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Caldesmon, an actin-binding protein, can inhibit myosin binding to actin and regulate
smooth muscle contraction and relaxation. However, caldesmon has recently attracted
attention due to its importance in cancer. The upregulation of caldesmon in several
solid cancer tissues has been reported. Caldesmon, as well as its two isoforms, is
considered as a biomarker for cancer and a potent suppressor of cancer cell invasion
by regulating podosome/invadopodium formation. Therefore, caldesmon may be a
promising therapeutic target for diseases such as cancer. Here, we review new studies
on the gene transcription, isoform structure, expression, and phosphorylation regulation
of caldesmon and discuss its clinical implications in cancer.
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INTRODUCTION

Caldesmon, an actin-binding protein of 150 kDa, was first isolated and purified from chicken
gizzard muscle in 1981 (Sobue et al., 1981). Caldesmon was named from a combination (desmos is a
Greek word that means binding) of calmodulin due to its ability to bind with calmodulin at different
Ca2+ concentrations (Sobue et al., 1981). Caldesmon has two different molecular weight isoforms:
high-molecular-weight caldesmon (H-caldesmon, 120–150 kDa) found in smooth muscle and
low-molecular-weight caldesmon (L-caldesmon, 70–80 kDa) found in non-muscle cells (Hayashi
et al., 1991; Mayanagi and Sobue, 2011). By cloning and sequencing the cDNA, H-caldesmon and
L-caldesmon were determined to be derived by alternative splicing from a single gene (Hayashi
et al., 1991). H-caldesmon and L-caldesmon conserve completely identical sequences in the N- and
C-terminal domains, and the central repeating sequence of H-caldesmon is deleted in L-caldesmon
(Hayashi et al., 1991). Although H-caldesmon and L-caldesmon have similar functional domains,
their tissue and cell distributions are distinct (Ball and Kovala, 1988; Sobue et al., 1988).

Caldesmon has recently attracted attention due to its roles in cancer (Mayanagi and Sobue,
2011). Caldesmon can be a biomarker for the pathological diagnosis of tumors and prediction
of the chemoradiotherapy response. H-caldesmon is considered a specific marker for tumor with
smooth muscle differentiation (Watanabe et al., 1999; Nucci et al., 2001). L-caldesmon-positive
human colon cancer cell lines are more resistant to chemoradiotherapy than L-caldesmon-negative
cell lines (Kim et al., 2012). Second, caldesmon can also suppress cancer metastasis by regulating
the podosome/invadopodium formation in transformed cancer cells, and the suppressive effect has
been verified in a variety of cancers (Yoshio et al., 2007). In prostate cancer cells, a twofold increase
in migratory capability and a threefold increase in invasion capability were found by scratch and
invasion assays after the knockdown of L-caldesmon expression (Dierks et al., 2015). In addition,
caldesmon can reversibly and cooperatively inhibit myosin binding actin to regulate smooth muscle
contraction (Sobue et al., 1982; Ngai and Walsh, 1984). The phosphorylation of caldesmon plays
an important role in the regulation of smooth muscle contraction (Huang et al., 2003). Therefore,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 February 2021 | Volume 9 | Article 634759

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.634759
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.634759
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.634759&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/articles/10.3389/fcell.2021.634759/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-634759 February 14, 2021 Time: 16:53 # 2

Yao et al. Caldesmon Features and Clinical Implications

this review analyzes the gene transcription, isoform structure,
expression, and phosphorylation regulation of caldesmon
and its clinical implications in cancer and gastrointestinal
motility disorders.

CALDESMON GENE, STRUCTURE, AND
EXPRESSION

The caldesmon gene is located on human chromosome
7q33 (Ensembl ID of the human caldesmon gene is
ENSG00000122786) (Yates et al., 2020; Figure 1A). The
caldesmon gene has 17 exons, and its isoforms (H-caldesmon
and L-caldesmon) are mainly generated by the selective splicing
of exons 7 and 8 (Lin et al., 2009). Exon 7 of selective translation
encodes the central repeating sequence, and this central repeating
sequence is specific to H-caldesmon (Transcripts 201,793 aa)
(Mayanagi and Sobue, 2011). The caldesmon gene has 24
transcripts (201–224). Transcript 201 can generate H-caldesmon,
while transcripts 202–206 and 222 can generate L-caldesmon.
According to the different promoters, L-caldesmon can be further
classified as a Fibro-type (WI-38) or HeLa-type (Hayashi et al.,
1991). Two different distinct promoters are used in different cell
types or tissues to generate L-caldesmon isoforms with distinct
N-terminal domains (Yano et al., 1994). Alternative splicing
of the caldesmon gene determines the different structures and
expression of isoforms (Hayashi et al., 1991).

From a structural perspective, caldesmon contains amino (N)-
and carboxy (C)-terminal domains and a middle region (Wang,
2001). The N-terminal part can bind myosin and calmodulin
(Lin et al., 2009); the C-terminal part contains actin-binding
sites, calmodulin sites, and tropomyosin-binding sites (Wang,
2001; Mayanagi and Sobue, 2011), and the middle region in
H-caldesmon (208–462 aa in humans) contains a long α-helix
region and separates the N-terminal domain from the C-terminal
domain (Wang, 2008; Lin et al., 2009; Figure 1B). The middle
region is only present in H-caldesmon and is missing in
L-caldesmon due to alternative splicing (Hayashi et al., 1991;
Mayanagi and Sobue, 2011). However, the function of the middle
region remains unknown. The middle region in H-caldesmon
is presumed to fit the specific spatial arrangement of myosin
molecules in the smooth muscle thick filament by evolutionary
optimization (Wang, 2008).

The tissue and cell distributions of H-caldesmon and
L-caldesmon are different. H-caldesmon is expressed in vascular
and visceral smooth muscle and not in myofibroblasts,
rhabdomyosarcoma, or tumors derived from myofibroblasts
(Rush et al., 2001; Fisher et al., 2003). Therefore, H-caldesmon,
as a smooth muscle-specific biomarker, can distinguish tumors
originating from smooth muscle. In contrast, L-caldesmon is
widely distributed in non-muscle tissues, such as the brain,
spleen, and lymph nodes (Köhler, 2010, 2011). However, the
expression changes of the two isoforms are closely correlated
with the phenotypic modulation of smooth muscle cells
(Ueki et al., 1987; Yokouchi et al., 2006). The expression of
caldesmon can switch from L-caldesmon to H-caldesmon during
smooth muscle cell differentiation and the expression turns from

H-caldesmon to L-caldesmon during the dedifferentiation of
smooth muscle cells (Ueki et al., 1987). Therefore, the different
expressional distributions determine the different functions of
H-caldesmon and L-caldesmon.

POST-TRANSLATIONAL REGULATION
OF CALDESMON

Caldesmon is an actin, myosin, tropomyosin, and
Ca2+/calmodulin binding protein capable of regulating
actomyosin contraction, actin filament dynamics, and
cytoskeleton remodeling in smooth muscle and non-muscle cells
(Lin et al., 2009). Posttranslational modification of caldesmon
can modify its function and has been studied extensively in vitro
(Foster et al., 2004; Ng et al., 2018). The association of caldesmon
with tropomyosin-containing actin filaments effectively inhibits
actomyosin ATPase activity and in vitro actin filament motility
(Lin et al., 2009).

The mechanism of reversing the putative inhibition by
caldesmon of smooth muscle contraction by caldesmon depends
on Ca2+/calmodulin and phosphorylation (Foster et al., 2004;
Mayanagi and Sobue, 2011; Figure 1C). Depending on the
concentration of Ca2+, caldesmon shows an alternative binding
ability to either calmodulin or actin filaments in vitro (Sobue
et al., 1981). Caldesmon can bind to actin filaments at less
than 1 µM free Ca2+, whereas at a higher concentration of
Ca2+ (>1 µM), calmodulin activated by Ca2+ forms a complex
with caldesmon, and this complex is freed from actin filaments
(Sobue et al., 1981).

An alternative mechanism calls for phosphorylation of
caldesmon in view of the fact that smooth muscles can
contract at low Ca2+ concentrations (Foster et al., 2004). The
phosphorylation of caldesmon is closely related to smooth
muscle contraction (Hai and Gu, 2006). In an in vitro motility
assay, unphosphorylated myosin exerted a mechanical load
to shorten filaments, suggesting that tethering thick and thin
filaments by caldesmon might help maintain some basal force
(Horiuchi and Chacko, 1995). Phosphorylation (such as Thr-
627, Ser-631, Ser-635, and Ser-642) can attenuate the inhibitory
activity of caldesmon and indirectly increase inhibitory activity
by weakening binding to Ca2+-calmodulin (Hamden et al.,
2010). The interplay between phosphorylation-dependent and
Ca2+/calmodulin-dependent mechanisms may be complex. The
effect of Ca2+/calmodulin on the activity of caldesmon is
dependent on the combination of phosphorylated residues
(Hamden et al., 2010).

As a downstream effector of multiple signaling pathways,
the inhibition of caldesmon can be reversed by phosphorylation
during smooth muscle contraction through multiple kinases,
such as ERK and PAK (Hai and Gu, 2006; Lin et al., 2009).
Extracellular regulated kinase (ERK)-mediated phosphorylation
of caldesmon has been shown to reverse the ability of
the actin-binding fragment of caldesmon to stabilize actin
filaments (Hai and Gu, 2006). Phosphorylation of caldesmon
at ERK sites (Ser-759 and S789) is accompanied by a
conformational change that partially dissociates caldesmon from
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FIGURE 1 | (A) Human Caldesmon Gene and Transcripts. Caldesmon (CALD1) structure showing exon (numbered boxes) and intron (line) regions and sizes. The
caldesmon gene has 24 transcripts (201–224). Transcripts 201–206 and 222 are shown with the translated regions, and the blue regions are the coding sequences
of the transcripts. The other transcripts cannot generate caldesmon due to the incomplete 3′/5′ coding sequence, retained introns, processed transcripts, or
nonsense-mediated decay. Caldesmon isoforms are mainly generated by the selective spliced exons (exons 7 and 8) and distinct promoters (starting with exon 4 or
5). Exon 4 encodes the N-terminal domains of Fibro L-caldesmon and exon 5 encodes HeLa L-caldesmon. Exon 8 encodes 26 amino acids, including an extension
of the α-helical motif. Transcripts 202–206 and 222 can generate Fibro-type and HeLa-type L-caldesmon, transcript 205 (Fibro L-caldesmonI, 563aa), transcript 202
and transcript 204 (Fibro L-caldesmonII, 538aa), transcript 222 and transcript 203 (HeLa L-caldesmonI (557–558aa), and transcript 206 (HeLa L-caldesmonII
532aa). Of these, transcript 222 has not been reported previously and was identified by a database search of Ensembl. (B) The domain structures of H-caldesmon
and L-caldesmon. Human caldesmon contains an N-terminal domain, a C-terminal domain, and a middle part (repeating domain). The difference between
L-caldesmon and H-caldesmon is the deletion of the repeating domain due to alternative splicing. The N-terminal domain contains a myosin-binding site and
interacts weakly with actin and calmodulin. The C-terminal part contains an actin-binding site, calmodulin-binding site, tropomyosin-binding site, and
phosphorylation sites. Human H-caldesmon (793 aa) is regulated by phosphorylation at Tyr-27, Ser-73, Thr-83, Ser-456, Thr-638, Ser-643, Tyr-682, Ser-714,
Ser-724, Thr-730, Ser-744, Thr-753, Ser-759, Ser-766, Ser-783, and Ser-789 through multiple kinases (Cdc2,PAK,PKC, CamKII, CKII, and v-erbB tyrosine kinase).
(C) The role of caldesmon in smooth-muscle contraction. The mechanism of reversing the putative inhibition by caldesmon of smooth muscle contraction by
caldesmon depends on Ca2+/calmodulin and phosphorylation. Caldesmon can bind to actin filaments at less than 1 µM free Ca2+, whereas at a higher
concentration of Ca2+ (>1 µM), calmodulin activated by Ca2+ forms a complex with caldesmon, and this complex is freed from actin filaments. Phosphorylation of
caldesmon can attenuate its inhibitory activity, allowing actomyosin interaction and thereby resulting in muscle contraction.

actin (Kordowska et al., 2006). Such a structural change in
H-caldesmon exposes the myosin-binding sites on the actin
surface and allows actomyosin interactions in smooth muscles
(Kordowska et al., 2006). In the case of non-muscle cells, the

change in L-caldesmon weakens the stability of the actin filament
and facilitates its disassembly (Kordowska et al., 2006). ERK-
mediated phosphorylation of caldesmon has been shown to
reverse the inhibitory effect of caldesmon on Arp2/3-mediated
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actin polymerization (Hai and Gu, 2006). The Arp2/3 complex is
essential for podosome assembly, which are cytoskeletal adhesion
structures that are important for cell invasion and extracellular
matrix remodeling (Eves et al., 2006; Morita et al., 2007).
Caldesmon is thought to be phosphorylated by ERK during
the formation of podosomes (Hai and Gu, 2006). P21-activated
kinase (PAK) is emerging as a major regulator of caldesmon-
mediated actin dynamics in vivo (Foster et al., 2000; Lin et al.,
2009). Reversible caldesmon phosphorylation at PAK-responsive
sites is required for normal cell migration and cytokinesis (Lin
et al., 2009). PAK phosphorylation sites (Ser-657 and Ser-687)
are located close to calmodulin-binding sites (Mayanagi and
Sobue, 2011). When caldesmon is phosphorylated by PAK, the
ability to bind calmodulin is reduced by approximately 10-fold,
and the affinity for actin-tropomyosin and the inhibition of
actin-activated myosin ATPase activity are significantly reduced
(Mayanagi and Sobue, 2011).

In addition, as one type of novel discovered posttranslational
modification, lysine succinylation has been proven to be essential
for regulating molecular functions, such as cellular metabolism,
in physiological and pathophysiological states (Hirschey and
Zhao, 2015). Caldesmon (lysine succinylation position 569)
was downregulated in gastric cancer by LC-MS/MS analysis
and validated by Western blotting (Song et al., 2017). Lysine
succinylation position 569 of caldesmon may function as a
potential biomarker in gastric cancer (Song et al., 2017).

CLINICAL APPLICATIONS OF
CALDESMON IN CANCER

Alterations of caldesmon expression level in different types
of cancers in the clinic have been investigated (summarized

in the Table 1). The upregulated expression of caldesmon is
generally observed in different cancers. However, downregulated
expression of caldesmon is found in the blood vessels of
malignant melanomas compared with both benign melanocytic
tumors and normal tissues.

Caldesmon as a Biomarker for Cancer
Caldesmon is important for the diagnosis of myoma (Rizzello
et al., 2017). H-caldesmon is a highly sensitive and specific
marker that shows smooth muscle differentiation and helps
identify uterine mesenchymal tumors (Nucci et al., 2001;
Saraydaroglu et al., 2008). It is reported that H-caldesmon
is negative in normal endometrial stroma (0%, 0 case/25
cases) and endometrial stromal neoplasms (0%, 0 case/24
cases) (Nucci et al., 2001). In contrast, desmin is expressed in
endometria (32%, 8 cases/25 cases) and endometrial stromal
neoplasms (50%, 12 cases/24 cases) (Nucci et al., 2001). SMA
(smooth muscle actin), the other markers of smooth muscle
cells, is positive in endometrial stromal sarcoma (44%, 7
cases/16 cases) (Chu et al., 2001). Therefore, H-caldesmon can
effectively distinguish endometrial stromal tumors from uterine
smooth tumors. However, H-caldesmon is found expressed
in some non-myogenic tumors, such as gastrointestinal
stromal tumors, malignant pleural mesothelioma, and ovarian
adult granulosa cell tumors (Comin et al., 2006; Yu and Qu,
2018; Yu et al., 2019). Therefore, H-caldesmon expression
may not be conclusive evidence of myogenic differentiation,
and the diagnosis should be referred together with other
markers (Yu et al., 2019). In addition, L-caldesmon is also
considered a potential serum marker for glioma (Zheng
et al., 2005). Taken together, the different isoforms of
caldesmon can be promising biomarkers for diagnosis and
prognosis prediction.

TABLE 1 | Different expression trends of caldesmon isoforms in cancer.

Cancer types Patient
numbers

Isoforms Tissue analyzed Expression in
cancer

Methods Validations Referencess

Glioma 87 L-caldesmon Serum ↑ ELISA IP, WB Zheng et al., 2005

Colorectal cancer 38 L-caldesmon Primary colon cancer and
liver metastasis tissues

↑ 2-DE, MS WB Kim et al., 2012

Gastrointestinal stromal tumor 105 H-caldesmon Whole tissue ↑ IHC / Yu et al., 2019

Ovarian adult granulosa cell tumor 63 H-caldesmon Whole tissue ↑ IHC / Yu and Qu, 2018

Epithelioid pleural mesothelioma 140 H-caldesmon Whole tissue ↑ IHC / Comin et al., 2006

Oral cavity squamous cell
carcinoma

155 L-caldesmon Primary and metastatic
tumor cells

↑ RT-PCR, WB IHC Chang et al., 2013

Oral cavity squamous cell
carcinoma

292 L-caldesmon Serum ↑ ELISA / Chang et al., 2013

Bladder cancer 18 L-caldesmon Whole tissue ↑ AbM IHC Lee et al., 2015

Melanoma 79 H-caldesmon The blood vessels within
melanoma lesions

↓ IHC / Koganehira et al.,
2003

Leiomyosarcoma 29 H-caldesmon Whole tissue ↑ IHC / Watanabe et al.,
2000

Fibroxanthoma 13 H-caldesmon Whole tissue ↑ IHC / Martinez-Ciarpaglini
et al., 2018

ELISA, Enzyme-linked immunosorbent assay; IP, Immunoprecipitation; WB, Western blot; 2-DE, Two-dimensional electrophoresis; MS, Mass spectrometry; IHC,
Immunohistochemistry; RT-PCR, Real-time quantitative polymerase chain reaction; AbM, Antibody microarray profiling. ↑, upregulated expression; ↓, downregulated
expression; /, no validation.
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Mechanism of Caldesmon in Cancer
Metastasis
Caldesmon Suppresses Podosome Formation
L-caldesmon is an integral part of the actin-rich core of the
podosome (Eves et al., 2006). Caldesmon can suppress cell
invasion by regulating the podosome/invadopodium formation
of transformed and cancer cells (Yoshio et al., 2007). The
overexpression of L-caldesmon suppresses podosome formation,
whereas siRNA knockdown of L-caldesmon facilitates its
formation (Eves et al., 2006; Gu et al., 2007). By analyzing
the relationship between the expression levels of caldesmon
and podosome/invadopodium formation in rat fibroblast (3Y1),
RSV-transformed 3Y1 (BY1), human colon carcinoma (HCA7),
murine melanoma (B16F10), human breast cancer (MB435s),
and rat breast cancer (MTC) cell lines, podosome/invadopodium
formation increases in transformed and cancer cells when
caldesmon is expressed at low levels, and higher levels
of caldesmon inhibit their formation (Yoshio et al., 2007).
Caldesmon’s decreased expression has been identified in gastric
cancer lymph node metastatic cells using a proteomics approach
and loss of caldesmon expression could be associated with
gastric cancer metastasis progression (Hou et al., 2013). In
prostate cancer cells, a twofold increase in migratory capability
and a threefold increase in invasion capability were found by
scratch and Matrigel invasion assays after the knockdown of
L-caldesmon expression (Dierks et al., 2015).

Caldesmon and Vessel Invasion
The presence of vessel invasion is considered indicative of
a poor prognosis in many malignant tumors (Ekinci et al.,
2018). Vascular smooth muscles contain both H-caldesmon
(>75%) and L-caldesmon (<25%) (Glukhova et al., 1988).
H-caldesmon appears to be the most specific and sensitive
marker for vessel wall detection (Ekinci et al., 2018). The
structural integrity and functional maturity of blood vessels
are determined by the presence of normally functioning
endothelial cells as well as the involvement of interendothelial
junctions and mural cells (smooth muscle cells or pericytes)
(Zheng et al., 2009). The knockdown of caldesmon caused
serious defects in vasculogenesis and angiogenesis in zebrafish
morphants, and the vascular integrity and blood circulation
were concomitantly impaired (Zheng et al., 2009). The level
of H-caldesmon expression in the melanoma blood vessels was
inversely correlated with the frequency of metastasis (Koganehira
et al., 2003). The endothelial cells of blood vessels in melanoma
lesions appeared to be fragile compared to the normal tissues
under electron microscopy (Koganehira et al., 2003). The fragility
of blood vessels may increase metastasis.

Caldesmon Decreases
Chemoradiotherapy Susceptibility
L-caldesmon can decrease the chemoradiotherapy susceptibility
of cancer cells. L-caldesmon-positive human colon cancer cell
lines were more resistant to 5-fluorouracil (5-FU) and radiation
treatment than L-caldesmon-negative cell lines (Kim et al., 2012).
The expression level of L-caldesmon is therefore helpful in

predicting the response of upper gastrointestinal carcinomas to
neoadjuvant chemotherapy (Kim et al., 2012).

CALDESMON AND THE CONTRACTION
OF INTESTINAL SMOOTH MUSCLE

In addition, caldesmon can reversibly and cooperatively inhibit
myosin binding actin to regulate smooth muscle contraction
(Sobue et al., 1982; Ngai and Walsh, 1984). Smooth muscle
dysmotility is the main pathogenic driver of gastrointestinal
motility disorders. H-caldesmon can affect the contraction
and relaxation of intestinal smooth muscle by binding to
Ca2+/calmodulin and via phosphorylation (Wang, 2001).
Structurally, H-caldesmon tethers myosin filaments to actin
filaments to maintain the orderly arrangement of the thick
and thin filaments. Functionally, H-caldesmon, as a “molecular
brake,” sterically blocks actomyosin interactions in the resting
state to modulate the development of contractile force (Guo et al.,
2013). The expression of caldesmon was to be downregulated
in rat models of chronic gastrointestinal motility hypofunction
(Wang et al., 2001). Disruption of the normal inhibitory
function of H-caldesmon could enhance intestinal peristalsis
in both wild-type zebrafish larvae and mutant larvae that
lack enteric nerves (Abrams et al., 2012). The detection of
H-caldesmon phosphorylation sites by phosphorylation site-
specific antibodies in colonic smooth muscle showed that
H-caldesmon phosphorylation occurred on Ser-789 (Hedges
et al., 2000). Ser-789 is phosphorylated by activated ERK,
resulting in the C-terminal portion of H-caldesmon dissociating
from actin and releasing the inhibition of ATPase activity,
resulting in muscle contraction (Somara and Bitar, 2008).
Expression levels of caldesmon in the gastric antrum were
negatively correlated to gastric motility in rats treated by
electroacupuncture (Yang et al., 2014). Expression of caldesmon
was upregulated when gastrointestinal motility was inhibited.
On the contrary, expression of caldesmon was downregulated
when gastrointestinal motility was promoted (Yang et al.,
2014). At present, the evidence correlating caldesmon and
gastrointestinal motility disorders is not sufficient. However,
whether caldesmon can regulate the contraction and relaxation
of intestinal smooth muscle to treat gastrointestinal motility
disorders needs further study.

CONCLUSION

The biochemical features of caldesmon and its clinical
implications in cancer have been reviewed in this article.
The following main points are noted: (1) Alternative splicing
of the caldesmon gene determines its different structures
and the expression of its isoforms. (2) H-caldesmon and
L-caldesmon conserve the completely identical sequences in
the N- and C-terminal domains, and the central repeating
sequence of H-caldesmon is deleted in L-caldesmon. (3)
Although H-caldesmon and L-caldesmon have similar functional
domains, their tissue and cell distributions are different.
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(4) Caldesmon can be a biomarker for the pathological diagnosis
of tumors and the prediction of chemoradiotherapy response.
(5) Caldesmon can suppress tumor metastasis by regulating
podosome/invadopodium formation and vasculogenesis. Future
research aspects may include (1) clinical data about the
relationship between expression of the two isoforms in cancers
(primary and metastasis) and patient survival; (2) the effects
of the expression of upregulated or downregulated isoform in
cancers (primary and metastasis) on cell motility and invasive
characteristics; and (3) evidence-based clinical studies or animal
models on the role of caldesmon in gastrointestinal motility
disorders are critically required.
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