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Abstract: Biomolecular condensates, which assemble via the process of liquid–liquid phase separa-
tion (LLPS), are multicomponent compartments found ubiquitously inside cells. Experiments and
simulations have shown that biomolecular condensates with many components can exhibit multilay-
ered organizations. Using a minimal coarse-grained model for interacting multivalent proteins, we
investigate the thermodynamic parameters governing the formation of multilayered condensates
through changes in protein valency and binding affinity. We focus on multicomponent condensates
formed by scaffold proteins (high-valency proteins that can phase separate on their own via ho-
motypic interactions) and clients (proteins recruited to condensates via heterotypic scaffold–client
interactions). We demonstrate that higher valency species are sequestered to the center of the mul-
ticomponent condensates, while lower valency proteins cluster towards the condensate interface.
Such multilayered condensate architecture maximizes the density of LLPS-stabilizing molecular
interactions, while simultaneously reducing the surface tension of the condensates. In addition,
multilayered condensates exhibit rapid exchanges of low valency proteins in and out, while keeping
higher valency proteins—the key biomolecules involved in condensate nucleation—mostly within.
We also demonstrate how modulating the binding affinities among the different proteins in a multi-
component condensate can significantly transform its multilayered structure, and even trigger fission
of a condensate into multiple droplets with different compositions.

Keywords: protein liquid–liquid phase separation; multicomponent condensates; minimal protein
model; multilayered condensates; multiphase condensates

1. Introduction

Liquid–liquid phase separation (LLPS) is one of the key processes employed by cells to
control the spatiotemporal organization of their many components, i.e., via formation and dis-
solution of biomolecular condensates. These condensates are liquid-like membraneless com-
partments highly enriched in specific biomolecules (e.g., proteins and RNAs) and depleted
in others [1–4]. Because of their ability to selectively concentrate and exclude biomolecules,
these condensates have been suggested to act as reaction crucibles that speedup chemical
reactions, or sequestrate unwanted components to prevent/promote reactions within the
cytoplasm and nucleoplasm [4]. In addition, biomolecular condensates play important roles
in biological processes, such as, signaling [5,6], chromatin reorganization[7], formation of
super-enhancers [8], buffering cellular noise [9], and many others [10–19]. Moreover, mis-
regulated LLPS inside cells is associated with the development of degenerative diseases,
aging-related pathologies (e.g., Alzheimer’s disease [20,21], Parkinson’s disease [22,23], amy-
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otrophic lateral sclerosis [24]) and cancers[14]. Thus, elucidating the factors that tune the
stability, structure, and ultimately function of condensates is highly desirable.

Formation of biomolecular condensates via LLPS is a collective phenomenon emerging
from the dynamic formation and breakage of thousands of weak attractive interactions among
multivalent proteins—often involving both intrinsically disordered regions (IDRs) [25–28]
and globular domains [29,30] and, in many cases, RNAs [31–39]. Biomolecules that are
essential to the formation of condensates are termed “scaffolds”, while those that are recruited
to condensates through their interactions with the scaffolds are known as “clients” [40].
Above a critical scaffold concentration and under conditions that favor intermolecular
interactions (e.g., in temperature, pH, salt), the enthalpy gain stemming from high density
multivalent biomolecular interactions among scaffolds becomes sufficient to compensate for
the entropy loss due to demixing, and the system undergoes a phase transition[41]; thereby,
demixing into a protein-enriched condensed liquid phase (i.e., biomolecular condensate) and
a surrounding protein-depleted liquid phase occurs [2,42–44].

Despite being condensed liquids, biomolecular condensates are not exclusively ho-
mogeneous systems. Indeed, multilayered or multiphase organizations (multiple coexist-
ing liquid or solid phases within individual condensates) have been observed in stress
granules [39,45], the nucleoli [15], and nuclear speckles [46]. In vitro, complex coacer-
vates [33,47,48] and mixtures of RNA-binding proteins and RNA molecules [34,49] also
form hierarchically organized condensates with various coexisting phases or layers. Ex-
periments and simulations propose that the multilayered organization of the nucleolus
emerges from differences in the surface tensions of the various phases [15]. The importance
of surface tension in driving a multilayered molecular organization of condensates has
been corroborated for in vitro complex coacervates that form condensates with up to three
layers [47,50]. Competing interactions among protein–RNA networks also play a role in
driving the formation of multiphase condensates [33]. Simulations and mean-field the-
ory further explain that multicomponent systems separate into multiple coexisting liquid
phases when their components bind to one another with sufficiently different binding
affinities [51,52].

To further understand some of the thermodynamic origins that drive multicomponent
condensates to adopt multilayered structures, here we investigate how the variance in the
valencies and binding affinities among phase-separating proteins impact the internal struc-
ture, composition, and interfacial free energy of multicomponent biomolecular condensates.
Molecular simulations provide useful tools for investigating this question: they enable us to
control key properties of phase-separating proteins (e.g., valency and binding affinity), and
subsequently gain a detailed molecular picture of the internal organization of the ensuing
multicomponent condensates. Using a minimal coarse-grained model for multivalent pro-
teins [41,53] further allows us to simulate the formation of biomolecular condensates with
many components while simultaneously measuring thermodynamic parameters that we
hypothesize could explain the emergent condensate organization. We conduct molecular
dynamics simulations of multicomponent protein mixtures using our minimal protein
model [41,53] and find that the variations in valency and binding affinities among protein
components determine whether the system forms a multilayered condensate (with spatially
segregated components within) or multiple non-interacting condensates with different
compositions. Our simulations propose that a major physical determinant explaining the
role of valency and binding affinity in the emergence of multilayered condensate organiza-
tion is the combined minimization of the interfacial free energy and maximization of the
condensate liquid-network connectivity. Furthermore, our work suggests that chemical
modifications, which can modulate the relative valency or binding affinities among a small
subset of key proteins within a multicomponent condensate, can be used to favor the
emergence of one or various multilayered condensates on demand [54,55].
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2. Methods

The highest attainable resolution to investigate the process of protein condensa-
tion with computer simulations is now approaching that of atomistic models [56–58].
However, since LLPS is a collective phenomenon that involves thousands of interacting
biomolecules [41,42], coarse-grained models with different levels of resolution are still the
most effective potentials to decipher the molecular and biophysical forces driving protein
demixing and self-assembly [34,53,58–74]. Indeed, coarse-grained simulation studies have
been useful at linking a wide-range of protein characteristics to the modulation of their
phase behavior—e.g., valency [39,65,75–78], topological distribution of binding sites [53],
amino acid sequence and patterning [79–82], IDR conformation [69,83]—and the emergence
of multilayered condensate organizations [15,33].

We describe multivalent proteins using a patchy particle model, following Refs. [31,41,53].
Specifically, a single protein is represented by a hard-sphere decorated with sticky patches
that act as binding sites [Figure 1a]; hence, the number of patches is related to the effective
valency of the protein. By modifying the valency, the topological distribution of patches on
the protein surface, and the specificity of the interactions among patches, we can investigate
the phase behavior of different types of multivalent proteins. A great advantage of this
model is that, due to its simplicity, it can be used to simulate systems containing thousands
of interacting proteins, and concurrently, compute phase diagrams of multicomponent mul-
tivalent protein systems through the direct coexistence method [31,41,53]. Further details on
our simulations are given in the Appendix A. Despite the model limitations, such as its in-
ability to describe amino acid sequence effects, multivalent binding between two proteins or
other fine molecular details of proteins, we have previously shown [41] that this simple ap-
proach captures well the dependency of the critical solution parameters on protein valency,
observed in experiments [76,84] and recapitulated by a sequence-dependent model [80].
Figure 1 depicts the different types of proteins that comprise our multicomponent mixtures
and their corresponding phase diagrams as single-component systems.

Our previous work [41,53] demonstrated that proteins with higher valencies that can
phase separate via homotypic interactions are characterized by higher critical points in their
phase diagrams as pure systems [Figure 1c], and have higher concentrations within the
multicomponent condensates [41]. Hence, when all these proteins are mixed together, the
highest valency species (i.e., the two types of 4-valency proteins) are expected to behave as
the scaffolds (i.e., the set of biomolecules that drive LLPS), while the lower valency species
[see Figure 1b] act as clients that are incorporated into condensates via their interactions
with the scaffold proteins.
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Figure 1. (a) Minimal protein model. In our coarse-grained model, proteins are represented by hard-spheres with different
numbers/types of binding sites on their surface. (b) Schematic representation of the different multivalent proteins studied
in this work. 4-valency promiscuous proteins have four promiscuous binding sites in a tetrahedral arrangement. 4-valency
selective proteins have two types of binding sites that interact exclusively with those of the same type on their parent protein
(i.e., selective homotypic binding), and promiscuously with any site on their non-parent proteins. In total, this protein has
four patches arranged in a tetrahedral topology. 3-valency good topology proteins have three promiscuous binding sites
separated by angles of 120◦ in a plane, which minimizes the steric hindrance for binding. 3-valency ‘poor’ topology proteins
have binding sites separated by 90◦ angles, which leads to larger steric hindrance. 2.25-valency proteins possess the same
topology as the 3-valency good topology proteins, but the strength of one of the binding sites (brown) is decreased to 1/4
of the net strength interaction of the other two sites (i.e., brown–brown = 25% white–white). Interactions between that
special site and regular sites follow Lorentz-Berthelot combination rule ( ε1+ε2

2 ). 2-valency proteins have two binding sites in
a polar arrangement. These snapshots and subsequent ones were rendered using OVITO [85]. (c) Phase diagrams in the
(T∗/T∗c ) −ρ∗ plane for the 6 different proteins considered in this study. T∗/T∗c is the reduced temperature normalized by
the highest critical reduced temperature [corresponding to the 4-valency promiscuous protein (T∗c = 0.121)] and ρ∗ is the
reduced density. Filled squares represent the coexistence points computed using Direct Coexistence simulations. Empty
squares depict the estimated critical points using the universal scaling of the coexistence densities near the critical point,
and the law of rectilinear diameters [86]. Further details on the reduced units used in this work are given in the Appendix A.
Note that the 2-valency protein does not phase separate on its own (cyan cross).

3. Results
3.1. Impact of Protein Valency and Binding Affinity in the Molecular Organization of
Multicomponent Condensates

Intracellular biomolecular condensates are typically highly multicomponent systems
formed by tens to several thousands of different biomolecules (e.g., proteins and nucleic
acids), potentially spanning a plethora of valencies and binding affinities [2,40,81,87].
Therefore, the first question we ask is: how do variations in the valency and binding affinity
among proteins in multicomponent mixtures impact the internal molecular organization
of the condensates they form? To this end, we use our minimal protein model to perform
direct coexistence simulations [40,88,89] of different multicomponent protein mixtures, in
the NVT ensemble at a fixed temperature below the critical one.

By modulating the number of binding sites, their positions on the protein surface (or
the topology), and the strength of binding among sites, our model allows us to vary both
the valency of each protein within a multicomponent mixture and the relative binding
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affinity among protein pairs. The number of different protein components in a mixture
can also be arbitrarily varied; hence, the number of potential multicomponent mixtures
that we could model is extremely large. Because we are interested in investigating the
impact of the variance in valency and binding affinity, we sought to model systems with the
largest number of components that were still computationally tractable. Thus, following our
previous work [41]—which showed that our model can be efficiently used to investigate
multicomponent mixtures containing as much as six different components—we study six-
component mixtures. Next, to guarantee that each component is sufficiently different from
one another, we combine proteins that exhibit different effective valencies, i.e., decreasing
gradually from a value of four (a valency that, within the model energy scale, strongly
sustains LLPS when the protein is in pure form) to a value of two (a valency that instead
inhibits LLPS when the protein is in pure form) [see Figure 1]. Due to the approximate
nature of our model, rather than assessing fine variations in the binding affinities among
proteins, we focus on contrasting the limits of high versus low binding affinities among
protein pairs. In practice, to model the higher probability of binding among high-affinity
pairs, we assign a value of ε (the unit of energy in our model; proportional to kBT) to
the strength of all high-affinity protein–protein interactions, and a value of zero to all
low-affinity protein–protein interactions. Note that this is equivalent to setting the binding
strength among low-affinity binding proteins to a finite value, as long as it is significantly
lower to that of the high-affinity binding pairs. Comparing proteins that bind with low
versus high affinity, rather than contrasting specific binding affinity values, allows us to
reduce the dimensionality of the parameter space significantly and capture general trends.
Despite this huge reduction, for a six-component mixture, we are still left with 221 possible
scenarios: i.e, all the combinations arising for 21 unique protein pairs that can be defined
as exhibiting either a low or high binding affinity. From the more than 2 million possible
mixtures we could investigate, we have chosen to analyze four cases that mimic widely
different biological scenarios. The four different mixtures include the same components but
are distinguished by the relative binding affinities among the components; these mixtures
are schematized in Figure 2 and the rationale behind their choice is explained in detail below.

As a control and to isolate the effects of valency from other factors, we first define
a mixture where we allow all binding sites, regardless of their parent protein, to interact
with one another with high binding affinity. Because the differences in the probabilities
that any two proteins in this mixture would bind to one another is exclusively determined
by their valencies (i.e., the higher the average valency of two proteins, the higher their
binding affinity), we term this control mixture ‘valency-driven binding’ [Figure 2a]. The
three additional mixtures explore variations in the binding affinities among the various
multivalent proteins; large binding affinity variations are expected to occur within in vivo
condensates [90,91]. Specifically, our second mixture was designed to amplify the impact
of valency on the binding affinity of proteins. Accordingly, we defined the binding affinity
among equal or similar-valency proteins (i.e., ∆ valency ≤ 1) as high, and that among
proteins with dissimilar valencies (i.e., ∆ valency > 1) as low. We refer to this mixture
as ‘like-valency binding’ [Figure 2b] to highlight the positive correlation between valency
and binding affinity that drives proteins to bind predominantly to species with similar
valencies to theirs, and favors homotypic interactions too. That is, lower valency proteins
become even poorer competitors for high-valency binding sites, which causes them to
interact preferentially with other low-valency proteins. Such preferential binding among
higher-valency species has been observed in scaffold–client systems [40]. The next two
mixtures represent cases where we have two different types of proteins that can act as
independent scaffolds of condensates (i.e., they both exhibit LLPS in pure form in the
range of conditions investigated), and that are inert to one another; as before, all proteins
can also establish homotypic interactions. Specifically, in the third mixture, named ‘non-
competing scaffolds’ [Figure 2c], the two independent scaffolds do not compete strongly to
recruit clients, as each scaffold binds with high affinity to a different client and with low
affinity to the rest. The last mixture, named ‘competing scaffolds’ [Figure 2d], considers
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the scenario where the two independent scaffolds compete strongly to recruit a common
intermediate-valency client.

Figure 2. (a) Valency-driven binding. In this system, all interactions between different protein types are enabled; the table
inset describes which proteins bind to one another with high-affinity (tick) or low-affinity (cross). A representative snapshot
of the coexisting condensate with the dilute phase at T∗ = 0.09 taken from a Direct Coexistence (DC) simulation is shown.
Here, 4-valency promiscuous binding proteins and 4-valency selective binding ones are colored in black and red respectively,
while lower valency proteins are colored in grey (as shown in the snapshots, top panel). (b) Like-valency binding. In this
system, proteins participate in either homotypic binding or interact with other proteins of like-valency, as indicated in the
table inset. A snapshot of this system at T∗ = 0.09 is shown, with the same color code as in (a). (c) Non-competing scaffolds.
Homotypic interactions are allowed (see diagonal of the table inset) plus the heterotypic interactions indicated in the table.
In this case, the two highest valency proteins (i.e., 4-valency promiscuous and 4-valency selective) cannot bind to each other.
For this interaction scheme, two different condensates with different compositions are formed in our DC simulations at
T∗ = 0.083. Note that for this system, no phase separation was observed at T∗ = 0.09. (d) Competing scaffolds. Similar
binding scheme as in (c), except that the 2 highest valency proteins now compete for binding to the 3-valency good topology
protein (see table inset). In this case, the system condenses into a single droplet, despite the absence of attractive interactions
between 4-valency promiscuous proteins and 4-valency selective ones. A representative snapshot of a DC simulation at
T∗ = 0.09 is shown. The same color code as in a–c is used, except for the 3-valency good topology proteins, which are now
depicted in green.

We observe that our ‘valency-driven binding’ condensates exhibit a modest heteroge-
neous distribution of their six different protein components [Figure 3a]. That is, when we
first measure the relative concentration of each type of protein as we move from the center
of the condensate to the interface [Figure 3a], we find that all proteins are present across the
whole condensate. However, when we compare the profiles for the highest versus lowest
valency proteins, we find that two highest-valency proteins (i.e., the 4-valency promiscu-
ous and selective) are more concentrated at the condensate center [blue shaded region in
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Figure 3a], and the two lowest valency species (i.e., 2.25-valency and 2-valency) show a
slight increase in their concentration at the interface [beige shaded region in Figure 3a].
In addition, as we observed before [41], in these ‘valency-driven binding’ condensates,
the relative concentration of a protein within the condensate is positively correlated with
its valency [Figure 3a]. Such preferential concentration of higher valency species within
condensates is expected to maximize the overall number of LLPS-stabilizing molecular
connections per unit of volume and increase the condensate stability [41]. In the following
section, we discuss an additional key thermodynamic driving force besides enthalpy leading
to the formation of these multilayered condensates.

Interestingly, in our ‘like-valency binding’ condensates, i.e., where proteins bind prefer-
entially to those of similar valencies, a more notable heterogeneous distribution of scaffolds
and clients within the condensate emerges [Figure 3b]. Specifically, the ‘like-valency bind-
ing’ mixture forms a condensate with a core that is almost exclusively enriched in scaffolds
[i.e., the 4-valency promiscuous and selective proteins in black and red, respectively in
Figure 3b] and that is mostly surrounded by clients [i.e., lower valency proteins; purple
curve in Figure 3b]. Here, the intermediate valency proteins (3-valency good and poor
topology) show a clear maximum in concentration near the interfaces, as this facilitates
their interactions with high-valency proteins at the core and low-valency proteins at the
outer interface [Figure 3b]. Positioning high-valency proteins at the condensate core favors
preferential saturation of their binding sites, enhancing the molecular connections per unit
of volume of the condensate [41].

Instead of forming a single six-component condensate, the imbalance of interactions
between the proteins in our ‘non-competing scaffolds’ mixture leads to the formation of two
distinct condensates with completely different compositions [see Figures 2c and 3c]. Notably,
each of these droplets has a multilayer organization with a core enriched in one of the two
high-valency species—i.e., either 4-valency-promiscuous or 4-valency-selective—and an
outer layer consisting of different low-valency species [see Figures 2c and 3c]. Because
the intermediate-valency proteins (i.e., the 3-valency good and 3-valency poor topology
species) do not interact directly with either of the two high-valency proteins, they remain
essentially excluded from both condensates, except at the interfaces where they exhibit a
moderate maximum concentration. Despite the expected high energetic cost associated
with the formation of two different interfaces, the formation of two separate multilay-
ered condensates becomes thermodynamically stable due to the significant enthalpic gain
obtained by burying each type of high valency proteins deep into the core of a separate
condensate and, as such, fully saturating their binding sites. We have confirmed that these
two different equilibrium condensates are stable at various temperatures, diffuse well, and
are immiscible even when in contact in very long simulations (t∗ = 105). This scenario high-
lights that modulation of the binding affinities among different components, for instance
stemming from post-translational modifications or introduction of additional components,
can have a strong impact on the spatial organization of proteins within biomolecular con-
densates, and even provide a mechanism to trigger the fission of condensates into different
coexisting drops with diverse compositions.

Surprisingly, our simulations reveal that activating the interaction between the inter-
mediate valency client and the two competing scaffolds, i.e., moving to our ‘competing
scaffolds’ mixture, rather than lead to competitive recruitment of the client into the two
different condensates, triggers fusion of the two separate condensates into a single drop
[Figure 2d]. This new fused multicomponent condensate also exhibits a distinctive heteroge-
neous distribution of species within [Figure 3d], consisting of an inner core predominantly
composed of the highest valency protein in the mixture (i.e., the 4-valency promiscuous
protein; black spheres in Figure 2d, and an outer layer enriched in the rest of the species
(i.e., the 4-valency selective, 3-valency good topology, and the lower valency species in red,
dark green, and grey spheres, respectively in Figure 2d. In the fused condensate, the two
highest valency proteins, which are inert to one another, are effectively bridged (but not
entirely mixed) by the intermediate-valency protein that binds strongly to both. Indeed, as
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in the previous multilayered architectures we observe, the low-valency proteins are most
concentrated in the outer layers of the condensate, exhibiting a maximum in concentration
at the droplet interface (Figure 3d).

Figure 3. Structural insights of multilayer and multidroplet organization. (a–d) Density profiles of each protein type for
the systems depicted in Figure 2a–d, respectively. In each profile, we plot the reduced density (ρ∗) of a given protein as a
function of distance (in units of molecular diameter, σ) from the droplet center of mass along the perpendicular direction to
the interface (long axis of the simulation box). The protein concentration of each system in the condensate (blue shaded
region), interfacial boundaries (beige shaded region) and dilute phase (white region) are reported for each mixture. Density
profiles of the different mixtures in terms of high-valency proteins (4-valency) vs low-valency ones (3- and 2-valency)
are also given for mixtures (a,b,d). Since the number of low-valency species is double than that of high-valency ones
by construction, we plot weighted density ρ∗w (total density of scaffolds/clients divided by the number of protein types
belonging to each family) against distance from the center of mass of the droplet. Note that for mixture (c) we display two
density profiles corresponding to each of the droplets observed in Figure 2c: (right) the 4-valency promiscuous rich one and
(left) the 4-valency selective rich droplet. The temperatures at which these analyses were performed are those indicated in
Figure 2.

As discussed above, the number of potential systems that can be explored with our
approach is very large. The limited set that we investigate here, explore scenarios that
we believe might be biologically relevant. For instance, the ‘valency-driven binding’ and
‘like-valency binding’ scenarios, look at how variations in the valency, and the subsequent
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preferential binding among like-valency species, can give rise to different multilayered
architectures. These scenarios are likely relevant in systems like stress granules [39,45], the
nucleoli [15], and scaffolds-and-clients in vitro systems [40]. Our ‘non-competing scaffolds’
and ‘competing scaffolds’ systems, assess cases where multicomponent systems might
form immiscible multilayered droplets that can later be driven to undergo fusion by the
addition of a common client. To summarize some of the key differences among the four
mixtures we investigate and our findings, for each mixture we define two order parameters
that measure the differences in the valencies among scaffolds and strongly-bound clients,
and the variance in binding affinities among all protein pairs in the mixtures, respectively.
Figure 4 locates our systems within a fraction of the enormous multiparametric phase-space
they occupy, and shows how multilayered structures are favoured when the difference in
the valencies of scaffolds and clients grows and/or the variance in the binding affinities
among components increases.

Figure 4. Relationship between valency and binding affinity for the different studied mixtures. On the y-axis, we plot the
difference between the scaffold valency and the average valency of clients. Here, scaffolds are: 4-valency promiscuous
proteins for the Binary Mix [41] and for the black condensate in Mix 3; both 4-valency proteins (i.e., promiscuous and
selective) in Mix 1, 2, and 4; and 4-valency selective proteins for the red condensate in Mix 3. Note, we consider separate
scaffolds for Mix 3; since, in that system, the two types of 4-valency proteins form distinct condensates. To calculate the
average valency of clients, we only consider clients that can bind to the respective scaffolds with a high binding affinity (i.e.,
non-zero in this case; Figure 2). The x-axis represents the variance in pairwise binding affinities for all the proteins in the
system; where the binding affinity for a given pairwise interaction is taken as the average valency of the two proteins in
question (see table insets in Figure 2 for details on pairwise binding interactions). An increase in either the scaffold–client
valency difference or the variance in protein binding affinities lead to progressively more heterogeneous condensates, as
indicated by the orange shaded background.
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3.2. Interfacial Free Energy as a Driving Force for Multilayered Condensate Organization

A common feature we observe in all the multilayered condensates we study is that
low-valency proteins are preferentially positioned towards the interface. Therefore, we
investigated if by positioning low-valency proteins at the interface, multilayered conden-
sates incur in a less significant interfacial energetic penalty than what they would exhibit
if the high-valency species where placed at the interface instead. To test this hypothesis,
following the procedure described in [53], we evaluate the interfacial free energy (or surface
tension) of both a single-component condensate formed by the highest valency protein in
our set (i.e., 4-valency/promiscuous), and our different six-component condensates, each
measured below their respective critical temperatures. We find that by committing low-
valency clients (2.25- and 2-valency proteins) to the condensate surface, the ‘valency-driven
binding’ multicomponent condensate achieves a huge reduction in its surface tension,
with respect to the cost of instead positioning high-valency proteins at the interface (i.e.,
γ = 0.05± 0.04kBT/σ2 and 1.44± 0.2kBT/σ2 for the six-component condensate versus the
single-component 4-valency promiscuous condensate, respectively, both measured at at
T∗ = 0.09). Similarly, the ‘like-valency binding’ condensates with an interface enriched
in 3-valency proteins exhibit a much lower surface tension (γ = 0.33± 0.20kBT/σ2 at
T∗ = 0.09) than the 4-valency promiscuous condensate at the same temperature. Such
trend is also evident in the ‘Non-competing scaffolds’ mixture that forms two separate
multilayered condensates, each with a lower surface tension (γ = 0.2± 0.15kBT/σ2 for the
droplet rich in 4-valency-promiscuous proteins and γ = 0.21± 0.1kBT/σ2 for the droplet
rich in 4-valency-selective proteins, measured at T∗ = 0.083) than that of the 4-valency-
promiscuous drop at the same temperature (i.e., 1.94± 0.2kBT/σ2 at T∗ = 0.083). Lastly,
the ‘Competing scaffolds’ system with various lower valency species at the surface also
shows a much lower surface tension (γ = 0.09± 0.04kBT/σ2 at T∗ = 0.09) than that of
the pure 4-valency promiscuous system (γ = 1.44± 0.2kBT/σ2 at T∗ = 0.09). The results
of the surface tension for the different mixtures and temperatures are summarized in
Table 1. These results—which collectively suggest that multilayered organizations that
position the lowest valency proteins towards the interface indeed reduce the interfacial
free energy of the condensate—are consistent with previous experimental work suggesting
that the surface tension is one of the key factors dictating the multilayered structure of
condensates [15,47].

Table 1. Surface tension (γ) of the pure component 4-valency promiscuous scaffold protein and
the four multicomponent mixtures studied in this work. Note that we provide two results for the
Non-competing scaffolds mixture, one for the 4-valency promiscuous droplet (left) and another for
the 4-valency selective condensate (right). The surface tension has been calculated following the
methodology detailed in references [92,93].

Surface Tension, γ (kBT/σ2)

System T∗ = 0.09 T∗ = 0.083

Pure component 4-valency promiscuous 1.44 ± 0.2 1.94 ± 0.2
Valency-driven binding mixture 0.05 ± 0.04 -

Like-valency binding mixture 0.33 ± 0.20 -
Non-competing scaffolds mixture - 0.2 ± 0.15 & 0.21 ± 0.1

Competing scaffolds mixture 0.09 ± 0.04 -

3.3. Exchange of Species in and Out of Condensates

To understand the potential implications of the inhomogeneous distribution of pro-
teins within multicomponent condensates, we monitor the exchange rate of the proteins
with different valencies in and out of the condensates, by defining an exchange rate order
parameter. This order parameter describes the average difference in the number of proteins
of each type, per unit of droplet area, that are exchanged between the condensate and the
dilute phase among subsequent independent configurations. A detailed description of this
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order parameter is given in Appendix B. Here, a configuration is considered independent
from the previous one when the proteins inside the condensate have diffused at least one
molecular diameter. Hence, higher values of our exchange rate order parameter imply
that proteins leave and reenter the condensate more frequently. Figure 5a,b show a sig-
nificant difference between the exchange rates of high and low valency proteins for the
‘valency-driven’ and ‘like-valency’ binding systems, respectively. Therefore, an important
functional implication stemming from the multilayered architecture of condensates is their
ability to selectively control the rate of exchange among different species. Proteins located
towards the surface (e.g., lower valency proteins), which negligibly affect condensate sta-
bility, can readily exchange in and out of condensates, whereas those essential to decrease
the enthalpy of the condensate and maintain its stability (higher valency species) remain
buried deep in the condensate core and exhibit sensibly lower exchange rates. We note
that, in our systems, the lowest valency proteins among the set (i.e., 2-valency proteins)
do not have the highest exchange rate because those proteins are significantly depleted
from the condensate throughout the simulations. This result reveals how the exchange
rate is correlated with the condensate partitioning coefficient, which depends on the local
environment, and which in heterogeneous multiphase condensates is not easily defined.
The inhomogeneous exchange of species in and out of condensates is consistent with
experiments revealing a much higher diffusion of RFP-SIM (low-valency client) than that
of its high-valency scaffold polySUMO [40]. Furthermore, high-valency proteins (PML
I–VI proteins) of promyelocytic leukemia nuclear bodies have higher residence times in the
condensate than the lower-valency species such as DAXX or BML [94]. Our results also
suggest how protein valency might explain the observation that stress granules from stable
cores that are surrounded by highly dynamic shells, that exhibit high surface exchange
rates with the cytosol [45].

Figure 5. (a,b) Exchange rate between the condensate and the dilute phase for proteins in systems (a) and (b) shown in
Figures 2 and 3. The exchange rate is defined as the averaged difference in the number of proteins per unit of area (N/σ2; in
our calculations, the interfacial area of the slab is two times the cross-section of our DC simulation box) for each component
between subsequent independent configurations. One configuration is considered independent from the previous one when
the proteins inside the condensate have diffused at least one molecular diameter. For both mixtures, a snapshot of the direct
coexistence simulation from which exchange rate calculations were performed is shown. 4-valency proteins are colored in
grey. The coloring code for all other proteins is the same as that used in the exchange rate diagrams. (c) Time-evolution
of the molar fraction of each individual specie in the condensed liquid phase as a function of time (in reduced units) for
the valency-driven system (Mix 1). t∗ = 0 corresponds to the homogeneous fluid state of the 6-component mixture. The
temperature of all the NVT simulations shown in this Figure is T∗ = 0.09.

Our simulations further reveal that the differential exchange of low and high valency
proteins in and out of condensates is also consistent with the different role that such proteins
play in the mechanism of formation of multilayered condensates. To assess such mechanism,
we focus on the ‘valency-driven’ mixture and monitor the molar fraction of each component
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inside the condensate as it nucleates and grows from the solution [Figure 5c]. Consistent
with the scaffold–client model of Banani et al. [40], our six-component ‘valency-driven
binding’ condensate forms via initial scaffold nucleation, which is followed by subsequent
recruitment of clients [40,41]. That is, the first nuclei are mostly composed of the highest
valency proteins [see peak at t∗∼1500 in the 4-valency promiscuous curve (black) of Figure 5c],
and as these nuclei grow and fuse, lower valency components are slowly incorporated until
an equilibrium composition is reached (t∗∼5000). Though we have only evaluated this
mechanism for the ‘valency-driven’ mixture, we expect this behavior to be even sharper
for the other systems where multilayered condensate organization is more pronounced.

4. Conclusions

Our simulations reveal how very subtle variations in the valencies and binding affini-
ties among different interacting multivalent proteins can modulate the internal structure
and composition of multicomponent condensates. We find that within multicomponent
condensates, high-valency proteins are placed preferentially at the core of the droplets,
while low-valency species concentrate towards the interface. Positioning the highest va-
lency proteins at the core ensures saturation of their binding sites, and hence, maximizes
the total number of bonds per unit of volume of condensate (enthalpy maximization).
Simultaneously, positioning the low-valency species towards the surface decreases the en-
ergetic penalty for interface formation (interfacial free energy minimization). The key role
of the surface tension in driving multilayered condensate organization has been reported
for in vitro complex coacervates [47,50]. Moreover, our findings provide a thermodynamic
explanation for the scaffold-client model [40], which proposes that nucleation of biomolec-
ular condensates with many components is driven by interactions between high-valency
proteins. Our simulations show that, during the first stages of nucleation, the high-valency
proteins bind to each other first, yielding small protein clusters. As the high-valency nuclei
begin to grow, they recruit lower-valency clients, keeping them around the core, and thus
minimizing the interfacial free energy until they reach the equilibrium composition.
This further suggests how the concept of valency (and its thermodynamic implications on
the condensate) might account on its own for the multilayered organization of systems
such as stress granules [39,45], the nucleoli [15], nuclear speckles [46], in vitro complex
coacervates [33,47,48], and mixtures of RNA-binding proteins and RNA molecules [34,49].

Our work also suggests mechanisms to regulate fission of condensates into multiple
drops with varying composition and fusion of various drops into a single multilayered
condensate. When two different high-valency proteins in a multicomponent mixture are
inert to one another and can concurrently act as scaffolds, they can each nucleate a separate
condensate independently and recruit different types of clients, forming two different stable
multilayered liquid condensates with distinct compositions. However, the addition of a
client that is capable of interacting strongly with both types of scaffolds can induce fusion
of the two droplets into a single (highly heterogeneous) condensate. Hence, the addition of
clients or chemical modifications on the binding affinities between clients and scaffolds can
be crucial for the organization of multicomponent condensates, including those where high-
valency proteins are inert to one another but can be bridged by clients. For instance, plant-
specific protein Embryo Defective 1579 condensates—implicated in regulating plant gene
transcription, mRNA splicing, growth and development—use the DNA Damage Binding
Protein 1 (DDB1) and Cullin 4 (CUL4) complex as molecular bridge to recruit CURLY LEAF-
containing Polycomb Repressive Complex 2 into the condensates [90]. This ability of protein
liquid droplets to easily fuse or split on demand based on the activation/deactivation of
interactions among their members, or the introduction of new species, might be a mechanism
used by cells to control the spatial segregation of their components [54,55].

Finally, we note that in our model, the absence of an explicit solvent implies that,
by construction, low-valency proteins will show lower interfacial free energy than high-
valency ones. This is a reasonable approximation since high-valency proteins are usually
expected to present higher pure component critical points and higher surface tensions
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with the solvent than low-valency proteins [95] (or engineered peptides [50]). However,
high-valency proteins with specific domains enriched in hydrophilic residues, still could
exhibit lower interfacial free energy with the solvent than low-valency hydrophobic species.
Nonetheless, even in that concrete scenario, the interplay between the enthalpic gain for
binding site saturation by high-valency proteins (or domains) and the surface tension
minimization of the total free energy upon condensate formation, might still favor burying
the high-valency proteins (or sequence domains) deep down in the condensate core and
exposing the low-valency species towards the surface. In this study, we focus on the
effect that binding affinities between different multivalent proteins has on LLPS; although
we note, that our results are subjected to a key magnitude in LLPS of multicomponent
condensates that is, the surface volume ratio of the droplets (in our simulations, the
cross-section of the simulation box and the total number of proteins in the system). This
important factor which modulates the appearance of multilayered and/or multidroplet
condensates when several species are present, will be further investigated in future work.
Taken together, our work highlights how subtle changes in binding affinities between
proteins in a multicomponent mixture can crucially transform the molecular organization
and multilayer behavior of biomolecular condensates.
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Appendix A. Simulation Details

To perform our calculations, we use molecular dynamics (MD) simulations. We model
our coarse-grained multivalent proteins using the MD-Patchy model proposed in Ref. [53],
which requires two different set of potentials: a Pseudo Hard-Sphere (PHS) [96] potential
to continuously describe the repulsive interaction and excluded volume between Hard-
Spheres, and a continuous square-well (CSW) [97] potential for the patch-patch attractive
interactions. The uPHS is given by the following expression:

uPHS =

{
λr(

λr
λa
)λa εR

[
( σ

r )
λr − ( σ

r )
λa
]
+ εR; if r < ( λr

λa
)σ

0; if r ≥ ( λr
λa
)σ

(A1)

where λa = 49 and λr = 50 are the exponents for the attractive and repulsive terms
respectively, εR accounts for the energy shift of the PHS interaction, σ is the molecular
diameter (and our unit of length) and r is the center-to-center distance between different
PHS particles. For the patch–patch interaction we use the following expression:

http://www.hpc.cam.ac.uk
https://github.com/CollepardoLab/md_patchy_model
https://github.com/CollepardoLab/md_patchy_model
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uCSW = −1
2

εCSW

[
1− tanh(

r− rw

α
)

]
(A2)

where εCSW is the depth of the potential energy well (and also the unit of energy in our
simulations), rw the radius of the attractive well, and α controls the steepness of the well.
We choose α = 0.005σ and rw = 0.12σ so that each patch can only interact with another
single patch.

The mass of each patch is a 5% of the central particle, which is set to 3.32× 1026 kg,
despite being this choice irrelevant for equilibrium simulations. This 5% ratio fixes the
moment of inertia of the patchy particles. All our results are given in reduced units: reduced
temperature is defined as T∗ = kBT/εCSW , reduced density as ρ∗ = (N/V)σ3, reduced
pressure as p∗ = pσ3/(kBT), and reduced time as t∗ = t

√
σ2m/(kBT). In order to keep the

PHS interaction as similar as possible to a pure HS interaction, we fix kBT/εR at a value
of 1.5 as suggested in Ref. [96]. We then control the effective strength of the attraction by
varying εCSW such that the reduced temperature T∗ = kBT/εCSW is of the order of O(0.1).

Since uPHS and uCSW potentials are both continuous and differentiable, we perform
all our simulations using the LAMMPS Molecular Dynamics package [98]. To carry out
our two-phase coexisting simulations, we employ the direct coexistence method [40,88,89].
This method consists in simulating coexistence by preparing periodically extended slabs of
the two coexisting phases, the condensed and the diluted one. We use an implicit solvent
model; accordingly, the diluted-liquid phase (protein-poor phase) and the condensed-liquid
phase (protein-rich phase) are effectively a vapour and a liquid, respectively. We prepare
the initial configurations in the following way: First, we build a cubic box configuration
containing all the components that we want to consider in our mixture. Then, we run an
NpT simulation so that our system condenses. For that purpose, conditions of temperature
T∗ = 0.09 and pressure p∗ = 0.16 are enough. We then elongate the box in one direction
(say, x) by performing an NpxT simulation at T∗ = 0.09 and p∗ = −0.16 until the x-length
of the simulation box is around 6 times longer than the other two. As a final step in the
preparation, we run an NVT simulation at T∗ = 0.15, temperature at which all proteins
distribute homogeneously in the simulation box. Then, this well-mixed system is used as
an initial configuration for all the simulations, which are conducted in the NVT ensemble.

For all mixtures we used 1800 proteins, i.e., 300 proteins of each type, as previously
described. The resulting sizes of the simulation boxes were: Lx = 6Ly = 6Lz = 89.5σ for Mix
1 (‘valency-driven binding’); Lx = 6.6Ly = 6.6Lz = 88.5σ for Mix 2 (‘like-valency binding’),
Lx = 8.2Ly = 8.2Lz = 129σ for Mix 3 (‘Non-competing scaffolds’), and Lx = 6Ly = 6Lz =
89.5σ for Mix 4 (‘Competing scaffolds’). Periodic boundary conditions were used in the
three directions of space. The timestep chosen for the Verlet integration of equations of
motion was ∆t∗ = 3.7× 10−4. The cut-off radius was set to 1.17σ for both potentials. We use
a Nosé-Hoover thermostat [99,100] for the NVT simulations with a relaxation time of 0.074
in reduced units. For NpT simulations, a Nosé-Hoover barostat with the same relaxation
time was employed. To compute the phase diagram and interfacial free energy from our
direct coexistence simulations we employ the methodology explained in Ref. [53]

Appendix B. Local Order Parameter

To identify the number of proteins that belong to the condensed or to the diluted
phase as in Figure 5, we make use of a simple local order parameter [101–103] based on the
number of neighbours that a protein has within a given cut-off distance [see Figure A1a].

To tune the order parameter, we need to carefully define a number of neighbours
threshold that, for a given cut-off distance, allows us to fairly identify which proteins belong
to each phase. To determine such threshold we use the following procedure: For setting the
cut-off distance, we compute the radial distribution function of the 6-component mixture
in the condensed phase at the coexisting density and composition at T∗ = 0.09. We select a
slightly larger distance of the first minimum of the radial distribution function, which in
our case is rc = 1.20σ (the first minimum in the radial distribution function roughly appears
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at 1.17σ). Secondly, for determining the threshold in the number of neighbours for such
cut-off distance, we simulate both phases independently at their equilibrium coexisting
conditions and we evaluate the number of mislabelled proteins as a function of different
number of neighbours (i.e., 0, 1, 2, . . . , 6) [see Figure A1b]. The number of neighbours
which minimizes the percentage of mislabelled proteins in both phases is then selected as a
threshold. Our local order parameter threshold identifies that any protein with two or more
neighbours within a cut-off distance of rc = 1.20σ should be considered as a condensed-
liquid-like protein (NNeighbours ≥ 2). Although for our purposes the optimization of the
order parameter is not crucial, since these values was used as an input for obtaining any
quantitative prediction from theories such as the Classical Nucleation Theory [104–106],
this criterion allows us to reliably identify the number of proteins composing each phase in
coexisting liquid-vapor systems [101,103]. Lastly, to compute the different density profiles
shown in Figure 3, we employ this order parameter to find the biggest cluster of proteins
belonging to the condensed phase and then find its center of mass employing an algorithm
than allows us to determine such center through the periodic boundary conditions in the
long axis of the simulation box [107].

Figure A1. (a) Snapshot of the interfacial region between the two coexisting phases of a 6-component
mixture. The order parameter distinguishes between proteins (in grey) of both phases by evaluating
the number of neighbours that each protein has for a given cut-off distance. For considering a protein
belonging to the condensed phase, it needs to have at least 2 neighbours (independent of its valency)
within a cut-off distance of rcut-off = 1.20σ. (b) Percentage of mislabelled proteins as a function of
the number of neighbours in the diluted (purple curve) and in the condensed phase (orange curve)
for a cut-off distance of 1.20σ. Both curves (phases) were evaluated in bulk NVT simulations at the
coexisting density and composition of the ‘valency-driven binding’ system at T∗ = 0.09.

References
1. Sear, R.P. The cytoplasm of living cells: A functional mixture of thousands of components. J. Phys. Condens. Matter 2005, 17,

S3587–S3595. [CrossRef]
2. Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58.

[CrossRef]
3. Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol.

Cell Biol. 2017, 18, 285–298. [CrossRef] [PubMed]
4. Shin, Y.; Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 2017, 357, eaaf4382. [CrossRef]
5. Su, X.; Ditlev, J.A.; Hui, E.; Xing, W.; Banjade, S.; Okrut, J.; King, D.S.; Taunton, J.; Rosen, M.K.; Vale, R.D. Phase separation of

signaling molecules promotes T cell receptor signal transduction. Science 2016, 352, 595–599. [CrossRef] [PubMed]
6. Li, P.; Banjade, S.; Cheng, H.; Kim, S.; Chen, B.; Guo, L.; Llaguno, M.; Hollingsworth, J.V.; King, D.S. Phase transitions in the

assembly of multivalent signalling proteins. Nature 2012, 483, 336–340. [CrossRef]
7. Shin, Y.; Chang, Y.C.; Lee, D.S.; Berry, J.; Sanders, D.W.; Ronceray, P.; Wingreen, N.S.; Haataja, M.; Brangwynne, C.P. Liquid

Nuclear Condensates Mechanically Sense and Restructure the Genome. Cell 2018, 175, 1481–1491. [CrossRef]
8. Sabari, B.R.; Dall’Agnese, A.; Boija, A.; Klein, I.A.; Coffey, E.L.; Shrinivas, K.; Abraham, B.J.; Hannett, N.M.; Zamudio, A.V.;

Manteiga, J.C.; et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361,
eaar3958. [CrossRef] [PubMed]

http://doi.org/10.1088/0953-8984/17/45/052
http://dx.doi.org/10.1146/annurev-cellbio-100913-013325
http://dx.doi.org/10.1038/nrm.2017.7
http://www.ncbi.nlm.nih.gov/pubmed/28225081
http://dx.doi.org/10.1126/science.aaf4382
http://dx.doi.org/10.1126/science.aad9964
http://www.ncbi.nlm.nih.gov/pubmed/27056844
http://dx.doi.org/10.1038/nature10879
http://dx.doi.org/10.1016/j.cell.2018.10.057
http://dx.doi.org/10.1126/science.aar3958
http://www.ncbi.nlm.nih.gov/pubmed/29930091


Biomolecules 2021, 11, 278 16 of 19

9. Klosin, A.; Oltsch, F.; Harmon, T.; Honigmann, A.; Jülicher, F.; Hyman, A.A.; Zechner, C. Phase separation provides a mechanism
to reduce noise in cells. Science 2020, 367, 464–468. [CrossRef]

10. Sheu-Gruttadauria, J.; MacRae, I.J. Phase Transitions in the Assembly and Function of Human miRISC. Cell 2018, 173, 946–957.e16.
[CrossRef] [PubMed]

11. Franzmann, T.M.; Alberti, S. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. J. Biol.
Chem. 2019, 294, 7128–7136. [CrossRef]

12. Kroschwald, S.; Munder, M.C.; Maharana, S.; Franzmann, T.M.; Richter, D.; Ruer, M.; Hyman, A.A.; Alberti, S. Different Material
States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery. Cell Rep. 2018, 23, 3327–3339. [CrossRef]
[PubMed]

13. Bouchard, J.J.; Otero, J.H.; Scott, D.C.; Szulc, E.; Martin, E.W.; Sabri, N.; Granata, D.; Marzahn, M.R.; Lindorff-Larsen, K.;
Salvatella, X.; et al. Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated
Compartments. Mol. Cell 2018, 72, 19–36.e8. [CrossRef] [PubMed]

14. Alberti, S.; Carra, S. Quality Control of Membraneless Organelles. J. Mol. Biol. 2018, 430, 4711–4729. [CrossRef] [PubMed]
15. Feric, M.; Vaidya, N.; Harmon, T.S.; Mitrea, D.M.; Zhu, L.; Richardson, T.M.; Kriwacki, R.W.; Pappu, R.V.; Brangwynne, C.P.

Coexisting liquid phases underlie nucleolar subcompartments. Cell 2016, 165, 1686–1697. [CrossRef] [PubMed]
16. Lee, K.H.; Zhang, P.; Kim, H.J.; Mitrea, D.M.; Sarkar, M.; Freibaum, B.D.; Cika, J.; Coughlin, M.; Messing, J.; Molliex, A.; et al. C9orf72

Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 2016, 167, 774–788.e17.
[CrossRef]

17. Mitrea, D.M.; Cika, J.A.; Guy, C.S.; Ban, D.; Banerjee, P.R.; Stanley, C.B.; Nourse, A.; Deniz, A.A.; Kriwacki, R.W. Nucleophosmin
integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 2016,
5, e13571. [CrossRef]

18. Woodruff, J.B.; Gomes, B.F.; Widlund, P.O.; Mahamid, J.; Honigmann, A.; Hyman, A.A. The Centrosome Is a Selective Condensate
that Nucleates Microtubules by Concentrating Tubulin. Cell 2017, 169, 1066–1077.e10. [CrossRef]

19. Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular
condensates. Cell 2019, 176, 419–434. [CrossRef]

20. Brundin, P.; Melki, R.; Kopito, R.; Brundin, P.; Melki, R.; Kopito, R. Prion-like transmission of protein aggregates in neurodegener-
ative diseases. Nat. Rev. Mol. Cell Biol. 2010, 11, 301–307. [CrossRef]

21. Ambadipudi, S.; Biernat, J.; Riedel, D.; Mandelkow, E.; Zweckstetter, M. Liquid–liquid phase separation of the microtubule-
binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 2017, 8, 1–13. [CrossRef]

22. Shulman, J.M.; De Jager, P.L.; Feany, M.B. Parkinson’s Disease: Genetics and Pathogenesis. Annu. Rev. Pathol. Mech. Dis. 2011,
6, 193–222. [CrossRef] [PubMed]

23. Ray, S.; Singh, N.; Kumar, R.; Patel, K.; Pandey, S.; Datta, D.; Mahato, J.; Panigrahi, R.; Navalkar, A.; Mehra, S.; et al. α-Synuclein
aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 2020, 12, 705–716. [CrossRef] [PubMed]

24. Robberecht, W.; Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 2013, 14, 248–264. [CrossRef]
25. Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A.; Kim, H.; Mittag, T.; Taylor, J. Phase Separation by Low Complexity

Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell 2015, 163, 123–133. [CrossRef] [PubMed]
26. Xiang, S.; Kato, M.; Wu, L.; Lin, Y.; Ding, M.; Zhang, Y.; Yu, Y.; McKnight, S. The LC Domain of hnRNPA2 Adopts Similar

Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei. Cell 2015, 163, 829–839. [CrossRef] [PubMed]
27. Elbaum-Garfinkle, S.; Kim, Y.; Szczepaniak, K.; Chen, C.C.H.; Eckmann, C.R.; Myong, S.; Brangwynne, C.P. The disordered P

granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. USA
2015, 112, 7189–7194. [CrossRef] [PubMed]

28. Mitrea, D.M.; Cika, J.A.; Stanley, C.B.; Nourse, A.; Onuchic, P.L.; Banerjee, P.R.; Phillips, A.H.; Park, C.G.; Deniz, A.A.;
Kriwacki, R.W. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat. Commun. 2018,
9, 1–13. [CrossRef]

29. Asherie, N.; Pande, J.; Lomakin, A.; Ogun, O.; Hanson, S.R.; Smith, J.B.; Benedek, G.B. Oligomerization and phase separation in
globular protein solutions. Biophys. Chem. 1998, 75, 213–227. [CrossRef]

30. Sun, X.S.; Wang, D.; Zhang, L.; Mo, X.; Zhu, L. Morphology and phase separation of hydrophobic clusters of soy globular protein
polymers. Macromol. Biosci. 2008, 8, 295–303. [CrossRef]

31. Joseph, J.A.; Espinosa, J.R.; Sanchez-Burgos, I.; Garaizar, A.; Frenkel, D.; Collepardo-Guevara, R. Thermodynamics and kinetics
of phase separation of protein–RNA mixtures by a minimal model. Biophys. J. 2021. [CrossRef]

32. Burke, K.A.; Janke, A.M.; Rhine, C.L.; Fawzi, N.L. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal
Domain of RNA Polymerase II. Mol. Cell 2015, 60, 231–241. [CrossRef]

33. Boeynaems, S.; Holehouse, A.S.; Weinhardt, V.; Kovacs, D.; Van Lindt, J.; Larabell, C.; Van Den Bosch, L.; Das, R.; Tompa, P.S.;
Pappu, R.V.; et al. Spontaneous driving forces give rise to protein- RNA condensates with coexisting phases and complex material
properties. Proc. Natl. Acad. Sci. USA 2019, 116, 7889–7898. [CrossRef]

34. Sanders, D.W.; Kedersha, N.; Lee, D.S.; Strom, A.R.; Drake, V.; Riback, J.A.; Bracha, D.; Eeftens, J.M.; Iwanicki, A.; Wang, A.; et al.
Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 2020, 181, 306–324. [CrossRef]
[PubMed]

http://dx.doi.org/10.1126/science.aav6691
http://dx.doi.org/10.1016/j.cell.2018.02.051
http://www.ncbi.nlm.nih.gov/pubmed/29576456
http://dx.doi.org/10.1074/jbc.TM118.001190
http://dx.doi.org/10.1016/j.celrep.2018.05.041
http://www.ncbi.nlm.nih.gov/pubmed/29898402
http://dx.doi.org/10.1016/j.molcel.2018.08.027
http://www.ncbi.nlm.nih.gov/pubmed/30244836
http://dx.doi.org/10.1016/j.jmb.2018.05.013
http://www.ncbi.nlm.nih.gov/pubmed/29758260
http://dx.doi.org/10.1016/j.cell.2016.04.047
http://www.ncbi.nlm.nih.gov/pubmed/27212236
http://dx.doi.org/10.1016/j.cell.2016.10.002
http://dx.doi.org/10.7554/eLife.13571
http://dx.doi.org/10.1016/j.cell.2017.05.028
http://dx.doi.org/10.1016/j.cell.2018.12.035
http://dx.doi.org/10.1038/nrm2873
http://dx.doi.org/10.1038/s41467-017-00480-0
http://dx.doi.org/10.1146/annurev-pathol-011110-130242
http://www.ncbi.nlm.nih.gov/pubmed/21034221
http://dx.doi.org/10.1038/s41557-020-0465-9
http://www.ncbi.nlm.nih.gov/pubmed/32514159
http://dx.doi.org/10.1038/nrn3430
http://dx.doi.org/10.1016/j.cell.2015.09.015
http://www.ncbi.nlm.nih.gov/pubmed/26406374
http://dx.doi.org/10.1016/j.cell.2015.10.040
http://www.ncbi.nlm.nih.gov/pubmed/26544936
http://dx.doi.org/10.1073/pnas.1504822112
http://www.ncbi.nlm.nih.gov/pubmed/26015579
http://dx.doi.org/10.1038/s41467-018-03255-3
http://dx.doi.org/10.1016/S0301-4622(98)00208-7
http://dx.doi.org/10.1002/mabi.200700235
http://dx.doi.org/10.1016/j.bpj.2021.01.031
http://dx.doi.org/10.1016/j.molcel.2015.09.006
http://dx.doi.org/10.1073/pnas.1821038116
http://dx.doi.org/10.1016/j.cell.2020.03.050
http://www.ncbi.nlm.nih.gov/pubmed/32302570


Biomolecules 2021, 11, 278 17 of 19

35. Agrawal, S.; Kuo, P.H.; Chu, L.Y.; Golzarroshan, B.; Jain, M.; Yuan, H.S. RNA recognition motifs of disease-linked RNA-binding
proteins contribute to amyloid formation. Sci. Rep. 2019, 9, 1–12. [CrossRef]

36. Roden, C.; Gladfelter, A.S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol.
2020, 1–13. doi:10.1038/s41580-020-0264-6. [CrossRef]

37. Loughlin, F.E.; Wilce, J.A. TDP-43 and FUS—Structural insights into RNA recognition and self-association. Curr. Opin. Struct.
Biol. 2019, 59, 134–142. [CrossRef] [PubMed]

38. Polymenidou, M. The RNA face of phase separation. Science 2018, 360, 859–860. [CrossRef] [PubMed]
39. Guillén-Boixet, J.; Kopach, A.; Holehouse, A.S.; Wittmann, S.; Jahnel, M.; Schlüssler, R.; Kim, K.; Trussina, I.R.; Wang, J.;

Mateju, D.; et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation.
Cell 2020, 181, 346–361. [CrossRef]

40. Banani, S.F.; Rice, A.M.; Peeples, W.B.; Lin, Y.; Jain, S.; Parker, R.; Rosen, M.K. Compositional Control of Phase-Separated Cellular
Bodies. Cell 2016, 166, 651–663. [CrossRef] [PubMed]

41. Espinosa, J.R.; Joseph, J.A.; Sanchez-Burgos, I.; Garaizar, A.; Frenkel, D.; Collepardo-Guevara, R. Liquid network connectivity
regulates the stability and composition of biomolecular condensates with many components. Proc. Natl. Acad. Sci. USA 2020, 117,
13238–13247. [CrossRef] [PubMed]

42. Alberti, S. Phase separation in biology. Curr. Biol. 2017, 27, R1097–R1102. [CrossRef]
43. Wang, J.; Choi, J.M.; Holehouse, A.S.; Lee, H.O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.;

Drechsel, D.; et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding
proteins. Cell 2018, 174, 688–699. [CrossRef] [PubMed]

44. Nott, T.; Petsalaki, E.; Farber, P.; Jervis, D.; Fussner, E.; Plochowietz, A.; Craggs, T.D.; Bazett-Jones, D.; Pawson, T.; Forman-
Kay, J.; et al. Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles.
Mol. Cell 2015, 57, 936–947. [CrossRef]

45. Jain, S.; Wheeler, J.R.; Walters, R.W.; Agrawal, A.; Barsic, A.; Parker, R. ATPase-modulated stress granules contain a diverse
proteome and substructure. Cell 2016, 164, 487–498. [CrossRef] [PubMed]

46. Fei, J.; Jadaliha, M.; Harmon, T.S.; Li, I.T.S.; Hua, B.; Hao, Q.; Holehouse, A.S.; Reyer, M.; Sun, Q.; Freier, S.M.; et al. Quantitative
analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 2017, 130, 4180–4192.
[CrossRef]

47. Lu, T.; Spruijt, E. Multiphase complex coacervate droplets. J. Am. Chem. Soc. 2020, 142, 2905–2914. [CrossRef]
48. Mountain, G.A.; Keating, C.D. Formation of Multiphase Complex Coacervates and Partitioning of Biomolecules within them.

Biomacromolecules 2019, 21, 630–640. [CrossRef] [PubMed]
49. Kaur, T.; Raju, M.; Alshareedah, I.; Davis, R.B.; Potoyan, D.A.; Banerjee, P.R. Sequence-encoded and composition-dependent

protein-RNA interactions control multiphasic condensate topologies. bioRxiv 2020. [CrossRef]
50. Fisher, R.S.; Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 2020,

11, 4628. [CrossRef]
51. Jacobs, W.M.; Frenkel, D. Phase transitions in biological systems with many components. Biophys. J. 2017, 112, 683–691. [CrossRef]
52. Dar, F.; Pappu, R.V. Multidimensional Phase Diagrams for Multicomponent Systems Comprising Multivalent Proteins. Biophys. J.

2020, 118, 213a. [CrossRef]
53. Espinosa, J.R.; Garaizar, A.; Vega, C.; Frenkel, D.; Collepardo-Guevara, R. Breakdown of the law of rectilinear diameter and

related surprises in the liquid-vapor coexistence in systems of patchy particles. J. Chem. Phys. 2019, 150, 224510. [CrossRef]
54. Wheeler, R.J.; Hyman, A.A. Controlling compartmentalization by non-membrane-bound organelles. Philos. Trans. R. Soc. Biol.

Sci. 2018, 373, 20170193. [CrossRef]
55. Strom, A.R.; Brangwynne, C.P. The liquid nucleome—Phase transitions in the nucleus at a glance. J. Cell Sci. 2019, 132, jcs235093.

[CrossRef] [PubMed]
56. Paloni, M.; Bailly, R.; Ciandrini, L.; Barducci, A. Unraveling Molecular Interactions in Liquid–Liquid Phase Separation of

Disordered Proteins by Atomistic Simulations. J. Phys. Chem. B 2020, 124, 9009–9016. [CrossRef] [PubMed]
57. Zheng, W.; Dignon, G.L.; Jovic, N.; Xu, X.; Regy, R.M.; Fawzi, N.L.; Kim, Y.C.; Best, R.B.; Mittal, J. Molecular Details of Protein

Condensates Probed by Microsecond Long Atomistic Simulations. J. Phys. Chem. B 2020, 124, 11671–11679. [CrossRef]
58. Welsh, T.J.; Krainer, G.; Espinosa, J.R.; Joseph, J.A.; Sridhar, A.; Jahnel, M.; Arter, W.E.; Saar, K.L.; Alberti, S.; Collepardo-

Guevara, R.; et al. Single particle zeta-potential measurements reveal the role of electrostatics in protein condensate stability.
bioRxiv 2020. [CrossRef]

59. Nguemaha, V.; Zhou, H.X. Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory
Components on Protein Droplet Formation. Sci. Rep. 2018, 8, 6728. [CrossRef]

60. Dignon, G.L.; Zheng, W.; Mittal, J. Simulation methods for liquid–liquid phase separation of disordered proteins. Curr. Opin.
Chem. Eng. 2019, 23, 92–98. [CrossRef]

61. Pak, A.J.; Voth, G.A. Advances in coarse-grained modeling of macromolecular complexes. Curr. Opin. Struct. Biol. 2018, 52, 119–126.
[CrossRef]

62. Ruff, K.M.; Pappu, R.V.; Holehouse, A.S. Conformational preferences and phase behavior of intrinsically disordered low
complexity sequences: Insights from multiscale simulations. Curr. Opin. Struct. Biol. 2019, 56, 1–10. [CrossRef]

63. Brangwynne, C.P.; Tompa, P.; Pappu, R.V. Polymer physics of intracellular phase transitions. Nat. Phys. 2015, 11, 899–904. [CrossRef]

http://dx.doi.org/10.1038/s41598-019-42367-8
http://dx.doi.org/10.1038/s41580-020-0264-6
http://dx.doi.org/10.1016/j.sbi.2019.07.012
http://www.ncbi.nlm.nih.gov/pubmed/31479821
http://dx.doi.org/10.1126/science.aat8028
http://www.ncbi.nlm.nih.gov/pubmed/29798872
http://dx.doi.org/10.1016/j.cell.2020.03.049
http://dx.doi.org/10.1016/j.cell.2016.06.010
http://www.ncbi.nlm.nih.gov/pubmed/27374333
http://dx.doi.org/10.1073/pnas.1917569117
http://www.ncbi.nlm.nih.gov/pubmed/32482873
http://dx.doi.org/10.1016/j.cub.2017.08.069
http://dx.doi.org/10.1016/j.cell.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/29961577
http://dx.doi.org/10.1016/j.molcel.2015.01.013
http://dx.doi.org/10.1016/j.cell.2015.12.038
http://www.ncbi.nlm.nih.gov/pubmed/26777405
http://dx.doi.org/10.1242/jcs.206854
http://dx.doi.org/10.1021/jacs.9b11468
http://dx.doi.org/10.1021/acs.biomac.9b01354
http://www.ncbi.nlm.nih.gov/pubmed/31743027
http://dx.doi.org/10.1101/2020.08.30.273748
http://dx.doi.org/10.1038/s41467-020-18224-y
http://dx.doi.org/10.1016/j.bpj.2016.10.043
http://dx.doi.org/10.1016/j.bpj.2019.11.1270
http://dx.doi.org/10.1063/1.5098551
http://dx.doi.org/10.1098/rstb.2017.0193
http://dx.doi.org/10.1242/jcs.235093
http://www.ncbi.nlm.nih.gov/pubmed/31754043
http://dx.doi.org/10.1021/acs.jpcb.0c06288
http://www.ncbi.nlm.nih.gov/pubmed/32936641
http://dx.doi.org/10.1021/acs.jpcb.0c10489
http://dx.doi.org/10.1101/2020.04.20.047910
http://dx.doi.org/10.1038/s41598-018-25132-1
http://dx.doi.org/10.1016/j.coche.2019.03.004
http://dx.doi.org/10.1016/j.sbi.2018.11.005
http://dx.doi.org/10.1016/j.sbi.2018.10.003
http://dx.doi.org/10.1038/nphys3532


Biomolecules 2021, 11, 278 18 of 19

64. Liu, H.; Kumar, S.K.; Sciortino, F. Vapor-liquid coexistence of patchy models: Relevance to protein phase behavior. J. Chem. Phys.
2007, 127, 084902. [CrossRef] [PubMed]

65. Chou, H.Y.; Aksimentiev, A. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate. J. Phys. Chem. Lett.
2020, 11, 4923–4929. [CrossRef] [PubMed]

66. Ruff, K.M.; Harmon, T.S.; Pappu, R.V. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of
block-copolymeric protein sequences. J. Chem. Phys. 2015, 143, 243123. [CrossRef]

67. Harmon, T.S.; Holehouse, A.S.; Rosen, M.K.; Pappu, R.V. Intrinsically disordered linkers determine the interplay between phase
separation and gelation in multivalent proteins. eLife 2017, 6, e30294. [CrossRef]

68. Choi, J.M.; Dar, F.; Pappu, R.V. LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput. Biol.
2019, 15, e1007028. [CrossRef]

69. Garaizar, A.; Sanchez-Burgos, I.; Collepardo-Guevara, R.; Espinosa, J.R. Expansion of Intrinsically Disordered Proteins Increases
the Range of Stability of Liquid–Liquid Phase Separation. Molecules 2020, 25, 4705. [CrossRef] [PubMed]

70. Krainer, G.; Welsh, T.J.; Joseph, J.A.; Espinosa, J.R.; Wittmann, S.; de Csilléry, E.; Sridhar, A.; Toprakcioglu, Z.; Gudiškytė, G.;
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