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Chronic rhinosinusitis (CRS) is one of the most common causes of inflammation of

the olfactory system, warranting investigation of the link between chronic inflammation

and the loss of olfactory function. Type 2 inflammation is closely related to the

clinical features and disease mechanisms of olfactory dysfunction secondary to CRS.

Patients with eosinophilic CRS, aspirin-exacerbated respiratory disease, and central

compartment atopic disease report increased olfactory dysfunction. Increased levels of

interleukin-(IL-)2, IL-5, IL-6, IL-10, and IL-13 in the mucus from the olfactory slit have

been reported to be associated with reduced olfactory test scores. The influence of

several cytokines and signaling transduction pathways, including tumor necrosis factor-

α, nuclear factor-κB, and c-Jun N-terminal kinases, on olfactory signal processing and

neurogenesis has been demonstrated. Corticosteroids are the mainstay treatment for

olfactory dysfunction secondary to CRS. Successful olfaction recovery was recently

demonstrated in clinical trials of biotherapeutics, including omalizumab and dupilumab,

although the treatment effect may diminish gradually after stopping the use of the

medications. Future studies are required to relate the complex mechanisms underlying

chronic inflammation in CRS to dysfunction of the olfactory system.
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INTRODUCTION

Olfactory dysfunction is one of the cardinal symptoms of chronic rhinosinusitis (CRS)
(1–3). CRS has been reported to affect 13.4% of the American (4) and 10.9% of the European (5)
general population, and up to 80% of CRS patients experience reduction or loss of smell (6),
which significantly impedes quality of life (7–9). By phenotyping, CRS can be classified as
chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal
polyps (CRSsNP). Olfactory dysfunction is observed more frequently in patients with CRSwNP
(6, 10, 11), and olfactionmay temporarily improve after surgery but deteriorate later (12). Olfactory
dysfunction has been regarded as the consequence of obstructed air flow to the olfactory slit
but increasing evidence has shown that inflammation in the olfactory neuroepithelium leads to
dysfunction of the transduction of olfactory signals.
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The olfactory neuroepithelium is located at the main air
flow pathway in the nasal cavity and it continues with the
respiratory epithelium. This spatial location makes the olfactory
neuroepithelium easily susceptible to various inhaled substances,
including viruses, molds, allergens, pollutants, and toxic
materials. These epithelial stimulants may lead to recruitment
of inflammatory cells, increased proinflammatory factors, and
changes in ciliary function and secretion from goblet cells. Oral
corticosteroids are the main treatment of olfactory dysfunction
in patients with CRS. An initial rapid response may be followed
by gradual diminishment of the treatment effect. Patients with
olfactory dysfunction may eventually become corticosteroid-
dependent, and long-term corticosteroid treatment may be
accompanied by increasing side effects.

The critical issue is to understand the disease mechanism and
find a suitable long-term treatment for olfactory dysfunction.
In this review article, we present the clinical features related to
olfactory dysfunction, investigate the influence of inflammation
on neurogenesis and olfactory processing, and analyze the
medical management of olfactory dysfunction secondary to
chronic rhinosinusitis.

OLFACTORY DYSFUNCTION AND
CHRONIC RHINOSINUSITIS ENDOTYPES

The emerging view is that CRS is a heterogenous syndrome
resulting from a dysfunctional interaction between various
environmental factors and the host immune system (3). Extensive
scientific evidence has been accumulated that justifies the
differentiation of CRS by recognition of more detailed endotypes,
i.e., definition by the presence of particular patterns of immune
cells and/or biomarkers (3). The clinical dichotomization of
CRSwNP vs. CRSsNP was initially indicated by a predominance
of TH1 cells in CRSsNP patients and TH2 cells and eosinophils
in CRSwNP patients (13, 14). However, this definition has proven
difficult to apply in East Asia where a neutrophilic type of
inflammation with involvement of other T-cell subsets, such as
TH1 and TH17 cells, has been observed aside from eosinophil-
dominant inflammation (15–18). The EPOS2020 categorizes
primary CRS by endotype dominance into type 2 or non-type
2 (3). Type 2 inflammation is characterized by the presence of
increased levels of cytokines interleukin-(IL-)4, IL-5, and IL-
13, as well as activation and recruitment of eosinophils and
mast cells.

The risk factors for olfactory dysfunction differed between
CRS endotypes, and CRS patients with type 2 inflammation
endotype reported loss or reduction of olfaction more frequently
than those with non-type 2 CRS (19). Esoinophilic CRS is
the most dominant type of type 2 CRS, and the association
of esosinophilic CRS and olfactory dysfunction has been well-
recognized (18, 20). The most apparent difference in computed
tomography (CT) images of eosinophilic CRS compared to non-
eosinophilic CRS images is an ethmoid sinus predominance
pattern (21). CT images of the early stage of eosinophilic
CRS show opacification of the posterior ethmoid sinus and
the olfactory cleft (18). Mori et al. (19) identified olfactory

cleft polyps, current smoking, serum IgE ≥400 IU/ml, ethmoid
opacification, and asthma as independent risk factors for
olfactory dysfunction in eosinophilic CRS. In non-eosinophilic
CRS, only ethmoid opacification and olfactory cleft polyps were
identified as independent risk factors for olfactory dysfunction.
Aspirin-exacerbated respiratory disease (AERD) has also been
identified as one of the independent factors of olfactory
dysfunction in CRS patients (22, 23).

Central compartment atopic disease (CCAD) is another CRS
subtypes of type 2 CRS. DelGaudio et al. (24) were the first
to define CCAD as one of the subtypes of CRS in 2017 and
associate CCAD with inhalant allergen sensitization. CCAD
is characterized as an inflammation and edematous change
of the central sinonasal compartment, including the middle
turbinate, superior turbinate, and posteriosuperior nasal septum
(24, 25). CCAD presents as a polypoid edema of the middle
turbinate on endoscopic examination. A centrally limited sinus
inflammation entity on the CT scan has been defined as
having normal sinus mucosal or mucosal thickening involving
only the floor or medial wall of the ethmoid sinuses (25,
26). We previously found that central-compartment-type CRS
represented an eosinophilic/type 2 inflammation endotype, with
elevated expression of IL-5 and IL-13 in the sinonasal tissues, and
patients with this central-compartment subtype of CRS hadmore
smell problems as major symptoms than patients with other CRS
subtypes (27).

MECHANISMS OF OLFACTORY
DYSFUNCTION SECONDARY TO CRS

With advances in immunologic and histopathological studies,
the rationale of olfactory dysfunction secondary to CRS is
regarded not only as diminished access of odorant molecules
to the neuroepithelium (conduction disorder) but also direct
effects on the olfactory mucosa (sensory disorder) (10). Olfactory
dysfunction due to chronic rhinosinusitis is relatively reversible
compared to other causes. As short-term anti-inflammatory
treatment can generally render rapid regain of olfactory function,
the mechanism of olfactory dysfunction may be reversible after
elimination of inflammation. The schematic diagram of the
olfactory mucosa and the current evidence of the impact of
inflammation on the peripheral olfactory system were illustrated
in the Figure 1, and the possible mechanisms and molecules
involved in the development of olfactory dysfunction were
summarized in the Table 1.

Change in Histopathologic Images of the
Olfactory Epithelium in CRS
The respiratory mucosa is pseudostratified and ciliated with
goblet cells, a highly vascular lamina propria and a thick
basement membrane, whereas the olfactory mucosa is
characterized by irregular cilia, a cellular lamina propria,
Bowman’s glands, and a thin basement membrane. The
olfactory neuroepithelium contains three major cell types of
the peripheral sensory system, including olfactory sensory
neurons (OSNs), sustentacular cells, and basal cells (Figure 1).
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FIGURE 1 | The illustration of the structure of the olfactory mucosa and the known inflammatory mechanisms leading to olfactory dysfunction. IL, interleukin; CCL,

C-C motif chemokine ligand; TNF, tumor necrosis factor.

Sustentacular cells enwrap olfactory sensory neurons to maintain
the integrity and function of OSNs. Basal cells are located
along the basement membrane and capable of replenishing
OSNs to maintain ongoing neurogenesis during adult life.
OSNs and their progenitors are particularly susceptible to
local immune mediators in the setting of rhinosinusitis
(40, 41).

As we observed compromised integrity of the epithelium and

infiltrating immune cells in the respiratory epithelium in cases

of CRS, similar histopathology in the olfactory neuroepithelium

may account for the dysfunction of the peripheral olfactory

system (28). Yee et al. (29) studied the neuropathology of

the olfactory mucosa in CRS and found a significant decrease

in the percentage of normal olfactory neuroepithelium, a
reduction of mature OSNs in CRS biopsy specimens, and a
variety of epithelial changes, including intermixing of goblet
cells, metaplasia to squamous-like cells, and erosion of the
olfactory neuroepithelium. With continued inflammation in
the olfactory mucosa, an abnormal epithelium and infiltration
of lymphocytes, macrophages, and eosinophils in the lamina
propria were identified (28). Eosinophilic infiltration may play a
significant role in cases of olfactory disability, and CRS patients,
especially those with nasal polyps, presenting with anosmia
had the greatest amount of epithelial erosion and the highest
density of eosinophil infiltrations (30). Moreover, increased
eosinophils in the superior turbinate have been correlated with
the degree of olfactory dysfunction and olfactory decline after
sinus surgery (31, 32). Inflammation of the epithelium can
affect olfactory neurogenesis, differentiation, and maturation
of OSNs.

The Role of Cytokines and Immunologic
Biomarkers
Researchers have worked on identifying types of cytokines or
biomarkers in the olfactory neuroepithelium, and increased levels
of several cytokines in the olfactory cleft have been correlated
with olfactory dysfunction in CRS patients.

In a study by Henkin et al., (42) increased levels of IL-6
in nasal mucus, saliva, and plasma were reported in hyposmia
patients due to various causes. IL-6 is a proinflammatory
cytokine, and inflammation was proposed to play a role in the
biochemical pathological process underlying hyposmia. Schlosser
et al. (33) corrected the mucus defect in olfactory clefts by
inserting a polyurethane sponge into each olfactory cleft under
endoscopic guidance and correlated the threshold discrimination
identification score of the Sniffin’ Sticks test with the levels
of secreted mediators. IL-5 levels were found to be inversely
correlated with olfactory test scores in both CRSwNP and
CRSsNP. In another study by Wu et al., mucus was collected
from both the olfactory cleft and middle meatus of CRSwNP,
CRSsNP, and control subjects to compare the expression of
cytokines/chemokines and olfactory function. Elevated levels
of IL-2, IL-5, IL-6, IL-10, and IL-13 were associated with
reduced test scores for smell identification, especially in CRSwNP
patients. A strength of the aforementioned study was that
cytokine levels in the middle meatus were demonstrated to
be compatible with those in the olfactory cleft, which has
considerable clinical significance because secretion in the middle
meatus is more applicable in clinical settings than secretion in the
olfactory cleft (34). The same research group applied a hierarchal
cluster analysis and machine learning algorithms to data from
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TABLE 1 | Summary of the studies on the mechanisms of olfactory dysfunction in CRS.

Study Methodology Measure of olfaction Main outcomes

Histopathological study

Kern (28) Olfactory epithelium UPSIT Infiltration of lymphocytes, macrophages, and

eosinophils in the lamina propria of the olfactory

epithelium in patients of CRS with olfactory dysfunction

Yee et al. (29) Olfactory epithelium Olfactory threshold task of

phenylethyl alcohol

Increased erosion of the olfactory epithelium and

eosinophils infiltrating the olfactory epithelium in patients

of CRS with olfactory dysfunction

Hauser et al. (30) Ethmoid mucosa 40-item smell identification test An association of tissue eosinophilia in the ethmoid

sinuses and olfactory dysfunction

Lavin et al. (31) Superior turbinate UPSIT An association of tissue eosinophilia in the superior

turbinate and olfactory dysfunction

Wu et at. (32) Superior turbinate Sniffin’ Sticks An association of tissue eosinophilia in the superior

turbinate and post-operative olfactory dysfunction

Association study

Schlosser et al. (33) Measurement of biomarkers in collected

olfactory cleft mucus

Sniffin’ Sticks A correlation of IL-5 levels and olfactory dysfunction in

both CRSwNP and CRSsNP

Wu et al. (34) Measurement of biomarkers in collected

olfactory and middle meatal mucus

Smell Identification Test Elevated levels of IL-2, IL-5, IL-6, IL-10, and IL-13

associated with reduced test scores for smell

identification, especially in CRSwNP patients

Morse et al. (22) Measurement of biomarkers in collected

middle meatal mucus

Smell Identification Test An association between IL-2, IL-5 and IL-13, and

olfaction

Soler et al. (35) Measurement of biomarkers in collected

olfactory cleft mucus

Questionnaire of Olfactory

Dysfunction

An association and elevations in TNF-α, IL-6, CCL2,

CCL3, and CCL20 with lowest olfactory scores in

clusters dominated by type 2 biomarkers

Animal study

Turner et al. (36) Unilateral olfactory bulbectomy on IOI micea IHC study of the olfactory epithelium Suppression of olfactory regeneration by TNF-α

Sultan et al. (37) Systemic corticosteroid treatment on IOI

micea
IHC study of the olfactory epithelium;

EOG

TNF-α causing physiologic dysfunction of olfactory

neurons; prednisolone preventing neuronal loss and

olfactory dysfunction by diminishing the subepithelial

inflammation

Pozharskaya et al. (38) TNFR2 knockout in IOI background micea IHC study of the olfactory epithelium;

EOG

TNFR2 mediating neuronal proliferation and death but

not TNF-α-induced dysfunction of mature olfactory

sensory neurons

Sousa Garcia et al. (39) TNFR1 knockout in IOIa background and

allergen-induced inflammation mice

IHC study of the olfactory epithelium;

EOG

TNFR1 regulating TNF-α-induced inflammation and

reduces allergen-induced inflammation

a Inducible olfactory inflammation mice is a genetic model of olfactory inflammation by temporally controlled induction of TNF-α by olfactory sustentabular cells.

CRS, chronic rhinosinusitis; UPSIT, University of Pennsylvania Smell Identification Test; IL, interleukin; CRSwNP, chronic rhinosinusitis with nasal polyps; CRSsNP, chronic rhinosinusitis

without nasal polyps; TNF, tumor necrosis factor; CCL, C-C motif chemokine ligand; IOI, inducible olfactory inflammation; IHC, immunohistochemical; EOG, electro-olfactogram.

110 patients to characterize inflammatory patterns and correlated
these patterns with smell identification scores. Olfaction was
found to be strongly correlated with levels of cytokines IL-
5 and IL-13, whereas the mucus IL-12 levels, CT score, and
AERD were independently associated with olfactory dysfunction
in CRS patients (22). In another cluster analysis of olfactory cleft
mucus biomarkers, including cytokines, chemokines, and growth
factors, Soler et al. demonstrated that clusters dominated by IL-4,
IL-5, IL-13, and IgE were associated with lowest olfactory scores
and elevations in tumor necrosis factor-α (TNF-α), IL-6, and
chemokines that promote monocyte/macrophage recruitment
(C-C motif chemokine ligand [CCL]2, CCL3, CCL20) (35).

The Effect of Inflammation on
Neurogenesis
Several cytokines have neurotoxic potential, and the effects of
cytokines may mediate OSN function and regeneration. OSNs
of abnormal morphologies and potential functional defects
have been reported in CRS patients, along with increased

numbers of immature neurons (43). However, the effect of
cellular and molecular pathways and underlying mechanisms of
CRS-associated inflammation on the function of the peripheral
olfactory system remain incompletely understood. This gap in
our knowledge may be due to the limited accessibility of human
olfactory tissue and the difficulty of maintaining human olfactory
neurons in standard cell cultures. Holbrook et al. (44) performed
an autopsy study and used immunohistochemical analysis to
compare the molecular phenotypes of olfactory epithelial cells
between rodents and humans. The immunostaining patterns
showed there were two distinct basal cell types, horizontal and
globose, in both humans and rodents, and this similarity between
experimental animals and humans could shed light on olfactory
pathophysiology. The effect of inflammatory mediators on the
apoptosis, differentiation, and proliferation of OSNs in animal
models has been investigated.

TNF-α is a pleiotropic cytokine that has been universally
associated with CRS, regardless of subtype or etiology (45).
TNF-α plays a role in antigen-specific immunoglobulin E (IgE)
production and Th2 cytokine production and modulates the
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migration of Th2 cells to inflammation sites (46–50). Lane
et al. investigated a transgenic mouse model expressing TNF-
α by sustentacular cells in the olfactory epithelium: TNF-α
was found to directly affect olfactory neuron function and
neuroepithelial regeneration, and the downstream mediators
following infiltration of inflammatory cells contributed
to histological damage to the olfactory neuroepithelium
(36, 38, 40, 51). Sousa Garcia et al. demonstrated that genetic
deletion of TNFR1 (tumor necrosis factor α receptor 1) in
inducible olfactory and allergen-induced inflammation models
prevented histological damage, reduced eosinophilic infiltration,
and preserved the neuronal layer thickness. TNFR1 may be
crucial in the development of inflammation-associated olfactory
dysfunction (39). The acute inflammatory response may
promote regeneration of olfactory neuroepithelium through the
nuclear factor-κB (NF-κB) pathway (52), and c-Jun N-terminal
kinases (JNK), the principal signaling molecules involved in
the TNF-α apoptotic pathway, were found to be activated
in neuroinflammation (53). The expression of TNF-α in the
olfactory neuroepithelium is critical in the pathogenesis of
olfactory dysfunction.

Rouyar et al. investigated the impact of type 2/Th2-driven
inflammation on olfactory function in a mouse model of
ECRS sensitized to house dust mites and Staphylococcus aureus
enterotoxin B. The expression of IL-4, IL-5, IL-13 and total IgE
in the olfactory epithelium was significantly increased in the
group treated with house dust mites, and IL-13Rα1 and IL-4Rα

mRNAs was detected in mature OSNs, globose basal cells, and
horizontal basal cells, which are involved in OSN renewal. The
transcriptomic and histology markers revealed a decrease in the
number of immature OSNs that did not affect the sense of smell,
as measured by electroolfactogram and animal behavioral food
tests (54). The roles of the IL-4 and IL-13 pathways and their
possible regulatory impacts on neurogenesis and homeostasis
of olfactory neurons have not been determined. According to
the olfactory vector hypothesis, some neurological disorders
may be caused or accelerated by agents entering the central
nervous system through the olfactory bulb via the olfactory
mucosa (55). Mori et al. suggested that IL-4 and IL-13 cytokines
may contribute to pathological mechanisms leading to the loss
of dopaminergic neurons in Parkinson’s disease (56). Further
studies on neuroinflammation and damage in other brain regions
could provide novel insights into the olfactory vector hypothesis
and facilitate application of this hypothesis to the pathogenesis of
possible central olfactory disorders (41).

TREATMENT OF OLFACTORY
DYSFUNCTION IN CHRONIC
RHINOSINUSITIS

Despite limited effective treatment choices for olfactory
dysfunction, olfactory dysfunction related to CRS is regarded
as a treatable trait. In contrast to other non-CRS-related
olfactory dysfunctions, corticosteroids are an effective mainstay
treatment for the management of smell problems secondary
to CRS (57). Endoscopic sinus surgery can aid the recovery of

olfactory function (58). Sinus surgery can remove the diseased
tissues and improve the nasal ventilation, and it has been
reported that current septoplasty can increase the likelihood of
achieving normal olfaction (59). A meta-analysis reported by
Zhao et al. (60) demonstrated that endoscopic sinus surgery
may be beneficial olfactory dysfunction The olfactory function,
assessed by Sniffin’ Sticks total score, discrimination score
and identification score, University of Pennsylvania Smell
Identification Test, and Visual Analougue Scale, improved
in the patients of CRSwNP. However, the results of olfaction
function after surgery were reported to be inconsistent in the
CRSsNP and non-classified CRS patients. The inflammatory
natures of CRS are decisive in the olfactory outcomes after the
surgery. Comparing to the relatively well-sustained olfaction in
non-eosinophilic CRS patients, the improvement of olfaction
deteriorated with time among eosinophilic CRS patients (61).
Administration of adjuvant medical therapy post-operatively
may aid the continued recovery of olfactory function.

Biotherapeutic agents targeting type 2 inflammation were
recently introduced into the treatment of CRS (62). The biologics
dupilumab (63–65), omalizumab (66, 67), and mepolizumab (68)
have been shown to improve olfaction based on symptom scores
and olfaction tests. Dupilumab, blocking the shared receptor
component of IL-4 and IL-13, can even improve olfaction
function in patients who previously underwent more than 3
surgeries (69, 70). Successful treatment with biologics may imply
that type 2 inflammation plays a role in the disease mechanism
of olfactory dysfunction in CRS. A transcriptomic study of
respiratory epithelial, immune, and stromal cell types and subsets
in the ethmoid sinus of patients with CRS showed that epithelial
stem cells may contribute to the persistence of inflammatory
disease by serving as repositories for allergic memories, and
a shift from interferon-α (IFN-α)/IFN-γ-induced genes to IL-
4/IL-13-induced genes was demonstrated to be correlated with
disease severity. A comparison of epithelial cells scraped before
and 6 weeks after dupilumab treatment showed that this IL-4
receptor α-subunit blocker can modify basal and secretory cell
states in vivo (71). The role of type 2 inflammation-mediated
barrier dysfunction in the olfactory neuroepithelium remains to
be determined.

CONCLUSION

Evidence from clinical features, experimental investigations, and
treatment responses shows that type 2 inflammation may play an
important role in olfactory dysfunction secondary to CRS. In-
depth research on the link between the olfactory transduction
pathway and inflammation is warranted. The olfactory system
and frontline of the respiratory immune system share the same
airway passage in the nose, and understanding the impact
of epithelial barrier dysfunction, localized inflammation, and
aggregation of immunocytes on the olfactory neuroepithelium
may shed light on the management of olfactory dysfunction.
An effective and sustained treatment for patients with olfactory
dysfunction secondary to CRS can significantly improve patients’
quality of life.
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