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Metabolic syndromes are frequently associated with dementia, suggesting that the
dysregulation of energy metabolism can increase the risk of neurodegeneration
and cognitive impairment. In addition, growing evidence suggests the link between
infections and brain disorders, including Alzheimer’s disease. The immune system
and energy metabolism are in an intricate relationship. Infection triggers immune
responses, which are accompanied by imbalance in cellular and organismal energy
metabolism, while metabolic disorders can lead to immune dysregulation and higher
infection susceptibility. In the brain, the activities of brain-resident immune cells,
including microglia, are associated with their metabolic signatures, which may be
affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation
can compromise innate immunity in the brain, leading to enhanced CNS infection
susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other
in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles
in the regulation of immunometabolism in the CNS and periphery, and dysfunction
of these signaling pathways are associated with cognitive impairment. Meanwhile,
infectious complications are often comorbid with diabetes and obesity, which are
characterized by insulin resistance and leptin signaling deficiency. Examples include
human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral
pathogen Porphyromonas gingivalis. This review explores potential interactions between
infectious agents and insulin and leptin signaling pathways, and discuss possible
mechanisms underlying the relationship between infection, metabolic dysregulation, and
brain disorders, particularly focusing on the roles of insulin and leptin.
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INTRODUCTION

Dementia is a general term for debilitating conditions, in which progressive and long-lasting loss of
mental ability impairs cognition and simple daily activities. Alzheimer’s disease (AD), the most
common form of dementia, is a neurodegenerative disorder characterized by cognitive decline
associated with the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles in the brain
(Ferri et al., 2005). Amyloid cascade hypothesis is a model postulating a linear pathway initiated
by Aβ deposition, eventually leading to neuroinflammation and neuronal loss. Although amyloid
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cascade hypothesis has provided the theoretical framework
for the research direction and advanced the knowledge and
understanding of AD pathology at molecular levels in the last
decades, it remains controversial whether Aβ is the cause of the
pathogenesis (De Strooper and Karran, 2016).

While the exact role for Aβ in dementia etiology remains
unclear, several elements have been suggested to increase the
risk of cognitive decline. Among those suggested are impaired
glycemic control [e.g., metabolic syndromes (MetS) including
diabetes] and infection (Ott et al., 1999; Peila et al., 2002;
Arvanitakis et al., 2004; Biessels et al., 2006; Irie et al., 2008;
Biessels and Despa, 2018). Largely due to modern lifestyle
and diet (i.e., the lack of exercise and food with high
sugar and carbohydrate), overweight, obesity, and associated
metabolic disorders are widespread epidemics. Obesity is a
common risk factor for many chronic disorders, such as type
2 diabetes (T2DM) and cardiovascular diseases (Haslam and
James, 2005). In addition, evidence suggests that metabolic
disturbance can cause neurodegenerative disorders, including
AD (Whitmer et al., 2005; Kivipelto et al., 2006; Mejido et al.,
2020), possibly via blood–brain barrier (BBB) disruption and
neuroinflammation (Pugazhenthi et al., 2017). The association
may also be compounded and influenced by other factors, such
as age (Bos et al., 2017; Deckers et al., 2017; Whitmer et al.,
2018), indicating the complexity of mechanisms underlying
the link between metabolic disturbances and cognitive decline.
Meanwhile, the relationship between infections and dementia,
especially late-onset AD, has been repeatedly suggested over the
past three decades (Ashraf et al., 2019). The aim of this review is
to overview and discuss how these two contributory causes may
be intertwined in the etiology of neurodegenerative disorders,
particularly focusing on the interaction between infectious agents
and two metabolic hormones, namely insulin and leptin, in the
brain and periphery.

METABOLIC DISTURBANCE AND
COGNITIVE IMPAIRMENT

Insulin and Leptin – Linking Metabolic
Syndromes, Infection, and Cognitive
Impairment
Energy homeostasis is regulated by intricate interactions between
the peripheral organs and central regulatory system in the
brain, where insulin and leptin play crucial roles (Boucsein
et al., 2021) (Figure 1). Insulin and leptin resistance, as
well as dysregulation of related pathways, are associated
with obesity and metabolic disorders (Francisco et al., 2019;
Gruzdeva et al., 2019) and central nervous system (CNS)
dysfunctions (Cereda et al., 2007; Arnold et al., 2018; Kellar
and Craft, 2020). Growing evidence suggests that insulin
and leptin play significant physiological roles in cognition
(Paz-Filho et al., 2008; Morrison, 2009; Gray et al., 2014;
Arnold et al., 2018), and these signaling pathways may be
promising therapeutic targets to alleviate cognitive impairment
accompanied by obesity and MetS (Mejido et al., 2020). On

the other hand, obesity, visceral adiposity in particular, is
frequently associated with immune dysregulation and infection
susceptibility (Hamdy et al., 2006; Conde et al., 2010; Kumari
et al., 2019; Obradovic et al., 2021), while infection increases the
risk of neurodegeneration and dementia (Heneka et al., 2020;
Shinjyo et al., 2021), suggesting the link between MetS, infection,
and cognitive impairment.

Insulin
Insulin and Dementia
Insulin is a peptide hormone composed of 51 amino acids,
generated from the precursor proinsulin through a series of
processing (Rahman et al., 2021). Primarily produced by β cells
of the pancreatic islets, insulin is the main anabolic hormone
that regulates the energy metabolism throughout the body, i.e.,
promoting glucose uptake into the liver, fat, and muscle cells
(White, 2003). In addition, acting through common receptors
(insulin receptor [InsR] and IGF-1 receptor [IGF-1R]), insulin
and insulin-like growth factors (IGFs) regulate proliferation
and survival of various cell types throughout the body during
development, in adulthood, and in aging processes (Nakae et al.,
2001; Richardson et al., 2004). InsR and IGF-1R are tyrosine
kinase receptors that can be present as homodimers (InsR/InsR,
IGF-1R/IGF-1R) or heterodimer (InsR/IGF-1R), sharing the
majority of downstream pathways, namely phosphoinositide 3-
kinase (PI3K), serine threonine kinase Akt, glycogen synthase
kinase 3β (GSK3β), and mammalian target of rapamycin (mTOR)
(O’Neill et al., 2012). InsR and IGF-1R are highly expressed in the
CNS, including the hippocampus and hypothalamus, and central
insulin regulates peripheral energy metabolism (O’Neill et al.,
2012; Tiedemann et al., 2017; Barrios et al., 2021; Scherer et al.,
2021). Furthermore, it is now evident that insulin and IGF-1 play
important roles in higher-order brain functions, such as memory
and cognitive processing, and in neuroprotection in response
to brain injury (Stewart and Rotwein, 1996; Gerozissis, 2003;
Fernandez and Torres-Aleman, 2012), indicating pleiotropic
roles for insulin/IGF signaling in the CNS.

Insulin crosses the BBB using a saturable transporter, which
is regulated by insulin itself and altered by a number of factors
including hyperglycemia and diabetes (Banks et al., 2012).
In addition, the choroid plexus, a highly vascularized tissue
responsible for the production of cerebrospinal fluid (CSF) at
the interface of the CNS and periphery, releases insulin and
IGFs (Salehi et al., 2009; Ziegler et al., 2012; Mazucanti et al.,
2019; Dani et al., 2021). In the parenchyma, microglia generate
IGF-1 during development (Wlodarczyk et al., 2017) as well
as in adulthood (Myhre et al., 2019), while astrocytes can
produce insulin, which is negatively regulated by Aβ and bacterial
lipopolysaccharide (LPS) (Takano et al., 2018). InsR and IGF-1R
are expressed on neurons and non-neuronal cells (Shaughness
et al., 2020), and are involved in the regulation of synaptic
plasticity (Dyer et al., 2016), astroglial energy metabolism,
microglial inflammatory phenotypes (Haas et al., 2020), as
well as the self-renewal and maintenance of neural stem cells
(Ziegler et al., 2015), indicating crucial roles of insulin through
multiple targets and mechanisms in the brain parenchyma
(Gabbouj et al., 2019). Although the hypothalamus is the most
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well-studied target region regulating systemic energy metabolism
(Mitchell and Begg, 2021), specific inactivation of InsR and
IGF-1R in the hippocampus and amygdala led to increased
anxiety and cognitive impairment in animal models (Soto et al.,
2019), indicating the significance of extrahypothalamic and non-
metabolic roles for insulin. Moreover, hippocampal microglia
responded to insulin treatment in young rats but not in the
aged group (Haas et al., 2020), suggesting that microglia develop
insulin resistance during aging. Indeed, experimental evidence
suggests the link between impaired insulin signaling in the
CNS and cognitive impairment. Intracerebral streptozotocin
(STZ) induces AD-like brain pathology in mice, which has been
widely used as a model for sporadic AD (Lester-Coll et al.,
2006). In mixed AD and diabetic mice using APPswe/PS1dE9
(APP/PS1) transgenic AD model or triple-transgenic model of
AD (3xTg-AD) with either STZ treatment or InsR deficiency
(db/db), genetic background and dysfunctional insulin signaling
cooperatively exacerbated CNS inflammation and AD pathology
(Hierro-Bujalance et al., 2020; Imamura et al., 2020; Sankar
et al., 2020). In addition, intranasal insulin treatment can
alleviate AD pathogenesis and cognitive impairment via reduced
neuroinflammation and enhanced neural plasticity (Chen Y.
et al., 2014; Guo et al., 2017), possibly via the actions
through receptors on microglia and astrocytes (Spielman et al.,
2015). Although what roles insulin/IGF signaling play in the
CNS could be context-dependent, i.e., either beneficial (Carro
et al., 2003; Sukhanov et al., 2007; Tien et al., 2017) or
damaging (Labandeira-Garcia et al., 2017), fine-tuning of these
signaling pathways is crucial to maintaining brain functions.
Considering the anti-inflammatory effects of insulin and IGF-
1 on microglia (Labandeira-Garcia et al., 2017; Shaughness
et al., 2020) and observations that age-related changes of
microglia toward pro-inflammatory phenotypes are implicated
in brain aging and neurodegenerative disorders (Gemma et al.,
2010; Chowen and Garcia-Segura, 2020), microglial insulin/IGF
resistance may underlie chronic inflammation in the brain,
which is associated with dementia (Lutshumba et al., 2021).
Consequently, dysregulated insulin/IGF signaling and insulin
resistance in the CNS have been linked to an increased risk
of dementia, including AD, which is sometimes referred to
as type 3 diabetes (Biessels et al., 2006; Whitmer et al.,
2008; Zemva and Schubert, 2011; Banks et al., 2012; Smolina
et al., 2015; Biessels and Despa, 2018; Kuo et al., 2018;
Shinjyo et al., 2020).

Insulin as an Immunomodulator – A Possible Link
Between Metabolic Syndromes and Infection
Susceptibility
Acute and chronic infections induce insulin resistance (Yki-
Järvinen et al., 1989; Fernández-Real et al., 2006), whereas
metabolic imbalance (e.g., higher body fat mass and diabetes)
is associated with higher infection susceptibility (Rayfield et al.,
1982; Fernández-Real et al., 2007), indicating bidirectional
interactions between the immune system and energy metabolism
in human body. Chronic low-grade inflammation and immune
dysregulation likely mediate the mutual and possibly synergetic
relationship. The strong interaction between the immune and

metabolic pathways is apparently rooted in their common
evolutionary origin, as represented by the fat body in Drosophila,
which senses both infectious and metabolic stresses and
perform the functions of the liver, adipose tissue, and immune
system (Hotamisligil, 2017). Insulin plays a key role in such
evolutionarily conserved immunometabolism, partly through the
interactions with tumor necrosis factor (TNF) receptor (Uysal
et al., 1997) and Toll-like receptor (TLR) pathways (DiAngelo
et al., 2009; Hotamisligil, 2017), as well as through modulating
metabolic pathways in immune cells (van Niekerk et al., 2020).
Through metabolic regulation, insulin alleviates the harmful
effects of hyperglycemia (Sun et al., 2014). For example, due to
its glucose-lowering effect, insulin exert anti-inflammatory effects
through modulating the release of inflammatory mediators.
As glucose is pro-inflammatory, insulin deficiency activates
inflammatory reactions in the body, leading to the release of
inflammatory mediators including reactive oxygen species and
pro-inflammatory cytokines from leukocytes (Mohanty et al.,
2000; Esposito et al., 2002). In addition, insulin directly activates
phagocytic and bactericidal activity of immune cells and diabetes-
induced infection susceptibility is partly mediated by impaired
immune responses due to the lack of insulin signaling, as shown
in rodent studies (Yano et al., 2012).

Leptin
Leptin as a Metabolic Hormone
Leptin is a 16 kDa polypeptide that regulates metabolic balance
and fat storage. Mainly produced by the white adipose tissue
(WAT), leptin acts via leptin receptor (LepR) in the brain
and plays a pivotal role in the control of appetite and
energy expenditure. There are six LepRs (LepRa to LepRf),
with identical extracellular N-terminal domain and distinct
intracellular C-terminal regions generated by alternative splicing
of db (Lee et al., 1996). LepRb, the long isoform with high ligand
affinity, is the major isoform expressed in the brain and activates
intracellular pathways, including JAK/STAT, ERK/MAPK, and
IRS/PI3K (Allison and Myers, 2014). The hypothalamic nuclei,
the regulatory center of energy homeostasis, are highly enriched
with LepRb (Elmquist et al., 1998; Balthasar et al., 2004; Leshan
et al., 2009), and leptin exerts its effects through the action in
the hypothalamus to regulate food intake and energy metabolism
(Friedman, 2019). Leptin enters the hypothalamus through
fenestrated capillary and acts on LepR expressed on neurons
in arcuate nucleus (ARC), dorsomedial hypothalamus (DMH),
and ventromedial hypothalamus (VMH), enabling a feedback
mechanism to maintain energy balance, thereby preventing
obesity and metabolic disorders (Pandit et al., 2017). In addition,
leptin can cross BBB using a saturable transport system (Banks
and Farrell, 2003), as well as the blood-CSF barrier (choroid
plexus epithelia) (Merino et al., 2006; Dietrich et al., 2008). LepRb
in extrahypothalamic brain regions also plays significant roles
in the regulation of energy metabolism (Scott et al., 2009). For
example, LepRb in the ventral tegmental area (VTA) regulates
energy balance via mesolimbic dopaminergic system (Fulton
et al., 2006; Hommel et al., 2006), suggesting that leptin targets
multiple brain regions and cellular components. Consequently,
dysregulation of leptin signaling results in obesity, diabetes, and

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 765217

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-765217 October 27, 2021 Time: 15:39 # 4

Shinjyo and Kita Infection and Dementia

FIGURE 1 | Insulin and leptin in homeostatic interactions between the peripheral organs and central nervous system (CNS). Insulin and leptin enter the brain via
saturable transport through blood–brain barrier (BBB) and via fenestrated capillaries in the specific brain regions (e.g., hypothalamus). Acting on InsR and LepR,
these hormones exert diverse roles, including energy balance regulation through hypothalamic-pituitary-adrenal axis as well as the modulation of glial immunological
activities. InsR and LepR on neuronal cells are involved in cognition.

associated comorbidities (Myers et al., 2008; Wasim et al., 2016;
Fischer et al., 2020). Leptin resistance is the condition where
diminished leptin sensitivity occurs, resulting in a defect in satiety
detection despite high leptin levels, which has been linked to
obesity (Izquierdo et al., 2019). Leptin deficient (ob/ob) and LepR
deficient (db/db) mice, carrying mutations in leptin (ob) and
LepR (db) genes, respectively, exhibit excessive eating, develop
obesity and diabetes, and are widely used as animal models of
T2DM (Chen et al., 1996; Ninomiya et al., 2002; Gautron and
Elmquist, 2011). Growing evidence suggests the contribution
of leptin resistance to neurodegeneration in AD (Bonda et al.,
2014). Serum leptin levels showed negative correlation with
cognitive decline in the elderly (Holden et al., 2009). In the
brain autopsy, CSF leptin levels were significantly higher in
AD compared to control and mild cognitive impairment cases,
and CSF leptin concentration was correlated with pathological
neurofibrillary tangle burden (Bonda et al., 2014), suggesting that
leptin resistance develops during AD progression.

Leptin as an Adipokine
Adipokines are the adipose tissue-derived factors that affect
whole body homeostasis in autocrine and paracrine manners,
targeting a number of biological processes such as glucose
metabolism, lipid metabolism, insulin sensitivity, as well as
immune response (Fasshauer and Blüher, 2015). Adipokines

include leptin, adiponectin, vaspin, fibroblast growth factor 21
(FGF21), and many more, each exerting specific biological effects,
and mediate diverse actions throughout the body (Fasshauer
and Blüher, 2015). Originally identified as an adipocyte-derived
hormone that regulates neuroendocrine axis, leptin is one of the
most studied adipokines linking the immune system and energy
metabolism (Abella et al., 2017; Jiménez-Cortegana et al., 2021).

Indeed, leptin belongs to the family of long-chain helical
cytokines and has similarity to IL-6, IL-12, and granulocyte
colony-stimulating factor (G-CSF). LepR is a type I cytokine
receptor (La Cava and Matarese, 2004). Although neurons
are the most well-established cellular targets of leptin, LepR
is also expressed by non-neuronal cells throughout the body.
Importantly, most immune cells, including hematopoietic bone-
marrow precursors, monocytes/macrophages, and lymphocytes,
express LepR, suggesting that leptin directly modulate immune
responses and inflammation (La Cava and Matarese, 2004;
Procaccini et al., 2012, 2017). Adipose tissue and lymphoid
organs are often anatomically associated, and the contiguity
between adipocytes and lymphoid cells supports the functional
interactions (Matarese et al., 2002). For example, leptin
affects thymic function and growth/survival of bone-marrow
CD34+ precursors and CD4+ T cells (Lord et al., 1998;
Howard et al., 1999; Martín-Romero and Sánchez-Margalet,
2001; Papathanassoglou et al., 2006; Cohen et al., 2017), and
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modulates both innate and adaptive immunity through diverse
mechanisms (Maurya et al., 2018), such as enhancement of
neutrophil oxidative burst (Mancuso et al., 2002; Caldefie-
Chezet et al., 2003), phagocytosis by monocytes/macrophages
(Faggioni et al., 1999; Fantuzzi and Faggioni, 2000; Sánchez-
Margalet et al., 2003), and cytotoxic activity of natural killer
(NK) cells (Tian et al., 2002), as well as mobilization of
macrophages, lymphocytes (Abella et al., 2017), and neutrophils
(Souza-Almeida et al., 2018).

Leptin deficiency and resistance are associated with increased
susceptibility to infectious diseases, including bacterial (e.g.,
Mycobacterium tuberculosis and Streptococcus pneumonia),
viral [e.g., coronaviruses, influenza A virus, and human
immunodeficiency virus (HIV)], and parasitic (e.g., Trypanosoma
brucei, Trypanosoma cruzi, and Entamoeba histolytica) infections
(Amole et al., 1985; Sánchez-Pozo et al., 2003; Wieland et al.,
2005; Hsu et al., 2007; Nagajyothi et al., 2010; Tschöp et al.,
2010; Vedantama and Viswanathan, 2012; Zhang et al., 2013;
Radigan et al., 2014; Alti et al., 2018; Guglielmi et al., 2021),
while infection with certain pathogens, such as Plasmodium
spp. and Toxoplasma gondii, can cause dysregulated leptin
secretion, independently of adiposity (Pulido-Mendez et al., 2002;
Baltaci and Mogulkoc, 2012). The significant association between
obesity-induced inflammation (meta-inflammation) and the
severity of infectious disease has been highlighted by COVID-19
pandemic (Huizinga et al., 2020; Rebello et al., 2020). It is notable
that Streptococcus pneumoniae is a major cause of meningitis,
which potentially leads to persistent cognitive disability (Yau
et al., 2018), and M. tuberculosis can disseminate into the
brain and induce CNS tuberculosis, a cascade of inflammatory
responses that can potentially cause brain damage (Leonard,
2017; Davis et al., 2019). HIV-positive individuals frequently
suffer neurocognitive disorders (HIV-associated neurocognitive
disorders, HAND), and influenza A virus (H1N1) have been
associated with neurological manifestation in both young and
adult patients (Cárdenas et al., 2014; Wilking et al., 2014),
with some developing permanent sequelae (Cárdenas et al.,
2014), suggesting that defective leptin signaling could affect
brain functions through increased infection susceptibility. While
the mechanistic link between leptin resistance and infection
susceptibility is complex and multifactorial (Maurya et al., 2018;
Rebello et al., 2020), leptin’s actions through immune cells in
the periphery and CNS, and dysregulation thereof, likely play a
significant role.

The Roles for Leptin and Insulin in
Cellular Immunometabolism
Cellular energy metabolism is mainly driven by glycolysis,
tricarboxylic acid (TCA) cycle, fatty acid oxidation, and oxidative
phosphorylation (OXPHOS). Glutaminolysis, the conversion
of glutamine to glutamate, is activated to fuel TCA cycle
when glucose availability is limited. Glutaminolysis also plays
a crucial role in the brain, where glutamate functions as a
major neurotransmitter (Wang et al., 2017). In addition, in
the absence of glucose, such as insulin-induced hypoglycemia,
microglia utilize glutamine as an alternative fuel to support

their immunological functions (Bernier et al., 2020). Upon
stimulation by pathogen-derived molecules and endogenous
ligands, immune cells undergo metabolic reprogramming into
alternative modes of energy metabolism (O’Neill et al., 2016;
Gaber et al., 2017; Hotamisligil, 2017; Próchnicki and Latz,
2017), which can be largely classified into the pro-inflammatory
phenotypes dominated by glycolysis (similar to the Warburg
effect in cancer cells), and anti-inflammatory phenotypes
characterized by TCA cycle, fatty acid oxidation, and OXPHOS
(O’Neill et al., 2016). Such bioenergetic shifts determine
the properties of various immune cell populations, including
macrophages (Van den Bossche et al., 2017), neutrophils (Curi
et al., 2020), and T cells (O’Neill et al., 2016; Spadaro et al., 2017;
Balyan et al., 2020), where insulin/IGFs and leptin come into play.
For example, insulin regulates T cell’s metabolic reprogramming,
thereby shaping adaptive immunity (Tsai et al., 2018). InsR-
deficient T cells showed compromised responses to antigens
in vitro, and T cell-specific InsR knockout in mice led to reduced
antigen-specific immunity to influenza virus infection in vivo
(Tsai et al., 2018), suggesting that InsR signaling reinforces
metabolic reprogramming required for T cell activation. Such
immunometabolic changes of T cells are likely mediated by
mTOR, a key regulator of cellular homeostasis including protein
synthesis and autophagy (Rao et al., 2010; Chi, 2012; Martin
et al., 2021). mTOR also mediates insulin-induced alteration of
metabolic rates and immune responses in myeloid cells (Ratter
et al., 2021), and mTOR mediates age-associated microglial
priming and neurodegeneration (Keane et al., 2021), suggesting
that insulin-induced activation of mTOR pathway plays a role
in immunometabolic imbalance in the CNS. IGF-1R signaling is
essential for the anti-inflammatory polarization of macrophages
upon metabolic stress as well as helminth infection (Labandeira-
Garcia et al., 2017; Spadaro et al., 2017), and IGF-2 instructs
macrophage precursor cells to become anti-inflammatory
through metabolic pre-programming toward OXPHOS (Du
et al., 2019). Leptin also induces immunometabolic changes in
immune cells, including macrophages and T cells (Cohen et al.,
2017; Boutens et al., 2018; Monteiro et al., 2019). Activation
of leptin signaling pathways (JAK/STAT and IRS/PI3K) leads
to intracellular metabolic changes, such as increased glucose
uptake and glycolytic activity and reduced OXPHOS, associated
with pro-inflammatory phenotype of macrophages and T cells
(Cohen et al., 2017; Boutens et al., 2018; Monteiro et al.,
2019). It is conceivable that immunometabolic imbalance due to
dysregulated insulin/IGF and leptin signaling pathways underlie
immunodeficiency and infection susceptibility in nutritional
imbalance, including malnutrition and obesity.

Brain-Resident Immune Cells and
Immunometabolism
Microglia and Astrocytes
The brain is the most energy-demanding organ, consuming
glucose at a disproportionately high rate compared to the
rest of the body. Glucose metabolism in the brain is founded
on intricate interactions between the cellular components, i.e.,
neurons and glia. Neurons are highly aerobic and heavily
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FIGURE 2 | Cellular immunometabolism in the brain. Glia are the main cellular components of immunometabolism in the CNS. Microglial immunological phenotypes
are closely associated with their metabolic signature: glycolysis-dominant proinflammatory (M1) and OXPHOS-dominant anti-inflammatory (M2) phenotypes. In
addition to the role as resident innate immune cells, microglia also play homeostatic roles, such as eliminating unwanted synapses and debris. Astrocytes are the
major metabolic component of CNS, providing bioenergetic support for the neuronal networks. Microglia and astrocytes express InsR and LepR, through which their
metabolic signatures and immunological phenotypes are regulated. Crosstalk between microglia and astrocytes constitutes cellular immunometabolism in the CNS.
Infection can disrupt the immunometabolic homeostasis, which may lead to neuronal damages and cognitive impairment.

dependent on OXPHOS, while astrocytes and oligodendrocytes,
the major neuroglial populations, are predominantly glycolytic.
These cell-type specific metabolic profiles support the overall
power system in the CNS: lactate generation via glycolysis in
neuroglia fueling OXPHOS in neurons (Fünfschilling et al., 2012;
Jha and Morrison, 2018; Rosko et al., 2019) (Figure 2). To protect
such elaborate systems, the brain harbors resident innate immune
cells, namely resident macrophage populations: microglia,
perivascular macrophages, meningeal macrophages, and choroid
plexus macrophages. The former three, including microglia, have
embryonic origins and are maintained through local self-renewal
while choroid plexus macrophages are replenished via constant
supply of bone marrow-derived monocytes (Prinz et al., 2017).
These brain-resident macrophage populations play significant
roles in the brain physiology, as well as in defense against
infection (Ransohoff and Brown, 2012; Heneka et al., 2015; Herz
et al., 2017; Kierdorf and Prinz, 2017).

While aberrant activation of resident macrophages contributes
to CNS pathology via inflammation (De Strooper and Karran,
2016; Herz et al., 2017), evidence is growing that brain-
resident macrophages play homeostatic roles in the brain.
Residing in the brain parenchyma, microglia play pivotal roles
in the development and maintenance of neuronal networks. The
most notable roles of microglia include complement-dependent
synaptic pruning during CNS development (Schafer et al.,
2012) and synaptic reorganization throughout life (Herz et al.,
2017). In addition, microglia-derived neurotropic factors, such

as brain-derived neurotrophic factor (BDNF), promote learning-
dependent synaptic formation (Parkhurst et al., 2013) and protect
neurons from brain injuries (Madinier et al., 2009). Furthermore,
CNS macrophages are the major component of glymphatic
system, which plays a crucial role in the clearance of waste
products and toxic materials, including Aβ (Gordleeva et al.,
2020). In the context of AD pathogenesis, microglial activation
is a double-edged sword; it can facilitate the clearance of Aβ

and tau, while potentially inducing neuroinflammation leading
to neuronal damages associated with AD (Lue et al., 2010; Leyns
and Holtzman, 2017; Shippy and Ulland, 2020).

Meanwhile, growing evidence suggests that astrocytes are
part of the innate immunity in the brain (Sofroniew, 2020).
Responding to the changing microenvironment and diverse
stimuli (e.g., microbial infections, exposure to environmental
toxins, tumor formation, and neurodegenerative diseases),
astrocytes undergo morphological and functional changes
and influence the outcome of a number of brain disorders
(Drögemüller et al., 2008; Soung and Klein, 2018; Katsouri
et al., 2020; Sofroniew, 2020). In addition, crosstalk between
astrocytes and microglia in the hippocampus is responsible
for sensitivity to insults (Lana et al., 2020), pointing to the
importance of communication between astroglia and brain-
resident macrophages in cognitive dysfunctions (Liddelow et al.,
2017; Linnerbauer et al., 2020). Furthermore, astrocytes and
microglia participate in Aβ clearance and protection of synaptic
connectivity in AD models, suggesting highly context-dependent
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immunological roles of these glial cell populations against AD
development (Davis et al., 2021).

Glial Cells and Central Nervous System
Immunometabolism
Microglia and astrocytes, also called macroglia, are major
resident non-neuronal cells in the brain. As described above,
evidence suggests that the interplay between neurons and these
glial population plays pivotal roles in the brain, including
the hippocampus, in physiological and pathological conditions
(Lana et al., 2021). While neuronal cells express InsR/IGF-1R
at high levels and many studies have focused on the roles
of neuronal InsR/IGF-1R (Frölich et al., 1998), microglia and
astrocytes also express InsR and IGF-1R (Shaughness et al., 2020).
Insulin and IGFs support brain functions through regulating
astroglial glucose metabolism (Sonnewald et al., 1996; Fernandez
et al., 2018). InsR signaling modulates astroglial glucose uptake
and bioenergetics (Heni et al., 2011), and specific ablation of
astroglial InsR led to altered mood and cognition in mice
(González-García et al., 2021). In addition, insulin can modulate
inflammatory responses of astrocytes (Spielman et al., 2015),
suggesting the immunometabolic regulation of astrocytes by
insulin. IGF-1R can also modulate astroglial metabolic and
immunological signatures (Hernandez-Garzón et al., 2016), and
astroglial IGF-1R signaling mediates synaptic plasticity of cortical
inhibitory neurons (Noriega-Prieto et al., 2021). These data
suggest that impairment in InsR/IGF-1R signaling pathways may
disrupt the metabolic network between glia and neurons, as well
as immunological roles of astrocytes, eventually leading CNS
dysfunctions. Microglial InsR/IGF-1R also mediate the effects
of insulin. Low-dose insulin exerted pro-inflammatory effects
on microglial cells in vitro (Spielman et al., 2015), while it was
anti-inflammatory at a higher concentration (Brabazon et al.,
2018), suggesting the variable roles of microglial InsR/IGF-1R
signaling. In addition, microglia are the major source of IGF-
1 in the brain, and microglial IGF-1 was found to be increased
in AD model mice compared to wild-type (Myhre et al., 2019).
These data suggest that insulin and IGFs play crucial roles
in immunometabolism via the phenotypic regulation of glial
cells, potentially mediating the link between bioenergetics and
immunity in the brain.

Microglia (Tang et al., 2007; André et al., 2017; Fujita and
Yamashita, 2019), and astrocytes (Naranjo et al., 2020; Pratap and
Holsinger, 2020) express LepR. Leptin can enhance microglial
pro-inflammatory responses, including IL-6 production through
a mechanism involving insulin receptor substrate-1 (IRS-1),
PI3K, and Akt (Tang et al., 2007; André et al., 2017; Fujita and
Yamashita, 2019), IL-1β release via a caspase 1-independent
mechanism (Pinteaux et al., 2007), and lipopolysaccharide
(LPS)-induced pro-inflammatory responses (Lafrance et al.,
2010). On the other hand, in a spinal cord injury model,
leptin reduced microglial inflammatory responses, while
inducing neuroprotective phenotypes, Fernández-Martos
et al. (2012). In myeloid cell-specific LepR deficient mice,
hypothalamic microglia exhibited less ramified morphology
and impaired phagocytic capacity (Gao et al., 2018), suggesting
that leptin directly regulates homeostatic microglial phenotypes

(Davis et al., 2017). Considering multifaceted physiological roles
of microglia and potential harm (i.e., neuroinflammation) caused
by their aberrant activation (Colonna and Butovsky, 2017; Li and
Barres, 2018), it is conceivable that impaired leptin signaling in
microglia could lead to significant homeostatic imbalance in the
CNS. On the other hand, specific LepR depletion in astrocytes
(GFAP-LepR–/–) resulted in impaired neurotransmission in
the hippocampus, suggesting that leptin regulates hippocampal
plasticity via astroglial LepR, possibly by regulating the glucose
and glutamate up-take capacity (Naranjo et al., 2020).

Other Central Nervous System-Resident Immune
Cells
In addition to resident macrophages, the CNS harbors multiple
leukocyte populations, including dendritic cells (DCs) and T
lymphocytes. As a professional antigen-presenting cells, DCs play
an essential role in the regulation of adaptive immunity. Although
initially believed to be absent in the healthy brain parenchyma,
only appearing in response to aging, injury, and infections
(Fischer and Reichmann, 2001), studies have shown the presence
of DCs within the healthy steady-state brain (Bulloch et al., 2008;
Prodinger et al., 2011). Upon activation, brain DCs can migrate
out of the brain and induce T-cell homing into the CNS where
antigen-specific immune responses may take place (Karman et al.,
2004). Correlation between aging and the accumulation of DCs in
the CNS (Kaunzner et al., 2012) suggests potential involvement
of brain DCs in immunological changes and inflammation
associated with aging. In response to immunological stimuli, such
as viral and parasitic infections, T cells infiltrate into the brain,
where these cells play beneficial roles by eliminating pathogens.
In addition, studies have shown that long-lived memory T cells
are established after CNS infections (Wakim et al., 2012; Landrith
et al., 2017; Mockus et al., 2018), and these tissue-resident
memory CD8 cells can provide frontline defense against re-
infection (Netherby-Winslow et al., 2021). However, persistence
of these cells can also cause neuronal damages (Ai and Klein,
2020; Ghazanfari et al., 2021).

Although it is unknown how these CNS resident immune
cells respond to and regulated by leptin and insulin, InsR is
expressed on the surface of activated T cells (Helderman et al.,
1978). Acting through InsR, insulin enhances and maintains T
cell functions after immunological challenges (Helderman, 1984)
and potentially induces anti-inflammatory polarization in the
periphery (Viardot et al., 2007). These data suggest that insulin
may play an immunomodulatory role via actions on T cell
populations in the brain.

Glia as the Target and Reservoir of Infectious Agents
Growing evidence supports the infectious etiology of dementia,
and a number of causative agents have been proposed,
including viruses (e.g., Herpes simplex virus type 1 (HSV-
1), cytomegalovirus (CMV)] and bacteria (e.g., Chlamydophila
pneumoniae, spirochetes, Helicobacter pylori, Porphyromonas
gingivalis) (Harris and Harris, 2015; Sochocka et al., 2017;
Nazareth et al., 2021). Suggested mechanisms include persistent
inflammation caused by chronic infection, leading to a vicious
cycle of neuroinflammation and neurodegeneration, as well
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as BBB disruption, which may further enhance the entry of
infectious agents and proinflammatory mediators from the
periphery (Sochocka et al., 2017) (Figure 3).

Some infectious agents can enter and persistently inhabit
the brain, directly causing chronic activation of resident
immune cells (Sochocka et al., 2017). For example, Chlamydia
pneumoniae, obligate intracellular bacteria, are frequently found
in microglia and astrocytes in the brain of AD patients
(Balin et al., 1998; Nazareth et al., 2021). Microglia and
astrocytes are also the target of some viruses, such as CMV
(Cheeran et al., 2001) and HIV (Avalos et al., 2017; Valdebenito
et al., 2021). In addition, T. gondii, a neurotropic protozoan
parasite causing a lifelong CNS infection, has been implicated
in various neurological disorders, including dementia (Nayeri
Chegeni et al., 2019). T. gondii is an obligate intracellular
parasite, potentially infecting all nucleated cell types. Chronic
Toxoplasma infection is linked to microglial activation and
persistent neuroinflammation (Li et al., 2019), and CNS energy
metabolism is significantly skewed toward glycolysis upon
infection (Hargrave et al., 2019), suggesting that T. gondii
interferes with host immunometabolism in the brain. Indeed,
it has been shown that Toxoplasma infection may lead to
reduced IGF-1 signaling in the brain (El Saftawy et al., 2020).
On the other hand, In vitro, high glucose and up-regulation
of glycolysis in the host cell had a significant impact on
the life-stage conversion of T. gondii (i.e., from fast-growing
tachyzoite stage into dormant bradyzoite stage) (Weilhammer
et al., 2012), indicating that host cell metabolism could modulate
the virulence of intracellular pathogens. Intriguingly, T. gondii
infection can enhance Aβ clearance by increasing phagocytic
activity of recruited monocytes (Möhle et al., 2016), suggesting
that the ultimate outcome may depend on the extent and
the aggressiveness of the infection. Of note, SARS-CoV-2
is frequently found in astroglia and microglia, rather than
neurons, in the autopsy brain, indicating potential involvement
of glial activation in the neurological manifestation of COVID-
19 (Solomon, 2021). These data suggest that infectious agents
could produce immunometabolic imbalance in the CNS via
affecting microglial and astroglial phenotypes (Figure 2), which
may lead to chronic inflammation and an increased risk of
neurodegenerative disorders (Stephenson et al., 2018).

INSULIN AND LEPTIN MEDIATING THE
LINK BETWEEN INFECTION AND
NEURODEGENERATIVE DISORDERS

Infectious Etiology of Dementia
Recently, it has been shown that Aβ, a hallmark of AD, is an
antimicrobial peptide, part of innate immunity to protect the host
from various infectious agents (Soscia et al., 2010; Kumar et al.,
2016; Gosztyla et al., 2018), suggesting the necessity to revisit
the role of amyloid plaque formation in AD pathogenesis. Above
mentioned neurotropic viruses, such as HSV-1, HSV-2 and CMV,
certain bacterial species, including spirochetes and P. gingivalis,
fungi (e.g., Candida albicans), and neurotropic parasite (e.g.,

T. gondii), may cause disruption of brain functions via chronic
inflammation and immune dysregulation in the brain (Sochocka
et al., 2017; Shinjyo et al., 2021). The antimicrobial hypothesis for
AD proposes that Aβ generation and amyloid plaque formation
are not the major culprit in AD pathogenesis, but rather a defense
against such infectious agents (Moir et al., 2018; Iqbal et al., 2020;
Fulop et al., 2021).

While metabolic disorders and infection may independently
increase the risk of dementia, obesity and metabolic disorders
may indirectly increase the risk of infection-induced neurological
disorders, by enhanced susceptibility to infection and infection-
induced complications via immune dysregulation (Shah and
Hux, 2003; Muller et al., 2005; Knapp, 2013; Tamara and
Tahapary, 2020). Conversely, obesity can occur as a result
of infection (Pasarica and Dhurandhar, 2007; Dhurandhar,
2011), and infection-induced chronic low-grade inflammation
may lead to insulin resistance (Fernández-Real et al., 2006),
suggesting bi-directional interactions between infection and
metabolic disorders. Furthermore, several pathogens, such as
HSV, CMV, H. pylori, and P. gingivalis, are implicated in
both metabolic disorders and AD (Jeon et al., 2012; Harris
and Harris, 2015; Fleck-Derderian et al., 2017; Beydoun et al.,
2018; Lövheim et al., 2018; Mei et al., 2020; Baradaran et al.,
2021; Costa et al., 2021; Salem et al., 2021), supporting
the potential mechanistic link between infection, MetS, and
dementia etiology.

Metabolic Imbalance Causing Central
Nervous System Infection Susceptibility
Studies showing possible interactions between metabolic
imbalance and infection in dementia etiology, particularly
focusing on data highlighting the roles for insulin and leptin, are
listed in Table 1.

West Nile Virus
West Nile virus (WNV) is a single-stranded RNA virus,
genetically related to the Japanese encephalitis virus (JEV).
Transmitted by mosquitoes, WNV potentially causes life-
threatening encephalitis or meningitis, especially in the elderly
(Alli et al., 2021). In addition, it can cause persistent cognitive
impairments (Murray et al., 2014; Vittor et al., 2020). While
CNS infiltration of lymphocytes, including CD8+ T cells, is
essential in eliminating viruses, persistent inflammation can
cause synaptic loss and neuronal death, impairing cognitive
ability (Garber et al., 2019; Vittor et al., 2020). Of note, diabetes is
a frequent comorbidity of severe WNV diseases and considered
a risk factor for developing WNV encephalitis (Badawi et al.,
2018). In db/db obesity model, WNV infection-induced leukocyte
infiltration into the brain was significantly lower, suggesting that
obesity compromises protection against viral infection in the
brain (Kumar et al., 2014). In particular, infiltration of CD8+
T cells was significantly reduced in obese mice, which was
associated with higher viral load and enhanced inflammatory
responses in the brain (Kumar et al., 2014), suggesting a role of
leptin signaling in protecting the brain via leukocyte recruitment
(Rummel et al., 2010).
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FIGURE 3 | Immunometabolic imbalance in the CNS. Leptin and insulin resistance, associated with metabolic disease, can cause immune dysfunctions and
increased infection susceptibility. Metabolic imbalance also causes BBB disruption, leading to neuroinflammation and loss of CNS homeostasis, eventually resulting
in functional damages to the affected brain regions. While hypothalamic damages can magnify immunometabolic imbalance in the periphery (vicious cycle),
hippocampal and cortical damages can cause cognitive impairment. CNS infection-induced brain damages can further enhance the immunometabolic imbalance
and cognitive deficits, as part of the vicious cycle.

Porphyromonas gingivalis
Porphyromonas gingivalis is a periodontal disease-causing Gram-
negative bacteria found in the oral cavity. Evidence suggests a
strong association between P. gingivalis infection and sporadic
AD (Kanagasingam et al., 2020), and its presence has been
identified in the brain of AD patients (Dominy et al., 2019).
P. gingivalis infection can trigger inflammation both in the
periphery and CNS in affected individuals, leading to cognitive
decline (Dominy et al., 2019; Kanagasingam et al., 2020). In mice,
oral P. gingivalis infection led to brain colonization and AD-
like pathogenesis, including complement activation and Aβ1−42
formation (Poole et al., 2015; Dominy et al., 2019), suggesting
potential mechanistic links between periodontal disease and
AD. A systematic review of pre-clinical studies also found that
P. gingivalis infection induced inflammatory responses and tissue
degeneration in the brain, which were associated with cognitive
impairment (Costa et al., 2021).

Periodontitis is also associated with obesity (Suvan et al.,
2011; Keller et al., 2015; Nascimento et al., 2015; Khan et al.,
2018). High fat diet (HFD) significantly enhanced systemic
inflammation induced by periodontal pathogens in rodents
(Virto et al., 2018). P. gingivalis infection up-regulated the
expression of genes associated with insulin/IGF-1 signaling
and induced inflammatory responses in the brain of db/db
mice (Virto et al., 2018), suggesting that metabolic imbalance
due to dysregulated insulin and leptin signaling pathways
may exacerbate the outcome of periodontitis and associated
inflammation in the brain.

Human Immunodeficiency Virus
Despite the effectiveness of antiretroviral therapy in
saving the lives of many from acquired immunodeficiency
syndrome (AIDS), HIV-positive individuals frequently suffer
neurocognitive disorders (HAND) (Antinori et al., 2007; Foley
et al., 2011). While inflammation and brain atrophy due
to persistent viral presence in the CNS may partly provide
explanations (Pemberton and Brew, 2001; Woods et al., 2010;
Ances et al., 2012; Brew and Barnes, 2019), exact mechanisms
underlying HAND remain unclear.

Metabolic syndromes, including diabetes, is prevalent in
HIV-infected individuals (Calza et al., 2011; Paik and Kotler,
2011), and insulin resistance was associated with lower
cognitive scores in a HIV-1 cohort (Valcour et al., 2005,
2006), suggesting that HIV infection may increase the risk of
cognitive impairment via metabolic dysregulation. In fact, in
a murine model of HAND, intranasal insulin administration
restored hippocampal dendritic integrity and cognitive functions,
independently of HIV burden in the brain (Kim et al.,
2019). In primary human neurons and microglia in vitro,
insulin suppressed infection-induced inflammatory responses
and HIV-1 growth in microglia, and prevented infection-
induced neuronal death (Mamik et al., 2016). In addition,
in a feline HIV model in vivo, intranasal insulin enhanced
the preservation of cortical neurons and improved cognitive
performance (Mamik et al., 2016), suggesting that impaired
insulin signaling in the CNS may underlie cognitive impairment
in HIV positive individuals.

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 765217

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-765217 October 27, 2021 Time: 15:39 # 10

Shinjyo and Kita Infection and Dementia

TABLE 1 | The roles of insulin and leptin in central nervous system (CNS) infection.

Pathogen/host Study design and outcome
measures

Findings Proposed direction of
causality and/or mechanism

References

Borna disease virus (BDV)

BDV/mouse Animal model: virus-induced obesity
model using intracerebral injection of
BDV-1 in rats.
Outcome measures: neuropathology
including inflammatory infiltrates and
neurodegeneration in the
hypothalamus, hippocampal shrinkage,
and leptin resistance

BDV infection-induced obesity was associated
with:
1. hypothalamic inflammation.
2. Hippocampal involution and microglial
activation in the neocortex.
3. Preferential infection of glutamatergic sites,
while sparing GABAergic areas, causing
(anabolic appetite-stimulating) GABAergic
predominance and fat accumulation
4. Leptin resistance in the brain.

CNS infection
→ Hypothalamic inflammation,
neurotransmitter imbalance
(GABA predominance), obesity,
and leptin resistance.

Gosztonyi et al.,
2020

BDV/rat Animal model: BDV infection models
using two different strains: BDV-ob
(obesity-inducing) and BDV-bi (no
obesity-inducing effect).
Outcome measures: Mononuclear
infiltrates into the brain, astrogliosis,
and neuronal death.

1. BDV-ob infection and mononuclear infiltrates
were restricted to certain brain areas including
hypothalamus, hippocampus, and amygdala.
Particularly severe infiltration in the median
eminence of hypothalamus.
(BDV-ob infection was observed evenly
throughout the brain.)
2. Mononuclear infiltrates, astrogliosis, and
neuronal death in the hippocampus of BDV-ob
infected brain.

CNS infection
→Hypothalamic inflammation
and disruption of
neuroendocrine system
→Obesity

Herden et al., 2000

Canine distemper virus (CDV)

CDV/mouse Metabolic disturbance:
obesity induced by intracerebral CDV
infection.
Outcome measures:
Plasma insulin and lipid composition.

Hyperinsulinemia and triglyceride
accumulation in CDV-induced obesity mice

CDV infection
→ Hyperinsulinemia and
obesity

Bernard et al., 1988

CDV/mouse Animal model:
obesity induced by intracerebral
infection with CDV.
Outcome measures:
Leptin and LepR expression.

Functional LepR was specifically
downregulated in the hypothalamus of obese
mice.

CNS infection
→Leptin resistance in the
hypothalamus.
→ Obesity.

Bernard et al., 1999

Human immunodeficiency virus (HIV)

HIV/human Subjects: patients with HIV-1 infection
(n203, Cohort study).
Outcome measures: association
between HIV-associated dementia
(HAND) and diabetes.

HAND was significantly associated with
diabetes (odds ratio 5.43, 1.66–17.70), which
was not fully explained by age or coexisting
vascular risk factors.

Diabetes↔ HAND Valcour et al., 2005

HIV/mouse Animal model: HIV model in mice using
EcoHIV, with vs. without intranasal
insulin treatment (daily for 9 days).
Outcome measures: cognitive
functions, hippocampal neuronal
integrity, and the expression of genes
associated with brain functions.

1. Infected mice exhibited cognitive impairment.
2. Intranasal insulin restored cognitive
functions, hippocampal dendritic integrity, and
gene expressions.
3. The beneficial effect of intranasal insulin was
independent of HIV burden in the brain.

Infection
→Cognitive impairment.
Central insulin treatment
→ Restoration of brain
functions

Kim et al., 2019

HIV/human FIV/cat 1. Human ex vivo model: (1) brain
autopsy of patients with HIV/AIDS. (2)
HIV-1 infection in primary human
neurons and microglia, treated with
insulin.
Outcome measures: neuroinflammation
and neuronal death.
2. Animal in vivo HAND model: feline
retrovirus (FIV) intracranial infection in
cats. Insulin intranasal treatment for
6 weeks compared to PBS treatment.
Outcome measures: morphological
changes in the brain,
neuroinflammation, neuronal survival,
neurobehavioral performance.

1-1. Increased neuroinflammatory gene
expression in the brain of HIV/AIDS.
1-2. Insulin treatment suppressed HIV-1
growth and reduced infection-induced CSCL10
and IL-6 expression in HIV-infected microglia.
1-3. Insulin treatment prevented HIV-1
infection-induced neuronal death.
2-1. Insulin treatment enhanced the
preservation of cortical neurons, and improved
neurobehavioral performance in FIV-infected
cats.

Infection
→ Cognitive impairment.
Central insulin treatment
→ Restoration of brain
functions.

Mamik et al., 2016

(Continued)
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TABLE 1 | (Continued)

Pathogen/host Study design and outcome
measures

Findings Proposed direction of
causality and/or mechanism

References

Porphyromonas gingivalis

P. gingivalis/mouse Animal model:
db/db mouse infected with P. gingivalis
(W83, p.o.).
Outcome measures:
neuroinflammation in the hippocampus;
mRNA levels for genes associated with
insulin signaling.

1. Infection induced reactive microglia and
astrocytes.
2. Infection enhanced the expression of insulin
signaling pathway genes (e.g., InsR, Igf1, Irs,
and Gsk3β).
3. Pro-inflammatory genes were also
up-regulated.

Infection
→ Disruption of insulin
signaling pathway and
inflammation in the brain.

Bahar et al., 2021

Toxoplasma gondii

T. gondii/rat Animal model:
T. gondii infection model in rats.
Outcome measures:
plasma leptin levels

Plasma leptin levels increased in chronic
T. gondii infection.

CNS infection
→ Increase in plasma leptin
(metabolic imbalance)

Baltaci and
Mogulkoc, 2012

West Nile virus (WNV)

WNV/mouse Animal model:
db/db mouse infected with WNV.
Outcome measures:
leukocyte infiltration and
neuroinflammation/neuronal damage.

Infection-induced leukocyte infiltration into the
brain was reduced, while
neuroinflammation/neuronal death was
enhanced, in db/db mice.

LepR dysfunction
→ Increased CNS infection
susceptibility

Kumar et al., 2014

Relevant keywords, such as insulin and leptin, are highlighted in bold.

Central Nervous System Infections
Causing Metabolic Imbalance – Borna
Disease Virus and Canine Distemper
Virus
Borna disease virus (BDV) is a neurotropic RNA virus infecting
a broad host spectrum including humans. Borna disease
was originally observed as infectious diseases in domestic
animals in the nineteenth century. The confirmation of human
infection has begun since the 1980s, mainly in neuropsychiatric
patients (Hatalski et al., 1997; Schwemmle, 2001; Taieb et al.,
2001). BDV causes persistent infection in the brain and
neurobehavioral deficits associated with neuroinflammation.
In an experimental infection model in rodents, it takes a
biphasic course characterized by hyperactivity associated with
inflammatory lesions in the brain during the first acute
stage, followed by the development of varying symptoms,
including obesity, depending on viral strains and affected
brain regions (Narayan et al., 1983; Herden et al., 2000).
Intracerebral infection of rats with a BDV variant induced
obesity without neurological signs, which is correlated with
severe mononuclear cell infiltration into the hypothalamus,
suggesting that infection-induced neuroendocrine dysregulations
caused the development of obesity (Herden et al., 2000). It was
also suggested that BDV infection-induced neuroinflammation
and neurotransmitter imbalance underlie the dysfunction
of hypothalamus and leptin resistance, leading to obesity
(Gosztonyi et al., 2020).

Canine distemper virus (CDV) is an RNA virus closely
related to measles virus, infecting a wide range of host species
(Martinez-Gutierrez and Ruiz-Saenz, 2016). CDV causes canine
distemper, a severe systemic disease in dogs, presenting a
variety of symptoms including neurologic disorders (Martella
et al., 2008). In a virus CDV infection-induced obesity model
in mice using intracerebral infection, hyperinsulinemia and

alteration in leptin signaling were observed (Bernard et al.,
1988, 1999). In this model, infection caused hyperinsulinemia
and obesity, while CDV showed tropism for the hypothalamus.
Obesity developed in up to 30% of the surviving mice (Bernard
et al., 1988). In addition, functional LepR was specifically
down-regulated in the hypothalamus of infected obese mice
(Bernard et al., 1999), suggesting that CDV infection in the
brain induced leptin resistance in the hypothalamus, which led to
obesity, thereby increasing the risk of MetS-associated cognitive
impairment (Figure 3).

Peripheral Infection and Cognitive
Impairment – Potential Involvement of
Insulin and Glycemic Control
Peripheral infection-induced metabolic disturbance can lead to
CNS dysfunction (Table 2). Sepsis-associated encephalopathy
(SAE) is a brain disease secondary to peripheral infection
without overt CNS infection, occurring up to 50–70% of
sepsis cases (Chen Q. et al., 2014). After initial response to
eliminate pathogens, systemic inflammation and increased BBB
permeability occur, causing severe encephalopathy. While SAE is
partly reversible, it can lead to persistent neurocognitive deficits,
increasing the risk of dementia later in life (Widmann and
Heneka, 2014; Seidel et al., 2020). Disrupted glycemic control is
frequently encountered in sepsis patients (Hirasawa et al., 2009),
and it has been suggested that higher infection susceptibility in
patients with hyperglycemia is associated with disease severity
(Koh et al., 2012). Experimental sepsis in rodents induced
cognitive deficits accompanied by hyperglycemia (Huang et al.,
2020). BBB disruption, microglial activation, oxidative damage
and inflammation in the hippocampus, cortex and cerebrum
occurred in those animal models (Michels et al., 2015; Sonneville
et al., 2015; Huang et al., 2020), suggesting glial activation and
neuroinflammation underlie SAE-induced cognitive impairment.
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In addition, the experimental sepsis induced more severe
brain damages, including microglial activation and neuronal
death, in hyperglycemic mice compared to insulin-treated mice
(Sonneville et al., 2015), suggesting that poor glycemic control
renders CNS more vulnerable to neuroinflammation, and insulin
may protect the brain from sepsis-induced neuroinflammation
and neuronal damages (Hache et al., 2015).

In addition, acute inflammation in the periphery (LPS
challenge) induced metabolic changes in the CNS in rodents, and
the metabolic imbalance in the brain was associated impaired
cognition (Kealy et al., 2020). In addition, LPS-induced acute
peripheral inflammation produced hypoglycemia in blood and
CSF, and caused severe cognitive impairment selectively in
those mice with brain disease (chronic neurodegeneration model
induced by prion infection), which was mimicked by insulin
and alleviated by glucose administration (Kealy et al., 2020).
These data suggest that acute peripheral inflammation can
cause neuroinflammation and cognitive deficits via disruption of
glycemic control, whereas chronic neuroinflammation, including
infection-induced neurodegenerative disorders, renders the brain
more vulnerable to metabolic imbalance (Figure 3).

Other Pathogens Affecting Metabolic
Balance – Indirect Link to Cognition
‘Infectobesity’ is a concept that proposes the infectious etiology
of obesity (Pasarica and Dhurandhar, 2007; van Ginneken
et al., 2009). Considering the link between MetS and cognitive
decline (Mejido et al., 2020), infectobesity can be an indirect
cause of dementia. In addition to BDV and CDV, there
are several viruses potentially causing obesity (Dhurandhar,
2001; Atkinson, 2007). Rous-associated virus 7 (RAV-7), a
retrovirus causing avian leukosis, can induce stunting and
obesity in chickens, which is associated with hyperlipidemia
and increased insulin levels, as well as immune dysregulation
(Carter and Smith, 1984). Adenovirus 36 (Ad-36) is a human
adenovirus associated with obesity (Esposito et al., 2012). Ad-
36 infection in adipocytes reduced leptin production while
inducing proliferation, differentiation, and lipid accumulation
in adipocytes (Vangipuram et al., 2007; van Ginneken et al.,
2009), suggesting viral infection of fat cells can directly cause
adipogenesis and obesity. Reduced leptin release caused by
infection may also compromise CNS-mediated control of energy
homeostasis, further enhancing the risk of MetS-associated
cognitive impairment (Whitmer et al., 2005; Kivipelto et al., 2006;
Mejido et al., 2020).

Gut Microbiome
While the concept of microbial infection and pathogenicity has
dominated the mainstream of microbiology, only a small fraction
of microorganism are inherently pathogenic. In particular, the
gut is inhabited by microbiota, a collection of microorganisms
including bacteria, archaea, viruses, and fungi, consisting of at
least 1,000 distinct species. Commensal bacterial and fungal
species are involved in the regulation/dysregulation of energy
homeostasis and immune responses, through extracting and
metabolizing nutrients, regulating peripheral and central insulin
sensitivity (Schertzer and Lam, 2021), and contributing to

intestinal immune control via bidirectional communication with
immune cells (Khan et al., 2021). Disruption of the symbiotic
relationship between the host and microbiota leads to chronic
inflammation and insulin resistance (Patterson et al., 2016).
Obesity is associated with altered gut microbial composition in
mice and humans, and the trait is transmissible as colonization
of germ-free mice with microbiota from obese mice led to a
significant increase in body fat compared to colonization with
microbiota from lean mice (Turnbaugh et al., 2006), suggesting
that gut microbiome is part of the host metabolic system actively
regulating energy balance (Bäckhed et al., 2004). It has also
been suggested that microbiome plays a crucial role in the
communication between the gut and brain (microbiota-gut-brain
axis), which is essential for the regulation of energy homeostasis
(Romaní-Pérez et al., 2021; van Son et al., 2021) as well as
the development and functions of the nervous system (Chen
et al., 2021; Gwak and Chang, 2021). Consequently, altered
gut microbiota (dysbiosis) has been implicated in a number of
chronic inflammatory diseases, such as diabetes (Zawada et al.,
2020; Rodriguez and Delzenne, 2021) and neurodegenerative
disorders, including AD (Jiang et al., 2017; Chen et al., 2021;
Leblhuber et al., 2021; Romanenko et al., 2021). Furthermore,
these indigenous microbiota play a critical role in host defense
against infection, through stimulating mucosal immune defenses
(e.g., of antimicrobial peptides and IgA release) and limiting
resource availability/niche opportunity for invading microbes
(Libertucci and Young, 2019). Consequently, dysbiosis has
been associated with infection susceptibility (Lazar et al., 2018;
Libertucci and Young, 2019), which may further accelerate
immunometabolic imbalance.

Probiotics are living microorganisms that provide health
benefits by improving or restoring the composition of gut
microbiota. It has been shown that probiotics can reduce
leptin secretion and improve hypothalamic leptin and insulin
resistance in high fat diet-induced obesity models in rodents
(Al-muzafar and Amin, 2017; Bagarolli et al., 2017; Ji et al.,
2018; Cheng and Liu, 2020). Of note, probiotics may prevent
AD pathogenesis by improving glucose metabolism. Triple
transgenic AD model mice (3xTg-AD) exhibited significant
metabolic impairment [increased glycated hemoglobin [HbA1c]
in the serum, accumulation of advanced glycation end products
(AGE), and impaired glucose uptake due to decreased glucose
transporter levels in the brain], and all these parameters were
normalized by oral treatment with probiotics (lactic acid bacteria
and bifidobacteria) (Bonfili et al., 2020). These data suggest that
beneficial gut microbiome can reduce AD pathogenesis via the
restoration of metabolic balance (Figure 3).

DISCUSSION AND CONCLUSION

Metabolic diseases and infection are important risk factors
for dementia (Whitmer et al., 2005; Kivipelto et al., 2006;
Ashraf et al., 2019; Mejido et al., 2020). Metabolic dysregulation
enhances infection susceptibility via immune dysfunction,
whereas infection, both in the CNS and periphery, can disrupt
metabolic balance (Figure 3). In the CNS, infection-induced
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TABLE 2 | The roles of insulin in peripheral infection-induced CNS damage.

Pathogen or
disease/host

Study design and outcome
measures

Findings Proposed direction of causality
and/or mechanism

References

Sepsis/rat Animal model: surgically induced
polymicrobial sepsis model in rats.
Glucose treatment, insulin treatment
compared to control.
Outcome measures: Blood glucose,
behavioral deficits, brain activity (EEG),
BBB permeability, glial activation and
inflammation in the cerebrum.

1. Sepsis induced hyperglycemia.
2. Glucose treatment led to a decline in survival
rate, reduced brain activity, increased BBB
permeability, and enhanced microglial and
astroglial activation and inflammatory
responses in the cerebrum.
3. Glycemic control (insulin treatment) inhibited
inflammatory responses and restored BBB
integrity and brain activity to near normal.

Peripheral infection
→Hyperglycemia.
→Glial activation and
neuroinflammation.
→ Cognitive dysfunction.
Note: Insulin help restore brain
functions by preventing BBB
disruption and neuroinflammation.

Huang
et al., 2020

Sepsis/mouse Animal model: surgically induced
polymicrobial sepsis model in mice.
Mice with moderate hyperglycemia
were compared to control
(normoglycemia).
Outcome measures: neuronal
damages, glial activation, and cell death
in the hippocampus and frontal cortex.

(A) In hyperglycemic mice (compared to
normoglycemia mice), sepsis induced:
1. Higher neuronal damage in frontal cortex.
2. Microglial activation in frontal cortex and
hippocampus.
3. More apoptotic cells in frontal cortex.
(B) Insulin prevented the above damages

Hyperglycemia
→Enhanced infection
(sepsis)-induced brain damage.
Note: Insulin prevents
hyperglycemia-induced
susceptibility to sepsis-induced
brain damages

Sonneville
et al., 2015

Sepsis/mouse Animal model: surgically induced
polymicrobial sepsis model in mice.
Outcome measures: cognitive
functions, hippocampal synaptic
plasticity, and hippocampal insulin
signaling in post-septic mice compared
to control.

1. Post-septic mice exhibited cognitive
impairment, which was accompanied by
reduced synaptic plasticity and disrupted insulin
signaling in the hippocampus.
2. Treatment with a GLP-1 receptor agonist
(insulinotropic) or GSK3β inhibitor (insulin
signaling downstream) rescued cognition.

Peripheral infection
→Disruption of hippocampal
insulin signaling.
→ Impaired synaptic plasticity and
cognitive deficits.

Neves
et al., 2018

Sepsis/rat Animal model: sepsis model induced by
LPS (i.p.) in rats.
Insulin treatment: continuous
intravenous infusion for 6h after LPS
stimulation. Compared to control
(saline).
Outcome measures: Inflammatory
cytokines and oxidative stress in the
cortex, hippocampus, and
hypothalamus.

In the brain regions (cortex, hippocampus, and
hypothalamus):
1.Insulin alleviated sepsis-induced
inflammatory response (IL-1β, IL-6, and TNF-α).

2. Insulin suppressed oxidative damage while
restoring antioxidants (SOD and GSH).

Peripheral infection
→Inflammation and oxidative stress
in the brain.
Note: Insulin treatment lowered
sepsis-induced inflammation in the
brain

Chen Q.
et al., 2014

Systemic
inflammation/mouse

Animal model: LPS (i.p.) challenge in
chronic neurodegeneration model (ME7
prion infection) in mice. Treated with
glucose and insulin.
Outcome measures: blood glucose,
cognitive performance

LPS challenge induced hypoglycemia and
acute cognitive impairment in mice with brain
disease (ME7 prion infection), which was
mitigated by glucose and mimicked by insulin.

Peripheral infection
→Metabolic imbalance in the CNS.
→Cognitive impairment.
Note: Brain disease (prion disease)
makes the CNS more vulnerable to
peripheral inflammation

Kealy et al.,
2020

Relevant keywords, such as insulin and leptin, are highlighted in bold.

damage in the regions associated with metabolic control, such
as hypothalamus, can disrupt whole-body energy metabolism.
In the periphery, infection-induced immune reactions may
persist and disarray immunometabolism, resulting in chronic
inflammation and increased BBB permeability (Gustafson et al.,
2007; Kanoski et al., 2010; Montagne et al., 2015), which
can disrupt the CNS integrity, cognitive ability, and central
energy control (Montagne et al., 2015). In addition, infection-
induced dysregulation of glucose metabolism can lead to glial
activation and neuroinflammation (Huang et al., 2020; Bahar
et al., 2021). The vicious cycle may further advance the
systemic imbalance, while beneficial gut microbiome can restore
the balance of immunometabolism. Furthermore, although
evidence is still lacking, infectious agents can potentially
disrupt the immunometabolism in the brain by infecting
microglia and astrocytes. Thus, multidirectional interactions
between metabolic imbalance and infection at cellular and

systemic levels likely occur during the development of dementia
and neurodegenerative disorders. Combined and multifactorial
impacts due to these interactions can further exacerbate brain
dysfunction. As the key regulators of energy metabolism and
immune responses, insulin and leptin play significant roles
in those intricate interactions. It should also be noted that
other metabolic hormones and adipokines, such as glucagon
and adiponectin, similarly take part in immunometabolism,
and dysregulation of these molecules are also implicated in
neurodegenerative disorders, including AD (Talbot and Wang,
2014; Grieco et al., 2019; Kim et al., 2020). In addition, growing
evidence suggests the central actions of thyroid hormones
(THs) (Capelli et al., 2021); THs exert immunomodulatory
roles in the brain by inducing microglial phenotypic changes
(Mallat et al., 2002) and affecting the expression of chemokines
(Davis et al., 2016). Thyroid dysfunctions are possibly associated
with AD pathogenesis (Figueroa et al., 2021). Future research
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may unveil the interactions between infection and these
metabolic hormones.

While the potential therapeutic benefit of insulin in
treating dementia has been increasingly recognized (Frölich
et al., 1998; Kim et al., 2019; Kellar and Craft, 2020), it
is relatively unexplored how the modulation of metabolic
regulators, including insulin and leptin, can impact infection-
induced neurological disorders. Considering the diverse
roles for these molecules play in the immunometabolic
network, including the CNS immunometabolism (Larabee
et al., 2020), it is plausible that infection-induced damages
to the brain can be alleviated by modulating these signaling
pathways. On the other hand, it is largely unresolved how
glia - pathogen interactions can impact immunometabolism
in the CNS and what roles leptin and insulin may play
in the interactions. How these relationships may relate to
the etiology of dementia is also an unanswered question.
Further research is warranted to understand the mechanisms

underlying the interrelationship between infection, metabolic
disorders, and dementia.
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