS expressed in oocytes. (A) Representative trace from a short triangle stimulation 
ramp; pipette, BN 7. (B) Hysteresis of MscS is more prominent in small patches (pipette, BN 5). In A and B, slope fits for channel open-
ing are shown in red and for channel closing in blue; dashed and dotted lines indicate threshold and midpoint tensions, respectively. 
Pipette potential was +40 mV. (C) Slow inactivation at subsaturating pressure with subsequent recovery during saturating tension pulses.
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A Xenopus oocyte system for the analysis of heterolo-
gously expressed ion channels presents several advan-
tages for the study of MscS. The large size of an oocyte 
(1 mm in diameter, compared with 6 µm in diame-
ter for giant E. coli spheroplasts) allows for the use of 
much larger patch pipettes, which facilitates the detec-
tion of rare single-channel events. The chance of de-
tecting poorly expressed or unstable channels can also 
be improved by simply increasing the incubation time 
after injection, as oocytes are stable in vitro for up to 2 wk 
(Stuhmer and Parekh, 1995). The ease with which 
oocytes can be injected and the high efficiency of cRNA 
expression may facilitate the study of heteromeric chan-
nels formed between mutant versions of MscS (or be-
tween MscS and its five E. coli homologues; Booth et al., 
2007) when coinjected, and will allow for the incorpora-
tion of unnatural amino acids (Nowak et al., 1998; 
 Torrice et al., 2009). It may also be possible to make use 
of high-throughput technologies to quickly analyze 
MscS variants or the effect of drugs on MscS function 
(Dunlop et al., 2008; Papke and Smith-Maxwell, 2009).

A particularly useful application of MscS expression 
in oocytes may be in the measurement of membrane 
tension, a parameter of interest to those who study the 
biophysics of mechanosensitive channel gating (for ex-
ample, see Phillips et al., 2009). When MscS is analyzed 
in spheroplast patches, the threshold tension required 
to open MscS is often reported relative to that required 
to open MscL (Blount et al., 1996; Li et al., 2002;  
Edwards et al., 2005, 2008; Nomura et al., 2006). A more 
direct approach was used with MscS-reconstituted lipo-
somes, wherein the tension applied to the membrane 
was calculated from visual observations of membrane 
curvature under stretch in the pipette (Sukharev, 2002). 
More recently, spheroplast radius was measured and 
compared with channel open probability in whole cell 
mode (Belyy et al., 2010b). However, these direct ap-
proaches to measuring membrane tension are limited 
by the requirement for MscS protein expression and 
purification, or by the relatively small size of E. coli sphe-
roplasts. In comparison, we expect that large numbers 
of MscS mutants may be relatively easily assayed and 
membrane curvature accurately measured in the large 
patches typically possible with Xenopus oocytes (for ex-
ample, see Hamill and McBride, 1992).

Expressing MscS in Xenopus oocytes may also be use-
ful for direct comparison to MscS homologues from eu-
karyotes (Pivetti et al., 2003; Haswell, 2007; Balleza and 
Gómez-Lagunas, 2009). Although an MscS homologue 
from the unicellular alga Chlamydomonas was expressed 
and characterized in E. coli spheroplasts (Nakayama 
et al., 2007), attempts to do so with MscS-like proteins 
from higher plants have been unsuccessful (unpublished 
data). If MscS-like proteins are functional in oocytes (as 
are many plant channels and transporters), their charac-
teristics could be directly compared with those of MscS.  

relaxation mechanisms or in the contributions made by 
cooperative gating in patches of different sizes.

Another hallmark of MscS activity is the loss of chan-
nel response after sustained channel stimulation or  
inactivation (Levina et al., 1999; Akitake et al., 2005; 
Grajkowski et al., 2005). In oocytes, MscS inactivation 
was not detected during short periods of stimulation 
with 1–2-s pressure ramps (Fig. 4 A). However, at longer 
periods of constant tension and especially when smaller 
pipettes were used, slow and reversible inactivation (with 
current decaying over a 10-s interval) was observed  
(Fig. 4 C). This behavior appears to be reversible and 
much slower than that reported for MscS expressed in 
spheroplasts, where the current decayed in <1 s (Akitake 
et al., 2007). This difference in the rate of inactivation 
of MscS expressed in ooctyes versus spheroplasts might 
be explained by the larger pipette diameters used for 
oocyte patches, as patch geometry has been shown to 
affect MscS adaptation in excised patches (Belyy et al., 
2010b). Alternatively, the different lipid composition of 
Xenopus and E. coli membranes might lead to variable 
bilayer relaxation behaviors.

D I S C U S S I O N

A common concern regarding the use of Xenopus 
oocytes for the heterologous expression of ion channels 
is the presence of endogenous channels, which may 
complicate single-channel studies by providing unwanted 
background signal (Sobczak et al., 2010; Terhag et al., 
2010). An important consideration for our studies was 
potential interference by endogenous mechanosensi-
tive channels, which have been reported in both excised 
and cell-attached patches of Xenopus ootyes (Methfessel 
et al., 1986; Taglietti and Toselli, 1988; Yang and Sachs, 
1990; Lane et al., 1991). However, as shown in Fig. 1 B, 
although endogenous mechanosensitive channels are 
frequently present in cell-attached patches, they are not 
active in excised patches under our conditions. Al-
though we cannot completely rule out a minor effect of 
endogenous channels on our recordings, their contri-
bution to the final conductance measured under ten-
sion appears negligible; in traces at relatively high 
tensions, with all MscS single-channel events resolved, 
no other channels or current drift was observed (see 
Figs. 2 C and 4 C). Other drawbacks to oocyte expres-
sion include those inherent to the system, such as vari-
ability in oocyte quality and expression capacity that 
depend on the genetic background of the frog, its 
health, and even the season (Stuhmer and Parekh, 
1995; Terhag et al., 2010). Although we show here that 
the general features of MscS channel activity are un-
changed in oocytes (Figs. 2–4), it remains possible that 
eukaryotic posttranslational modifications or the lipid 
environment of the oocyte membrane could more sub-
tly alter its properties.
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