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Abstract: Polymicrobial sepsis is difficult to diagnose and treat and causes significant morbidity
and mortality, especially when fungi are involved. In vitro, synergism between Candida albicans and
various bacterial species has been described for many years. Our laboratory has developed a murine
model of polymicrobial intra-abdominal infection with Candida albicans and Staphylococcus aureus,
demonstrating that polymicrobial infections cause high levels of mortality, while monoinfections do
not. By contrast, closely related Candida dubliniensis does not cause synergistic lethality and rather
provides protection against lethal polymicrobial infection. This protection is thought to be driven by
a novel form of trained innate immunity mediated by myeloid-derived suppressor cells (MDSCs),
which we are proposing to call “trained tolerogenic immunity”. MDSC accumulation has been
described in patients with sepsis, as well as in in vivo sepsis models. However, clinically, MDSCs are
considered detrimental in sepsis, while their role in in vivo models differs depending on the sepsis
model and timing. In this review, we will discuss the role of MDSCs in sepsis and infection and
summarize our perspectives on their development and function in the spectrum of trained innate
immune protection against fungal-bacterial sepsis.
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1. Introduction

Invasive fungal infections are estimated to cause over 1.5 million deaths per year [1]. Among these,
Candida species are the most common cause of invasive fungal infections worldwide, with invasive
candidiasis manifesting as multiple diseases ranging from disseminated candidiasis and candidemia to
intra-abdominal candidiasis. Intra-abdominal infections (IAI) with Candida originate from the outgrowth
and entry of organisms from the GI tract into the abdominal cavity. These infections can result in
a variety of clinical manifestations, from localized peritonitis to disseminated infection, leading to
lethal sepsis [2]. IAIs are often polymicrobial [3,4] and those involving fungi are associated with worse
outcomes, increased antimicrobial use, and higher mortality compared to mono- or polymicrobial bacterial
only infections [5–10]. Fungal involvement also leads to increased rates of relapse and more severe
disease scores [8,9,11]. Despite this, the clinical significance of Candida isolation from the abdominal
cavity is debated and likely depends on many factors, including the source (community-acquired
versus nosocomial-acquired) and type of IAI (e.g., intra-abdominal abscess, peritonitis, gastrointestinal
perforation) [5,12,13]. As a result, while preemptive antifungal therapy has been shown to improve
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survival in bacterial IAI patients [13], Candida is only treated as a causative infectious agent in most
patients if they are immune compromised or have had prolonged exposure to antibiotics.

1.1. Synergism between Candida and Bacteria

Synergistic effects have been reported between Candida and various bacteria, including both
gram-positive and gram-negative organisms. As early as 1958, Yamabayashi et al. reported that
mixed inoculations of Candida albicans with Proteus vulgaris or Pseudomonas aeruginosa caused increased
mortality in mice [14]. Similar synergism has been reported for Mycobacterium tuberculosis [15], as well as
enteric pathogens including Staphylococcus aureus [16], Serratia marcescens and Streptococcus faecalis [17],
Escherichia coli [18], and E. coli/Bacteroides fragilis [19]. Using an animal model of polymicrobial IAI
developed in our lab several years ago, we have also shown synergy between C. albicans and S. aureus.
While monoinfection with either organism is not fatal, coinfections with C. albicans and S. aureus lead
to 100% mortality by 48 h (Figure 1A) [20,21]. Mortality is associated with a significant increase in
local and systemic proinflammatory cytokines, but not with increased microbial burden or Candida
morphogenesis [20–22]. Further studies demonstrated that this synergistic lethality was not unique
to C. albicans and also occurred with various non-albicans Candida species (NAC), including Candida
krusei and Candida tropicalis. On the other hand, coinfections with Candida dubliniensis, Candida glabrata,
Candida parapsilosis, and Saccharomyces cerevisiae resulted in minimal mortality [21,23]. Overall, we
found that synergism amongst NAC species was not associated with the ability to form true hyphae, as
C. krusei (no hyphae) was synergistically lethal during coinfection with S. aureus, while C. dubliniensis,
a close phylogenetic relative of C. albicans that forms hyphae in vivo, was not synergistically lethal.
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Figure 1. Representative graphs of (A) Candida albicans/Staphylococcus aureus synergistic lethality and
(B) Candida dubliniensis-induced protection. Adapted from [20,21,23].

1.2. C. dubliniensis-Mediated Protection against Polymicrobial Sepsis

The fact that closely related C. dubliniensis was not synergistically lethal during polymicrobial IAI
prompted investigation of its potential for inducing protective immunity. Interestingly, we found that
the rechallenging of C. dubliniensis/S. aureus- or C. dubliniensis-infected mice with lethal C. albicans/S.
aureus 14 days later led to 80−90% protection (Figure 1B) and that this protection was long-term (up
to 60 days between primary C. dubliniensis challenge and lethal C. albicans/S. aureus challenge) [23].
However, mice deficient in T and B cells (RAG1−/− mice) maintained this protection, indicating that it
was not mediated by adaptive immunity [23]. This suggested a role for trained innate immunity (TII),
which refers to a non-specific memory immunity mediated by innate cells that have been “trained”
by an initial challenge, leading to an enhanced response to a secondary challenge [24,25]. TII has
typically been described in the context of trained monocytes/macrophages, however, we found that
mice depleted of macrophages prior to the lethal rechallenge were also protected [23], indicating that
the TII response induced in our model was mediated by a different innate cell type. In previous work,
we observed a significant influx of polymorphonuclear (PMN) leukocytes, specifically neutrophils,
by hematoxylin and eosin (H&E) staining in the peritoneal cavity following lethal C. albicans/S.
aureus infection [20]. We confirmed and quantified this influx by flow cytometry using the mouse
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granulocyte differentiation antigen-1 (Gr-1), which is commonly used to identify neutrophils, but binds
to both Ly6G (expressed by neutrophils) and Ly6C (expressed by neutrophils, dendritic cells, and
monocytes/macrophages) [26]. In studies to investigate whether a similar recruitment occurred in mice
that had received a C. dubliniensis primary challenge, we observed a similar increase in PMNs in the
peritoneal cavity, as well as increased levels of Gr-1+ F4/80− (mouse macrophage marker) leukocytes in
the spleens and bone marrow of mice given a C. dubliniensis primary challenge, compared to naïve
mice prior to C. albicans/S. aureus challenge [23]. We found that protection was dependent on these
Gr-1+ leukocytes, as survival was significantly abrogated in mice treated with anti-Gr-1 depleting
antibodies [23]. Because neutrophils are very short-lived cells, we considered that another Gr-1+

PMN cell type may be providing the long-term protection observed in our model. Myeloid-derived
suppressor cells (MDSCs) can be phenotypically similar to PMNs/neutrophils, express Gr-1+, and,
as discussed below, have been reported in sepsis models. MDSCs are a phenotypically heterogeneous
(granulocytic/Ly6G+ or monocytic/Ly6C+) population of Gr-1+ CD11b+ immature myeloid cells with
anti-inflammatory functions, including, most notably, T cell suppression. In unpublished data, we have
demonstrated that the protective Gr-1+ cell population exhibits MDSC-like phenotypes. In particular,
using T cell proliferation assays, we have shown that Gr-1+ cells isolated from protected mice have
T cell suppressive activity (E.A. Lilly, unpublished data). We therefore propose that C. dubliniensis
induces a novel form of TII mediated by MDSCs to protect against lethal polymicrobial IAI. In this
review, we will consider the characteristics, types, and development of MDSCs, as well as their roles
in sepsis and infection and, finally, provide perspectives on their potential role and mode of action
against IAI/sepsis.

2. Myeloid-Derived Suppressor Cells

The term myeloid-derived suppressor cell, or MDSC, was proposed by Gabrilovich et al. to
describe an undefined population of immunosuppressive myeloid cells recently identified in association
with various pathologic conditions, including infection, sepsis, inflammation, traumatic stress, and,
most prominently, cancer [27]. Several excellent reviews have covered detailed aspects of MDSC
differentiation and function [28–31]. On a very basic level, MDSCs are a heterogeneous population of
myeloid cells with suppressive functions. These cells share several common characteristics, including
the expression of Gr-1 and CD11b in mice coupled with the lack of expression of maturation markers,
the inability to differentiate into mature myeloid cells, high levels of reactive oxygen species (ROS) and
arginase 1 expression, and the ability to suppress immune responses both in vitro and in vivo [27].

Before the term MDSC was proposed, these immunosuppressive myeloid cells were referred to by
several other names in the literature, including natural suppressor cells, immature myeloid cells, and
suppressor macrophages [32]. MDSCs arise and develop following the normal myelopoietic pathway
and are induced by similar normal growth factors. However, because they are activated in a way that is
distinct from normal myeloid activation, MDSCs do not result simply from the expansion of immature
myeloid progenitors (Rev. in [30,33,34]). Compared to their mature myeloid counterparts, such as
neutrophils and monocytes, MDSCs are much less phagocytic and produce high levels of ROS, nitric
oxide (NO), and anti-inflammatory cytokines, in addition to being immunosuppressive [30,33].

2.1. MDSC Subsets

MDSCs are composed of two subtypes, granulocytic or polymorphonuclear MDSCs
(G/PMN-MDSCs) and monocytic MDSCs (M-MDSCs) [29,35,36]. In mice, G-MDSCs are CD11b+

Ly6G+ Ly6Clow, whereas M-MDSCs are CD11b+ Ly6G− Ly6Chigh. M-MDSCs have also been shown to
express higher levels of F4/80, CD115, and CCR2 [36]. While both subsets suppress antigen-specific
T cell responses, they do so through different mechanisms. G- and M-MDSCs express comparable
amounts of arginase 1, while G-MDSCs produce higher levels of ROS and M-MDSCs preferentially
produce NO [35,36]. G-MDSCs or M-MDSCs can be preferentially expanded depending on the
stimulus/model/disease, however, M-MDSCs have been shown to be more immunosuppressive.



J. Fungi 2019, 5, 37 4 of 16

2.2. Development of MDSCs

Healthy murine bone marrow contains around 20–30% CD11b+ Gr-1+ cells. These cells are rapidly
and efficiently differentiated into mature cells, maintaining steady state cellular levels. By contrast,
CD11b+ Gr-1+ cells have been shown to represent up to 90% of the cells in the bone marrow during
sepsis [37]. The development of MDSCs has been proposed to occur in two steps: expansion and
activation [38]. During the expansion step, the population of immature myeloid cells within the
bone marrow is expanded, in part due to a block in further differentiation of these cells. The signals
inducing expansion are primarily factors produced by tumor cells and include growth factors and
cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) [39,40], granulocyte
colony-stimulating factor (G-CSF) [41], macrophage colony-stimulating factor (M-CSF) [42], IL-6 [43],
vascular endothelial growth factor (VEGF) [44], stem cell factor (SCF) [45], and prostaglandins [46,47].
The expansion of MDSCs has been shown to be mediated primarily through STAT3 [48,49]. STAT3
activation also leads to the expression of S100A8 and S100A9, which contribute to blocking the
differentiation of immature myeloid cells, further enhancing MDSC expansion [50,51]. During
the activation step, this expanded immature population becomes pathologically activated and
their suppressive functions are expressed. MDSC activation is induced by factors produced by
activated T cells and tumor stromal cells, as well as proinflammatory cytokines such as IFNγ [35,52],
IL-4 [53], IL-13 [52,54], TGF-β, and various toll-like receptor (TLR) ligands [37,55–58]. MDSC
activation is mediated by multiple signaling pathways, including STAT6, STAT1, and primarily
NFκB signaling [30,38]. A role for TLR signaling through MyD88 in activating MDSCs has also been
described [37]. It is unclear whether MDSCs are activated within the bone marrow and then travel to
tumor or inflammatory sites, or if the immature cells are recruited and activated at extramedullary
sites. Nevertheless, mature MDSCs have been isolated from the blood, spleen, liver, lung, and tumors
of mice, and the blood, tumors, and bone marrow of humans.

2.3. Mechanisms of MDSC Immunosuppression

MDSCs have the capacity to suppress many types of immune cells, but they most commonly act
on T cells. Suppression generally occurs through direct contact between T cells and MDSCs, but it can
also occur through the combination of a variety of mediators. As mentioned previously, the most well
described effectors expressed by MDSCs are arginase 1, inducible nitric oxide synthase (iNOS), and
ROS. The suppressive activities of arginase and iNOS are associated with L-arginine metabolism, which
is a substrate for both arginase 1 and iNOS and required for proper T cell function [59,60]. Depletion of
L-arginine affects T cells in multiple ways, including by disrupting T cell receptor mediated signaling
and the cell cycle [59]. The utilization of L-arginine by iNOS also results in the production of NO,
which, in addition to suppressing T cell function through various mechanisms, can combine with
ROS to produce peroxynitrate, which can inhibit downstream signaling through the nitration of T cell
receptors and CD8 molecules, further impairing T cell binding and function [61,62]. M-MDSCs have
been shown to express higher levels of arginase 1 and NO, while G-MDSCs preferentially express ROS
and arginase 1 [35,36]. MDSCs also produce increased levels of IL-10 and TGF-β and promote the
expansion of regulatory T cells (Rev. in [63]).

2.4. Limitations of Studying MDSCs

Several limitations exist in terms of studying MDSCs. The first is that MDSCs closely resemble other
types of innate cells and specific markers to discriminate MDSCs are not currently well characterized.
For these reasons, phenotype and/or morphology alone are not sufficient to identify MDSCs. To date,
the gold standard for definitive identification of MDSCs is by demonstrating their immunosuppressive
function through T cell proliferation assays. Still, many studies do not functionally characterize their
cells of interest, making interpretation difficult. Furthermore, the nomenclature of cells with MDSC-like
phenotypes prior to the introduction of the term MDSC has added to the confusion [32].
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Studying MDSCs in human populations presents even more difficulties, as cells cannot be isolated
from lymphoid organs, but rather have to be isolated from peripheral blood. This makes studying
MDSC expansion and site of activation in humans nearly impossible. Additionally, humans do not
express Gr-1, making phenotypic analysis more complicated as well. Like murine MDSCs, there are
granulocytic and monocytic subsets of human MDSCs. While a large number of markers have been
identified [64], in general human G-MDSCs are CD11b+ CD14− CD15+ or CD11b+ CD14− CD66b+

and M-MDSCs are CD11b+ CD14+ HLA-DR−/lo CD15− [40,65]. A third subset of “early stage” or
eMDSCs that are Lin− HLA-DR− CD33+ and composed of more immature progenitor cells has also
been described in humans [66].

3. Role of MDSCs in Sepsis and Infection

While much of the initial work on MDSCs was carried out in relation to cancer, more recent
data has demonstrated that these cells are also present and relevant in infections and sepsis (Rev.
in [63,67,68]). MDSCs have been shown to accumulate in a number of bacterial infections, including
S. aureus [69–71], Mycobacterium tuberculosis [72–76], and Pseudomonas aeruginosa [57]. However,
whether the accumulation of these cells is beneficial or harmful is unclear and depends on the bacteria.
MDSC accumulation has also been reported in fungal infections, including Aspergillus fumigatus
and C. albicans [77]. Clinically, MDSCs are generally considered to be detrimental to the host [68].
Studies have demonstrated that high levels of MDSCs in patients are associated with an increased
risk of nosocomial infection [78], longer intensive care unit (ICU) stays, worse outcomes, and earlier
mortality [79]. In particular, Uhel and colleagues found that G-MDSCs were specifically increased in
sepsis patients, compared to other ICU patients, and that high levels of G-MDSCs and arginase 1 early
after the onset of infection were predictors for subsequent nosocomial infections [78].

Delano and colleagues were the first to identify MDSCs in a sepsis model, showing increased
Gr-1+ CD11b+ cell populations in the spleen, lymph nodes, and bone marrow during polymicrobial
sepsis [37]. They further demonstrated that this was MyD88-dependent and that MDSC accumulation
was associated with suppressed T cell function and Th2 polarization. Using an anti-Gr-1 antibody, they
showed that MDSC depletion prevented Th2 skewing and reversed suppressed T cell functions [37].
Several more recent studies have demonstrated that MDSC accumulation in sepsis is beneficial to the
host. Noel et al. demonstrated that when MDSCs were depleted by gemcitabine treatment, mice with
experimental burns lost their resistance to secondary P. aeruginosa infection [80]. Hepatocyte-specific
deletion of the IL-6 family receptor, gp-130, abolished MDSC accumulation and mobilization and
resulted in increased mortality in a mouse model of polymicrobial sepsis [81]. Furthermore, adoptive
transfer of MDSCs to gp130-deficient mice provided protection against sepsis-associated mortality [81].

Sepsis occurs in two phases, the first of which is characterized by an initial acute hyperinflammatory
phase, followed by a secondary hypoinflammatory and immunosuppressive phase. As such, several
sepsis models have demonstrated that MDSCs are beneficial in sepsis in a time-dependent manner,
depending on the stage of sepsis. Derive et al. demonstrated that MDSCs isolated from early and
late stage sepsis have different functions. They found that, compared to MDSCs isolated three days
after the onset of sepsis, MDSCs isolated 10 days after sepsis were highly functional, with robust
cytokine and ROS production and arginase 1 activity. This was despite the fact that both MDSC
populations could inhibit T cell proliferation in vitro. In agreement with these observations, adoptive
transfer of day 10 MDSCs, but not day three MDSCs, was protective against a polymicrobial sepsis
challenge [82]. Similarly, Brudecki et al. found that adoptive transfer of early MDSCs increased the
proinflammatory response and resulted in greater early sepsis mortality, while transfer of late MDSCs
induced anti-inflammatory cytokine production during early sepsis [83]. They also found that early
and late MDSCs expressed different effectors; early MDSCs produced more NO and proinflammatory
TNFα and IL-6, while late MDSCs had increased arginase 1 activity and produced anti-inflammatory
IL-10 and TGF-β. Interestingly, they also observed that the late MDSC population had a greater
percentage of cells that were positive for CD31, a marker for early myeloid cells. These cells also lacked
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the ability to differentiate further when stimulated with GM-CSF, suggesting that this late MDSC
population is more immature and immunosuppressive than the early MDSCs [83].

MDSC accumulation has also been demonstrated in association with fungal infections. Rieber et al.
found that MDSCs could be isolated from patients with C. albicans and A. fumigatus infections [77].
They further demonstrated that C. albicans and A. fumigatus could induce the differentiation of
functional MDSCs from human peripheral blood mononuclear cells (PBMCs) and murine bone marrow
cells, and that MDSCs could be isolated from various organs of mice infected with either pathogen.
They determined that MDSC induction was dependent on the dectin-1/Syk/Card9 pathway, as well as
downstream factors including ROS, caspase-8 activity, and IL-1β production. Additionally, adoptive
transfer of MDSCs was able to protect against C. albicans, but not A. fumigatus infection. In follow up
studies, Singh et al. demonstrated that MDSCs could be induced from human PBMCs differentially by
other NAC species, including C. glabrata, C. krusei, and C. dubliniensis [84]. Although MDSCs have
been demonstrated to be induced clinically and in experimental models of fungal infection, the role
for these cells in protection versus pathology of infection is not entirely clear. However, we have
demonstrated that fungal-induced putative MDSCs exert a protective role against lethal sepsis in our
model of polymicrobial IAI [23], which warrants further exploration.

4. Recent Advances in MDSC-Mediated Trained Innate Immunity against Polymicrobial IAI

4.1. Properties of C. dubliniensis-Mediated Trained Innate Immune Protection

To further explore C. dubliniensis-induced trained innate protection mediated by MDSCs, we sought
to define the properties and requirements of this protection. In addition to our previous observations
that C. parapsilosis and C. glabrata could provide similar levels of protection [21], we have now shown
that this protection also extends to C. auris, S. cerevisiae, and the yeast-locked C. albicans efg1∆/∆ cph1∆/∆
strain [85]. All of these strains are considered to be low virulence in our polymicrobial IAI model,
which is in contrast to wild type C. albicans, C. tropicalis, and C. krusei, which are highly lethal in our
coinfection model [21] and do not provide appreciable levels of protection [23]. We have also now
demonstrated that the protection can be induced by C. dubliniensis as early as seven days prior to
lethal coinfection and protection can be maintained through multiple lethal rechallenges up to 20 days
apart [85]. We have also observed that the standard C. dubliniensis intraperitoneal primary challenge
can protect against a lethal C. albicans intravenous bloodstream infection, but not against a C. albicans
mucosal vaginal infection [85].

4.2. Pathogen Manipulation of the Hematopoietic Compartment

Of particular interest, we have recently been able to culture Candida from the bone marrow
of intraperitoneally inoculated mice [85]. C. dubliniensis-inoculated animals had the highest fungal
infiltration after 24 hours; however, we were also able to detect C. albicans, other NAC species including
C. auris and C. glabrata, and S. cerevisiae in the bone marrow of mice. After 48 hours, the level of
fungal persistence was positively correlated with the average level of protection reported in our
polymicrobial IAI model. These data suggest that the ability of these species to access and persist in
the bone marrow may be related to their protective potential. This is an intriguing finding that fits
into a bigger picture that has recently emerged on how pathogens may manipulate the hematopoietic
compartment and ultimately impact the innate immune response. Several pathogen infections have
been shown to influence the hematopoietic stem and progenitor cell (HSPC) population, including
Candida [86–88], E. coli [89–91], P. aeruginosa [92], Ehrlichia chaffeensis [93], Anaplasma phagocytophilum [94],
Listeria monocytogenes [95], Mycobacterium [96,97], and several viral infections . Furthermore, the HSPC
population has been shown to be expanded in a model of polymicrobial sepsis [98].

While changes to HSPCs in the setting of infection have traditionally been considered a reactive
process, more recent work has demonstrated that these cells may directly interact with and respond to
pathogens. In support of this concept and in agreement with our findings, Yanez et al. demonstrated
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that after intravenous inoculation, C. albicans could access the bone marrow and directly stimulate
HSPCs through TLR2 and possibly dectin-1 [88]. In more recent work, Kaufmann et al. demonstrated
that the bacillus Calmette-Guérin (BCG) vaccine strain could access the bone marrow and manipulate
the transcriptional signature of HSPCs [97]. This resulted in an expanded macrophage population
that was found to have epigenetic modifications that rendered them more effective at killing virulent
M. tuberculosis compared to naïve macrophages. Providing further support for a direct interaction
between pathogens and progenitor cells in the bone marrow, Nagai and colleagues demonstrated that
HSPCs, particularly early hematopoietic progenitors, expressed TLRs and that TLR signaling through
MyD88 could drive the differentiation of myeloid progenitors [99].

5. Perspectives

5.1. Development of Pathogen-Specific MDSCs of Limited Function

Our data suggests that these TII cells protect not only against polymicrobial IAI, but also against
bloodstream infections (BSIs) with C. albicans. Whether these cells provide protection against other
BSIs or in other models of polymicrobial sepsis remains to be determined. It is tempting, however,
to speculate that C. dubliniensis-induced MDSCs may provide pathogen-specific protection via the
upregulation of different repertoires of pattern recognition receptors (PRRs), similar to what has been
proposed for gram-negative versus gram-positive bacteria [100].

Based on the above work characterizing how pathogens can manipulate the hematopoietic
compartment, combined with our understanding of how MDSCs are developed, we hypothesize that
MDSC-mediated protection against polymicrobial IAI is initiated by C. dubliniensis in the bone marrow
(Figure 2). Based on the two-signal model of MDSC development [38], this would represent the MDSC
expansion step, in which the immature myeloid population is expanded in the bone marrow and normal
differentiation is blocked. We then hypothesize that C. albicans/S. aureus lethal challenge represents
the activation step, in which the immature myeloid cells are converted to fully functioning MDSCs.
Whether this occurs in the bone marrow as well remains to be determined. We have demonstrated
that C. albicans and S. aureus can access the bone marrow compartment [85], however, they are more
rapidly cleared than other protective Candida species. Alternatively, the expanded immature myeloid
population may be recruited to sites of inflammation associated with C. albicans/S. aureus infection,
at which time they become activated and suppressive.
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Figure 2. Model of myeloid-derived suppressor cells (MDSC) expansion and activation steps during C.
dubliniensis-mediated protection against polymicrobial sepsis. We propose that C. dubliniensis in the
bone marrow during the primary challenge induces the expansion of the immature myeloid population
and a block in normal myeloid cell differentiation. This population is then activated by the C. albicans/S.
aureus lethal challenge to produce mature MDSCs that express their characteristic effectors, resulting in
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the suppression of detrimental immune responses and protection against lethal sepsis. HSC,
hematopoietic stem cell; CMP, common myeloid progenitor; GMP, granulocyte-monocyte progenitor;
GP, granulocytic precursor; MP, monocytic precursor; G-MDSC, granulocytic MDSC; M-MDSC,
monocytic MDSC.

5.2. Trained Tolerogenic Immunity

Netea and colleagues introduced the concept of trained innate immunity based on the fact that
plants and several invertebrates, which lack adaptive immunity, have mechanisms of protection against
secondary infections [24]. Furthermore, several studies had previously demonstrated protection in
mammals that was independent of adaptive immunity. In the late 1980s, Bistoni et al. demonstrated that
a low virulence, yeast-locked C. albicans strain could provide protection against infection with its virulent
counterpart [101,102]. They further demonstrated that this protection was independent of T and B cells,
with protection instead conferred by “plastic-adherent” mononuclear cells, presumably macrophages.
Similarly, van’t Wout et al. showed that the BCG vaccination could provide protection against C. albicans
that was macrophage-mediated [103]. In more recent years, long-lived, self-renewing natural killer
(NK) cells with adaptive immune properties have also been described, which can provide protection
against viral challenge [104]. Netea and colleagues have demonstrated that C. albicans infection, or
C. albicans cell wall-derived β-glucan, can protect against reinfection in a T and B cell-independent
manner through the training of monocytes [105]. This training has been shown to occur through
the epigenetic reprogramming of genes involved in cytokine production and metabolism [105–108].
A plethora of in vitro studies have demonstrated that C. albicans trains and reprograms monocytes to
induce a more robust response to secondary exposure, including increased inflammatory cytokine
production and phagocytosis, which leads to improved antifungal activity and survival. However,
we demonstrated that macrophages were not involved in the C. dubliniensis-mediated protection [23].
Furthermore, until our discovery, neither Gr-1+ PMNs nor MDSCs had been previously reported to
play a role in trained innate immunity.

Endotoxin tolerance (ET) is defined as the reduced capacity of a cell to respond to LPS/endotoxin
after an initial exposure to it [109,110]. ET is characterized by a downregulation of inflammatory
mediators, including TNFα, IL-1β, and CXCL10, and the upregulation of anti-inflammatory factors,
such as IL-10 and TGF-β [109]. It is thought to be a regulatory mechanism for the host to combat
overabundant inflammation. Similar to TII, tolerized monocytes undergo a functional reprogramming
that is driven by epigenetic modifications, however, unlike TII, ET induces epigenetic modifications that
result primarily in gene silencing [107,111,112]. Tolerized monocytes become more anti-inflammatory
and have enhanced phagocytosis and antimicrobial activity [111,113–115]. Endotoxin tolerance is
closely related to the compensatory anti-inflammatory syndrome (CARS) that is observed in sepsis
patients [116].

The C. dubliniensis/MDSC-mediated protection against polymicrobial sepsis that we have described
shares features of both trained innate immunity and endotoxin tolerance. However, several pieces
of data suggest that this is a distinct form of trained innate memory. Unlike TII, which has mostly
been described for monocytes/macrophages and NK cells, our data suggests that protection is
mediated by MDSCs. Furthermore, in contrast to the direct effector function of the trained cells
in TII, we hypothesize that protection by MDSCs is mediated by suppression of the pathological
sepsis-associated inflammatory response, similar to the anti-inflammatory state induced by immune
cell reprograming in ET. But unlike ET, MDSC-mediated immune suppression in our model is beneficial
to the host. Therefore, we suggest that there is a spectrum of trained innate memory (Figure 3), from
TII, representing enhanced, beneficial, secondary inflammatory responses, to ET, demonstrating a
detrimental lack of secondary response. Falling in the middle of this spectrum is the MDSC-mediated
secondary response in our model that leads to beneficial suppression, for which we propose the term
“trained tolerogenic immunity” (TTI). Whether the mechanism of protection conferred by trained
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MDSCs includes robust antifungal defenses, similar to trained monocytes, or is limited to direct
suppression of the sepsis proinflammatory response, similar to ET, remains to be determined and will
be discussed in the following section.
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5.3. Mechanisms of MDSC Protection in Sepsis

There are several questions that remain to be answered with respect to C. dubliniensis- and
MDSC-mediated TTI. While we observed that C. albicans was able to access the bone marrow, the lack
of protection suggests that C. albicans is unable to induce the expansion of MDSCs. This may be because
C. albicans, as a more virulent species, is too damaging to the HSPCs in the bone marrow, inhibiting
their ability to expand and develop into MDSCs. The fact that several virulent Candida species are
unable to provide protection in our model suggests a damage hypothesis, in which low damage or low
virulence is associated with protection. Another aspect to consider is timing. Several studies have
shown that MDSCs require an extended period of time to develop and become fully mature [82,83].
It is also possible that the damage caused by and/or the robust inflammatory response to C. albicans and
other virulent strains results in animal death before MDSCs can develop. In this case, C. albicans can
effectively initiate MDSC expansion, but the animals succumb before they can be activated. By contrast,
C. dubliniensis and other low virulence species do not induce robust inflammation or rapid animal
death, allowing time for MDSCs to expand and become activated.

Another important open question is how protection is mediated to enhance survival.
One possibility is that the MDSCs are directly killing C. albicans and/or S. aureus in addition to
mediating canonical suppression of the septic proinflammatory response. Both TII and ET point
towards this possibility, as trained and tolerogenic monocytes have been shown to be more antimicrobial
with increased levels of phagocytosis. Rieber et al. also demonstrated that fungal-induced MDSCs
that were protective against candidiasis were more antifungal, however, they concluded that this
function was a relatively minor contribution to overall protection [77]. Another possibility is that
C. dubliniensis-trained MDSCs suppress the septic response and also differentiate into other innate
cells, which ultimately kill C. albicans/S. aureus. Several studies have demonstrated that MDSCs may
retain their ability to differentiate into mature innate cells [37,118]. Furthermore, MDSCs in tumor
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models have been shown to be able to differentiate into tumor-associated macrophages (TAMs) [119].
A third possibility is that primary protection is driven by the MDSC-mediated suppression of the septic
response, while antimicrobial activity is mediated by a classical innate response (PMNs, macrophages).
In this regard, it stands to reason that if the lethal septic inflammatory response is suppressed, the
classical innate cells would have time to function normally to reduce the source of infection.

6. Conclusions

Polymicrobial infections are increasingly common and difficult to combat. In particular, the
contributions of fungi are often overlooked, however, their impact on these infections is significant.
We have identified a novel form of TII induced by C. dubliniensis that can provide protection against
fungal-bacterial IAIs. This protection is mediated by MDSCs, which have been identified in both
sepsis and fungal infections, but their role in TII has not been described previously. We propose that
MDSC-mediated protection against polymicrobial sepsis falls along the spectrum of trained innate
memory, with protective responses associated with the suppression of pathological inflammation
representing trained tolerogenic immunity (TTI). Future work is aimed at understanding how MDSCs
develop in response to C. dubliniensis and how they provide protection in models of polymicrobial IAI.
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