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Abstract: The gravity model is often used in predicting the spread of influenza. We use 

the data of influenza A (H1N1) to check the model’s performance and validation, in order 

to determine the scope of its application. In this article, we proposed to model the pattern 

of global spread of the virus via a few important socio-economic indicators. We applied 

the epidemic gravity model for modelling the virus spread globally through the estimation 

of parameters of a generalized linear model. We compiled the daily confirmed cases of 

influenza A (H1N1) in each country as reported to the WHO and each state in the USA, 

and established the model to describe the relationship between the confirmed cases and 

socio-economic factors such as population size, per capita gross domestic production 

(GDP), and the distance between the countries/states and the country where the first 

confirmed case was reported (i.e., Mexico). The covariates we selected for the model were 

all statistically significantly associated with the global spread of influenza A (H1N1). 

However, within the USA, the distance and GDP were not significantly associated with the 

number of confirmed cases. The combination of the gravity model and generalized linear 
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model provided a quick assessment of pandemic spread globally. The gravity model is 

valid if the spread period is long enough for estimating the model parameters. Meanwhile, 

the distance between donor and recipient communities has a good gradient. Besides, the 

spread should be at the early stage if a single source is taking into account. 

Keywords: gravity model; influenza A (H1N1); generalized linear model; infectious 

disease; viral spread 

 

1. Introduction 

Influenza A (H1N1) is one of the most common virus strains causing influenza pandemics in 

humans [1]. A new strain of influenza A (H1N1) was identified in North America in the spring of 

2009. The virus was found easily circulating among humans [2]. Given its highly infectious nature [3] 

and rapid transmission (made possible via modern transportation [4]), this new influenza had caused a 

great concern globally [1,5,6]. The World Health Organization (WHO) raised its influenza pandemic 

threat level to six (the highest level) on 11 June 2009 [2]. On 10 August 2010, WHO announced that 

the H1N1 influenza virus has moved into the post-pandemic period [7]. 

During the spread of influenza, spatial waves of infection have been observed between large distant 

populations [8]. Spatial models of infectious diseases are being used with increasing frequency to 

characterize these large-scale patterns and to evaluate the impact of interventions [9]. Many models 

have been developed to study the spatial spread of influenza (e.g., [8,10-13]). Viboud et al. [8] 

proposed a gravity model based on transportation theory, which defines the effects of distance 

(negative effect) and the size (positive effect) of the ‘donor’ and recipient communities. Compared 

with multigroup models at the scale of households and workplaces/schools [9], the gravity model is 

designed for larger spatial scales such as community, city, or country. Following Viboud et al.’s study, 

there is a increasing number of applications of the gravity model in the field of infectious disease 

spread (e.g., [14,15]) The objective of our analysis is to evaluate at what spatial scale and temporal 

phase that the gravity model is valid with acceptable model performance. We used influenza A (H1N1) 

2009 pandemic as a case study. 

2. Methods 

2.1. The Gravity Model 

The gravity model considers the effect of distance and the size of the donor and recipient 

communities [8,16]: 
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where Cij is the disease spread intensity between community i (of size Pi) and j (of size Pj), θ, τ1, τ2 and 

ρ are parameters to be estimated, and Dij is the distance between the two communities. In the model, 

the population sizes are positively related to the intensity and the distance is inversely related. In 
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addition to population size and distance, the economic development level would be another important 

factor in facilitating physical interaction among people. Therefore, we modified gravity model (1) to 

the following form: 
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where Ni is the cases of the influenza A (H1N1) in country i (of population Pi), Di is the distance of 

country i from Mexico, where the first confirmed case was from, Gi is the GDP or GSP per capita. θ, 

w1, w2 and w3 are model parameters all. Although it is not clear where the origin of the influenza A 

(H1N1) 2009 was precisely, we used the place where the first case was identified (Mexico) as the 

surrogate for the model. Furthermore, we also applied (2) to establish a statistical relationship between 

the number of days since 23 April 2009 to the first identified case and these social economic factors. 

2.2. Model Parameter Estimation and Performance Comparison 

We used a generalized linear model (GLM) [17] to estimate model parameters. After  

log-transformation of the three explanatory variables, the GLM has the form: 

)ln()ln()ln()( 3210 iiii DPGNg ββββ +++=  (3)  

where the dependent variable Ni was the number of cumulative confirmed cases in a country i or state 

i; the independent variables were naturally log-transformed population size P, GDP per capita G, and 

distance to Mexico D. The number of daily cumulative confirmed cases in all the countries is assumed 

to be from a negative binomial distribution for both the globe (e.g., for the cases of each country on 6 

July 2009, mean = 454.5 < standard deviation = 2644.4) and USA (e.g., for the cases of each state on 

24 July 2009, mean = 856.7 < standard deviation = 1295.7). Consequently, we determined the 

dependant variable (daily confirmed cumulative cases) to follow a negative binomial distribution in the 

GLM. The link function g() is the natural logarithm. The intercept and coefficients of the GLM, β0, β1, 

β2, and β3, are identical to parameters ln(θ), w1, w2, and w3 respectively in the gravity model (2).  

We compared the performance of the gravity model at two spatial scales: global spread and 

national spread in the USA, assuming a single source of the virus, i.e., Mexico. We also compared the 

model performance at a series of temporal phases: from the beginning on April 24 to July (the last days 

the data were released for global spread and national spread of Influenza A (H1N1)). The model 

performance was checked using the P values of each independent variable and the deviance of the 

generalized linear models, calculated using statistical software R (package “MASS”, function 

“glm.nb”) [18].  

2.3. Data Sources  

We downloaded per capita GDP and population size data of each country for 2009 from the 

International Monetary Fund (IMF) World Economic Outlook Databases updated on 22 April 2009 

(http://www.imf.org/external/ns/cs.aspx?id=28). Per capita real GDP of each state in the U.S. for 2009 

was downloaded from the website of the U.S. Department of Commerce (http://www.bea.gov/ 

regional/gsp/) updated on 24 November 2010. The population data for each state in the U.S. was 

obtained from the U.S. Census Bureau (http://www.census.gov/popest/states/NST-ann-est.html). In 
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total, we have records of 168 countries and 50 states (and District of Columbia) in the U.S. The 

confirmed cumulative cases of influenza A (H1N1) for each country were obtained from the WHO 

(http://www.who.int/en/) for the period from 23April to 6 July 2009 (the last day that WHO published 

confirmed cases of influenza A (H1N1) for each country). The confirmed cumulative human cases for 

each state of the USA were obtained from the Center for Disease Control and Prevention (CDC) 

website (http://www.cdc.gov/h1n1flu/) for the period from 24 April to 24 July 2009 (the last day that 

CDC published confirmed cases of influenza A (H1N1) for each state). We used the package 

“argosfilter” in the software R [18] to calculate the distances between centroids of countries and 

Mexico, and centroids between states (USA) and Mexico, where the function “distance” was used and 

the distances were calculated using spherical trigonometry. The centroids of countries and states were 

calculated using ArcGIS 9.2 [19]. 

3. Results 

The GLM demonstrated that, in log-scale, the number of daily cumulative confirmed cases of 

influenza A (H1N1) was statistically significantly associated (positively) with population size, except 

for 28 April  and per capita GDP, except for 23–25 April, and negatively associated with distance 

from Mexico, except for 28 April–1 May (Figure 1A). The daily cumulative confirmed cases of 

influenza A (H1N1) in each state of the USA was positively associated with population size, except for 

23 and 24 April, positively associated with per capita GSP for a few days only, and not significantly 

associated with distance to Mexico, except for 25 April (Figure 1B). With additional data [the cases of 

influenza A (H1N1) accumulated every day], the goodness of fit increased as indicated by the 

deviance/(degree of freedom) approaching unity (Figure 1). Since May 2009 the patterns were clear 

that population, GDP, and distance had significant associations with cases of influenza A (H1N1) 

globally, while only population had a significant association with the influenza cases in each state of 

the USA (Figure 1). In conclusion, the epidemic gravity model was appropriate for estimating the 

global spread of influenza A (H1N1), but not for the national spread in the USA. 

Using the regressed coefficients of GLM for the day of 6 July 2009, we obtained the gravity model 

to estimate cases N of influenza A (H1N1) in each country i (omitting the error terms): 
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The value and standard errors of the model parameters for variables ln(intercept), ln(G), ln(P), and 

ln(D) are 3.44 ± 1.496, 1.547 ± 0.111, 1.575 ± 0.113, and 2.108 ± 0.233, respectively. Our estimation 

of the number of confirmed influenza A (H1N1) cases in each country (Figure 2B) was highly 

correlated with observed cases as of July 6, 2009 (Figure 2A), with the Spearman correlation 

coefficient being 0.92, p < 0.0001. Regarding to the data (accumulated confirmed cases of each 

country on 6 July 2009), 84.9% of its sum of square variance is explained by a simple linear regression 

(regression of observed cases with the estimated cases) using the ordinary least square method. The 

estimated values are more homogeneous among countries than the observed cases reported by  

WHO (Figure 2B). 
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Figure 1. The p-values for testing the significance of the covariates (log-transformed 

population size (P), GDP or GSP (G) and distance to each region from Mexico (D)) in the 

GLM with the daily confirmed cumulative human cases of A (H1N1) virus (N) as the 

dependent variable from April 24 to 6 July 2009 (24 July for the USA). A. Global spread 

model. B. National spread model for the United States of America. The generalized linear 

model is: 
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Figure 2. The observed (A) and estimated (B) values of cumulative confirmed cases of 

influenza A (H1N1) in each region by the end of the data (6 July 2009) used in this study. 

The estimated values N were based on our modified gravity model incorporating three 

social and economic factors in Equation (4). 

 

 

For each country, we compared the number of predicted cases from the model and reported 

confirmed cases based on the data on 6 July 2009 (Figure 3A). Since the number of cases had very 

high variance, we conducted log transformation to shrink the scale. Using a simple linear regression, 

we found the predicted values captured 66.78% variance (indicated by R square value) of the number 

of confirmed cases. 

When we used the number of days since 23 April 2009 to the first confirmed infection for each 

country as the dependent variable in equation (2), we obtained the following: 
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We compared the number of predicted days and observed days (Figure 3B). There were 66 

countries or regions that had no confirmed cases were treated as missing (Figure 3B). Note that, the 

coefficients in model (3) had opposite signs in this application (5) as compared to the first application 

(4). That is, statistically, a higher economic activity (Gi) and larger population size (Pi) would lead to a 

shorter waiting time to the first confirmed case and longer distance (Di) would lead to a longer  

waiting time.  
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Figure 3. (A) The comparison of the number of estimated cases and confirmed cases of 

influenza A H1N1 for all countries (168 countries in this analysis) on the basis of the data 

on 6 July 2009. (B) The comparison of the number of days (estimated vs. observed) of first 

infection after 23 April 2009 for all the countries (within the 168 countries, 66 countries 

had missing values). 
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4. Discussion 

Our results showed that the spread of influenza A (H1N1) among countries was significantly 

associated to covariates of a set of important socio-economic indicators. The results were consistent 

with previous findings that air and surface transportation played a significant role in the spread of 

influenza under both epidemiological survey (e.g., [3]), mathematical epidemic models [4] and 

theoretical simulations (e.g., [11,13,20]). 

We modified the epidemic gravity model with the assumption of a surrogate origin (i.e., Mexico) 

where the first identified case was from. Although the precise location of the origin of the influenza A 

(H1N1) 2009 remains unknown, it was believed the virus emerged in Mexico in February 2009 [21]. 

From May to July 2009, many cases of influenza A (H1N1) in many countries were imported from 

USA. Because Mexico and USA is close to each other, so that it did not affect the values of distance 

(the variable used in GLM) very much. 

The significance of each covariate (i.e., population, GDP, and distance) and model performance 

varied in the first few days because of small sample sizes (only a few countries and states had 

identified cases in the early stage of intensive surveillance), and the model became more stable later 

(Figure 1). Our modified gravity model was not appropriate in modelling the national dynamic of the 

confirmed cases in the USA (both distance and GSP were not statistically significant). The reasons are: 

(1) the distances from different states in USA to Mexico were not well ranked, and distance itself is 

not a good indicator of human mobility here; (2) the spread of the influenza in USA during May and 

June were not at the early stage of the spread, the inter-states and intra-states spread ware dominant. 

As a result, we conclude that the gravity model can be applied for influenza spread on the following 

conditions: (1) the spread period is long enough for estimating the model parameters; (2). the distance 

between donor and recipient communities has a good gradient; (3) the spread of influenza is at the 

early stage of if a single source is taking into account. 

The daily cumulative confirmed cases of influenza A (H1N1) was used in our analysis, but these 

cases may not represent the true prevalence of the infection in each region. The number of cases 

identified was clearly related to the effort and the resources devoted by the health agencies in a country. 

For a new infectious disease, it is very likely that many cases probably existed already in many parts of 

the world before the identification of the first case. This is especially true due to the modern 

transportation systems and possibly many symptomatic and asymptomatic carriers have travelled to 

many places outside the borders already before the identification of the cases. Following the extensive 

media reports right after the first identification of the new subtype of the virus, many countries had 

increased the screening on border-crossing population without paying much attention to their domestic 

populations at the beginning of the new influenza A (H1N1) 2009 surveillance. The effort of screening 

only symptomatic cases or their close contacts of confirmed cases entering the country would result 

finding the cases from a small and biased sample [22].  

The three covariates in the model were selected the availability and their important roles in global 

social and economic interactions. GDP represents the economic activity of the people (for international 

travel), population size represents the susceptible, and distance represents a possible barrier to 

infection. Our GLM model provides a quantitative method to estimating the parameters in the model. 

The model we used was heuristic through conceptual reasoning, but the method of finding the 
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parameters in the model was based on statistical estimation. Mathematical and statistical modelling is 

an important aspect in addressing public health challenges [23]. Our modelling utilizes social and 

economic factors and would provide quick insights in understanding the global viral transmission and 

heath authorities’ efforts.  
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