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Assessment of physiological signs associated with COVID-19
measured using wearable devices

Aravind Natarajan®'™, Hao-Wei Su’ and Conor Heneghan'

Respiration rate, heart rate, and heart rate variability (HRV) are some health metrics that are easily measured by consumer devices,
which can potentially provide early signs of illness. Furthermore, mobile applications that accompany wearable devices can be used
to collect relevant self-reported symptoms and demographic data. This makes consumer devices a valuable tool in the fight against
the COVID-19 pandemic. Data on 2745 subjects diagnosed with COVID-19 (active infection, PCR test) were collected from May 21 to
September 11, 2020, consisting of PCR positive tests conducted between February 16 and September 9. Considering male (female)
participants, 11.9% (11.2%) of the participants were asymptomatic, 48.3% (47.8%) recovered at home by themselves, 29.7% (33.7%)
recovered at home with the help of someone else, 9.3% (6.6%) required hospitalization without ventilation, and 0.5% (0.4%)
required ventilation. There were a total of 21 symptoms reported, and the prevalence of symptoms varies by sex. Fever was present
in 59.4% of male subjects and in 52% of female subjects. Based on self-reported symptoms alone, we obtained an AUC of 0.82 +
0.017 for the prediction of the need for hospitalization. Based on physiological signs, we obtained an AUC of 0.77 + 0.018 for the
prediction of illness on a specific day. Respiration rate and heart rate are typically elevated by illness, while HRV is decreased.
Measuring these metrics, taken in conjunction with molecular-based diagnostics, may lead to better early detection and monitoring

of COVID-19.
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INTRODUCTION

The year 2020 has seen the emergence of a global pandemic caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) virus. The disease caused by this virus typically presents as a lower
respiratory infection, though many atypical presentations have been
reported. This has caused a major health challenge globally due to
the apparent high transmissibility of this virus in a previously
unexposed population. Of particular concern is that the primary
mechanisms by which the disease is transmitted are still somewhat
under debate (e.g., the importance of airborne transmission)’, and
the potential for infection by asymptomatic and pre-symptomatic
patients (see for e.g., the discussion in Oran and Topol®). The disease
is highly contagious, with transmission possible 2.3 days prior to the
onset of symptoms, and peaking 0.7 days prior to the onset of
symptoms according to one model’. As a result, a great deal of
effort is underway to potentially diagnose COVID-19 early.

The popularity and widespread availability of consumer
wearable devices has made possible the use of health metrics
such as respiration rate, heart rate, heart rate variability (HRV),
sleep, steps, etc. in order to predict the onset of COVID-19 or
similar illnesses. A 1 °C rise in body temperature can increase heart
rate by 8.5 beats per minute (b.p.m.) on average®. Measuring the
resting heart rate, or heart rate during sleep can therefore be a
useful diagnostic tool. Similarly, the respiration rate is elevated
when patients present with a fever®. HRV is the variability in the
time between successive heart beats (the time between
successive heart beats is called the “RR interval”), and is a
valuable, non-invasive probe of the autonomic nervous system®2,
Lowered values are indicative of increased mortality’, and may
provide early diagnosis of infection'. A study of HRV in critically ill
COVID-19 patients showed that the approximate entropy and the
sample entropy were decreased in COVID-19 patients compared
to critically ill sepsis patients'".

Zhu et al.'? studied heart rate, activity, and sleep data collected
from Huami wearable devices to potentially identify outbreaks of
COVID-19, and concluded that at a population level an anomaly
detection algorithm provided correlation with the measured
infection rate. Menni et al."® analyzed symptoms reported through
a smartphone app and developed a model to predict the
likelihood of COVID-19 based on the symptoms. Marinsek
et al." studied data from Fitbit devices as a means for early
detection and management of COVID-19. Miller et al."> used the
respiration rate obtained from Whoop devices to detect COVID-19.
Mishra et al.'® analyzed heart rate, steps, and sleep data collected
from Fitbit devices to identify the onset of COVID-19.

In this paper, we consider the correlation between changes in
physiological signs related to respiration rate, heart rate and
HRV, and the corresponding presence of diseases assessed both
through confirmed laboratory testing and self-reported symp-
toms and the time-course of the disease. We show that it is
possible to use changes in these physiological metrics to detect
illness, and provide estimates of sensitivity and specificity. In
addition, given the reporting of symptoms by study participants,
we provide an estimate of predicted disease severity based
solely on symptomes.

RESULTS

Prediction of hospitalization based on symptoms

We first describe the results of the logistic regression classifier for
the prediction of hospitalization based on the symptoms
presented. Figure 1a shows the ROC curve where “true positive”
indicates a prediction of hospitalization for an individual who
indeed required hospitalization. Averaged over five folds, the area
under ROC (AUC) is 0.82 +0.017. Figure 1b shows the distribution
of classifier probabilities for mild/moderate cases (who did not
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Fig. 1 Predicting the need for hospitalization given the symptoms. a The AUC averaged over five folds is 0.82 + 0.02. b Predicted probability
distribution for mild/moderate versus severe/critical cases (area normalized to 1). The class imbalance influences the classifier probabilities.
c Reliability plot done by bootstrapping the logistic regression with different 80-20% train-test splits repeated 20,000 times. The predicted
probability is more accurate below 25% which is where most samples are located. d Normalized distribution of the bootstrapped predictive

probability.

require hospitalization) and for severe/critical cases (subjects who
were hospitalized). Note that the classifier probabilities are not
true probabilities in the frequentist sense, and are influenced by
the class imbalance. Figure 1c shows the reliability plot done by
bootstrapping the logistic regression with different 80-20% train-
test splits repeated 20,000 times. The predicted probability is more
accurate below 25% which is where most samples are located.
Figure 1d shows the normalized distribution of the bootstrapped
predictive probability. The probability of the need for hospitaliza-
tion p may be expressed as:

z = G+ZW,'S,‘
1’ (M
p = Trez>

where a = —3.631, s; is a symptom (1 if the symptom is present,
and 0 otherwise), and w; is the weight corresponding to symptom
si. The weights for the various symptoms are shown in Table 1.
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We rescale the two continuous variables (age and BMI) as follows:

X — Hy
X = ——=
s o (2)
where x; is the scaled version and x stands for age or BMI; u, and
o, are the respective mean and standard deviation, which are
(40.75 years, 12.31 years) for age and (30.77, 7.49) for BMI. For the
sex, 1 indicates male and 0 indicates female.

Change in biometrics and classification of illness

Let us now consider the problem of determining whether an
individual is sick or healthy given the physiological metrics. Figure
2 shows the average Z-scores of symptomatic individuals for the
respiration rate, heart rate, root mean square of successive
differences (RMSSD), and entropy as a function of day, where day
Dy represents the start of symptoms. The error bars represent the
standard error of the mean. The respiration rate shows the largest
effect and also takes the longest time to return to its base value. It
is interesting to note that the heart rate decreases on average,
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Table 1. Predicting the need for hospitalization: importance of
symptoms.

Symptom Weight
Shortness of breath 1.325
Vomiting 0.891
Confusion 0.822
Fever 0.645
Loss of appetite 0.563
Age (scaled) 0.456
Swelling in the fingers and toes 0.379
BMI (scaled) 0.376
Chest pain 0.303
Cough 0.167
Sex (male: yes/no) 0.117
Diarrhea 0.082
Rash 0.060
Chills 0.042
Body aches —0.008
Decrease in taste and smell —0.057
Hoarse voice —0.082
Eye pain —0.205
Neck pain —0.267
Stomach ache —0.283
Fatigue —0.293
Sore throat —0.398
Head ache —0.458
Congestion —0.750
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Fig. 2 Variation of metrics with day. Shown are the Z-scores for
respiration rate, heart rate, RMSSD, and entropy. Day 0 (Do)
represents the start of symptoms. The respiration rate and heart
rate are elevated during times of sickness, while the RMSSD and
entropy are decreased. These metrics may change a few days prior
to the start of symptoms. The heart rate decreases on average,
following day D, 5, and returning to the base value by day D, ,,. The
HRV metrics are slightly elevated on average during this period. We
did not notice a decrease in respiration rate during this phase. Error
bars represent the standard error of the mean.

following day D_, and returning to the base value by day D_ ;.
The HRV metrics, on the other hand, are slightly elevated on
average during this period. We did not notice a decrease in
respiration rate, on average, during this phase.

The neural network was trained to predict whether an individual
is sick on any specific day given the Z-scores for respiration rate,
heart rate, RMSSD, and entropy for that day and the preceding
4 days. Let k be the filter size for the one-dimensional convolution,
and let m be the number of filters. Let N; and N, be the number of
neurons in the first and second dense layers, and let a be the drop
out rate, i.e., the rate at which input units are set to zero (https://
keras.io/api/layers/regularization_layers/dropout/).
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Fig. 3 Classifier performance. Predicting sickness given the
physiological signs: a with five-fold validation, the AUC is 0.77 +
0.018. Data from day —21 to day —8 were treated as negative cases,
while data from day +1 to day +7 were assumed positive. Data from
day —7 to day 0 were ignored. Day 0 was the day when symptoms
were reported. The sensitivity is 0.259+0.059 at 99% specificity,
0.437 £0.037 at 95% specificity, and 0.513 £ 0.034 at 90% specificity.
b The fraction of users predicted positive on specific days, from day
—30 to day +14, for specificity requirements of 99% (magenta), 95%
(blue), and 90% (brown). Errors bars are 1 standard deviation.

We set reasonable ranges for the various hyper-parameters, and
computed the largest AUC using the cross-validation set, from 500
random parameter choices. The best parameters were found to be
k=12, m=64, N, =16, N, =32, a=0.4. We obtained the best
performance considering the 14 days from D_,; to day D_g to be
negative class examples, and the 7 days from D, ; to day D, ; to be
positive class examples. The days from D_; to D, are discarded.

The sensitivity/specificity plot (ROC curve) measured on the test
dataset is shown in Fig. 3a. The AUC computed using data in the
test set, and averaged over five folds is 0.77 + 0.018. The sensitivity
averaged over five folds at 99% specificity is 0.259 +0.059. The
sensitivity at 95% specificity is 0.437+0.037, and at 90%
specificity, the sensitivity is 0.513 +£0.034. Figure 3b shows the
fraction of users who are predicted as sick on a specific day, from
day D_3, to day D, 4 (recall that as before, day D, is the day when
symptoms are reported), for three cases: (i) 99% specificity
(magenta), (i) 95% specificity (blue), and (iii) 90% specificity
(brown). Averaged over the 21-day period from day D_3, to day
D_;0, the mean and standard deviation for the false-positive rate
(assuming participants are all healthy during this period) for the
99% specificity model is 0.0085 + 0.0062. For the 95% specificity
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model, the estimated false-positive rate over the same time period
is 0.047 £0.0081. For the 90% specificity scenario, the false-
positive rate is 0.094+0.011. On day D_;, the fraction of users
who are predicted as sick for the 99%, 95%, and the 90%
specificity models are, respectively, 6.84 +1.22%, 15.25 + 1.95%,
and 20.63 + 1.84%. On day D_, for the same three models, the
fraction of users who are predicted as sick are, respectively,
29.60 + 7.13%, 49.68 + 5.48%, and 56.12 + 6.52%.

The prediction rate is higher for participants who present with a
fever (for the Fold #5 classifier, the rate for the prediction of illness
is about 12.8% higher averaged over days Dy-Dg). The prediction
rate is also slightly higher for males compared to females. We
attribute this difference to the fact that males are more likely to
present with a fever compared to females (59.4% for males
compared to 52.0% for females). Males are also more likely to
require hospitalization (9.8% hospitalization rate for males
compared to 7.0% for females). Males are also slightly older on
average (43.8 £ 13.2 years for males compared to 40.4 + 12.2 years
for females).

Classifier performance on healthy individuals

To estimate the false-positive rate on healthy participants, we
selected 300 participants at random (89 male, 211 female, mean
(std dev) of age = 45.1 years (13.3 years), mean (std dev) of BMI =
29.0 (7.2)). We consider a participant to be healthy if they did not
report any symptoms and did not report taking a COVID-19 test or
an influenza test. Each healthy participant had on average
142.2 days of data with a standard deviation of 51.6 days. With
the classifier set to 95% specificity, there were 1722 positive
predictions and a total of 42,655 user-days, yielding a false-
positive rate of 4.04%. The mean false-positive rate computed per
individual was 4.17% with a standard deviation of 4.33%. The
median false-positive rate per individual was 2.82% and 90% of
users had a false positive rate below 9.4%.

To estimate how correlated the positive predictions are, we
calculated the probability of the occurrence of a contiguous
sequence of s positive predictions. The case s = 1, i.e,, a single
positive prediction with no immediately succeeding or preceding
positive prediction, appears 60.6% of the time. The probability of
occurrence for s = 2, 3, 4, 5 are, respectively, 14.3%, 7.6%, 5.3%,
and 6.6%. Let us compare this to a simulation of random positive
predictions. For each individual, we estimated the positive rate p
as the fraction of total predictions that are positive. We then set
the prediction for any given day to be either sick with a probability
p or healthy with a probability 1—p, and made predictions drawn
from a binomial distribution, for each day of data for that
participant. From this randomly assigned data, we computed the
probability of a contiguous sequence of s positive predictions,
averaged over 100 randomizations. For the random assignment,
the case s = 1 occurs 92.3% of the time. The sequences s = 2, 3, 4,
5 occur with probabilities of 6.8%, 0.72%, 0.13% and 0.032%.
Comparing the probabilities for the random distribution to the
probabilities computed from the true data, it appears that the
predictions are correlated, which raises the possibility that some of
the individuals were ill on days when the predictions were made.
It is also possible that our algorithm creates a correlation between
days since it analyzes 5 days, and a large value on a certain day
might affect the prediction on succeeding days. We note here that
it is certainly possible for our “healthy” participants to have
contracted a minor illness without presenting symptoms, during
the course of 142.2 +51.6 days.

DISCUSSION

In this article, we analyzed data on 2745 subjects diagnosed with
COVID-19 using the active infection PCR swab test with test dates
ranging from February 16 to September 9, 2020. All subjects wore
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Fitbit devices and resided in the United States or Canada. With a
total of 30,534 PCR tests, the overall positivity rate for PCR tests
was 9.0%. Considering male (female) participants,11.9% (11.2%) of
participants were asymptomatic, 48.3% (47.8%) recovered at
home by themselves, 29.7% (33.7%) recovered at home with the
help of someone else, 9.3% (6.6%) required hospitalization
without ventilation, and 0.5% (0.4%) required ventilation. Fatigue
was the most common symptom, present in 66.1% of males and
76.1% of females. Fever was present in 59.4% of males and 52% of
females. The prevalence of some symptoms can be significantly
different for male and female subjects.

The duration of symptoms depends on the severity: mild cases
show a median duration of 11 days, while moderate cases have a
median duration of 16 days. The median duration for cases that
required hospitalization was found to be 25 days with a large
spread. For mild, moderate, and severe/critical cases, the fraction of
participants with duration of symptoms exceeding 60 days in our
survey was found to be 3.9%, 6.4%, and 16%. We provided a simple
formula to estimate the need for hospitalization given the
symptoms, age, sex, and BMI. Shortness of breath is highly indicative
of the need for hospitalization, while sore throat and stomach
ache were the least likely. Rather surprisingly, gastrointestinal
symptoms such as vomiting and loss of appetite were indicative
of severe illness. Among demographic information, being older and
having a high BMI show higher likelihoods for hospitalization.

We showed that respiration rate, heart rate, and HRV are useful
indicators of the onset of illness. We trained a convolutional neural
network to predict illness on any specific day given health metrics
for that day and the preceding 4 days. To train the classifier, data
from day D_,; to day D_g were considered “healthy”, while data
from day D 4 to day D, ; were labeled “sick”, where Dy is the date
when symptoms present. For the purpose of training, data from
D_; to D, were not considered. The AUC averaged over five
randomizations was found to be 0.77 +0.018. The sensitivity at
99% specificity is 0.259 + 0.059. At 95% specificity, the sensitivity is
0.437 £0.037, and at 90% specificity, the sensitivity is 0.513 +
0.034. We then used the classifier to make a prediction for each
date when data were available. With 90% specificity, the classifier
can detect 43% of cases on day D_ . The classifier can detect 31%
of cases on day Dy, and 21% of cases on day D_;. When set to 95%
specificity, we can detect 33% of cases on day D, 24% of cases
on day Dy, and 15% on day D_;. At 99% specificity, we can detect
20% of cases on day D, 12% of cases on day Do, and 6.8% on
day D,].

It is interesting to examine how this classifier may be applied as a
screening tool for which positive predictive value and negative
predictive value are more useful than sensitivity and specificity. Let
us examine how the classifier works in an environment wherein the
disease prevalence is similar to the situation in New York state in
April 2020. From April 8 to April 21, the mean (standard deviation)
number of confirmed COVID-19 cases per day in New York state was
8159 (2183)"” while the population of New York state is estimated to
be 1944 Million (https://worldpopulationreview.com/states/new-
york-population), yielding a rate of 0.042% of the state population,
for confirmed cases per day. The true prevalence of COVID-19 is
expected to be much higher than this, since some individuals might
not have had access to testing, some results might have been false
negatives, and some people were likely asymptomatic and unaware
of being ill. A study of COVID-19 antibodies implies a seroprevalence
of 33.6% in New York state, considering data up to July 2020 (ref. '8).
The total number of COVID-19 cases up to July 31, 2020, is estimated
to be 419,723 (ref. '), which is 2.159% of the state population.
Comparing with the seroprevalence, and assuming antibodies result
from all infected cases, we infer a factor of 15.56 COVID-19 cases per
detected case. We therefore estimate a disease prevalence of
0.6535% per day for COVID-19 in New York state around the middle
of April 2020. Setting the classifier specificity to 99%, the sensitivity
is 0.259, and assuming a disease prevalence of 0.6535% per day,
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we find the positive predictive value is 14.55%, ie, 1 in every 6.87
positive predictions is a true positive. The negative predictive value is
99.51%, and thus a negative result is highly predictive that the
individual is healthy. Hence in a high case-rate region/period of time,
individuals who receive a positive result should take precautions, or
follow-up with a diagnostic test.

This study has multiple limitations which may confound some
of its findings. The survey participants were all Fitbit users who
may not represent the general US and Canadian population, and
were all self-selecting in responding to the survey. Participants
were asked to self-recall the start-date and end-date of any
symptoms they experienced which may be quite unreliable.
Participants may also confuse active (PCR) tests with serological
(antibody) tests. In order to simplify the survey, we did not ask for
a breakdown of symptom presentation and severity through out
the time-course of the disease. It is also not possible to claim that
our classifier can distinguish between COVID-19 and other
respiratory illnesses such as influenza (our classifier predicted a
positive result in many cases of influenza). For the prediction of
the need for hospitalization, our data consisted of 196 positive
cases and 2179 negative cases, so it is possible that our results are
potentially affected by the small number of positive cases, as well
as by the class imbalance. Nevertheless, we believe this survey
provides an important scientific contribution by suggesting (a)
hospitalization risk can be calculated from self-reported symp-
toms, and (b) relevant and predictive physiological signs related to
COVID-19 may be detected by consumer wearable devices.

METHODS
Data collection

Fitbit is a large manufacturer of wearable devices since 2007, and has a large
established base of users (over 30 million as of 2020). A significant
percentage of its devices are configured to measure heart rate, and the
underlying interbeat intervals (RR) that characterize HRV. The Fitbit app
provides a convenient user-facing app that can be configured to present
user-facing questions, and to reliably capture responses in a secure and
scalable way. In this study, active Fitbit users in the USA and Canada were
invited to participate in a survey of whether they have experienced COVID-19
or similar infections, whether they had been tested, and to report on
symptoms they experienced. They could also optionally provide additional
demographic data such as age, sex, body mass index, and relevant
background medical information such as underlying conditions such as
diabetes, coronary arterial disease, or hypertension. While the researcher
hypothesis was that metrics that could be generated from heart rate were
likely to be most predictive of infectious disease, we did not restrict the
survey to only Fitbit users with heart rate enabled devices (in practice, 95% of
survey respondents had heart rate enabled devices).

The survey and associated marketing and recruitment materials were
approved by an Institutional Review Board (Advarra) and from May 21, 2020,
the survey was available for completion by Fitbit users in the USA and Canada.
The participants provided written informed consent for their data to be used
in this study. The data presented here represent the analysis of survey results
collected up to September 11, 2020. Figure 4 shows the number of PCR
positive test results reported from February 16 to September 9, along with the
7-day moving average. Fitting the data to a bi-modal gaussian, we find the
first peak on =April 9 with a standard deviation of 204 days, and a second
peak on =July 7 with a standard deviation of 24.5 days.

The survey contained the following questions in relation to COVID-19
and other likely confounding infectious diseases such as influenza, urinary
tract infections, etc.—(a) have you been tested for COVID-19 (with separate
sections provided for tests for active infection versus serological tests for
previous infection), (b) what were the symptoms experienced and the
dates of onset and disappearance of the symptoms, (c) were you tested for
other infectious diseases such as influenza, strep throat, etc.

Table 2 shows the overall breakdown of the survey responses as well as
providing summary demographic information on the survey respondents.
The age distribution of survey respondents was very similar to Fitbit users’
overall age distribution. Survey respondents skewed slightly more female
than the corresponding figure for the overall general Fitbit population.
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Table 3 describes the self-reported major co-morbidities of the
participants who reported a positive diagnosis of COVID-19, either through
a confirmed PCR test or a serological test (we assume that the vast majority
of tests for active COVID-19 infection were done using PCR-based
techniques). Note that participants could also decline to answer this
question, so these numbers are only indicative of general trends in the
disease population.

In order to assess some metric of disease severity, we took the approach
of asking about the person’s treatment rather than through quantification
of symptoms. The options provided to a survey participant were:

1) | didn’t experience symptoms.

2) | self-treated alone.

3) | self-treated with someone’s help.

4) | required hospitalization without ventilation support.
5) | required ventilation.

Prefer not to say.

We consider 1 as asymptomatic, 2 is assigned to category “mild”, 3 is
assigned to “moderate”, 4 is “severe”, and 5 is “critical”. Considering male
(female) participants, we find that 11.9% (11.2%) of participants were

—— 7 day moving average
| | = PCR positive tests
40 P

Number of PCR positive tests

2 2 \J e
N < % XY % »’ <&
& ¥ W@ e N Y e

Fig. 4 Distribution of PCR positive tests. Distribution of the
number of PCR positive tests per day in our survey, from February 16
to September 9, along with the 7-day moving average. The
distribution matches well with the reported cases. We stopped
actively recruiting participants around the middle of July, which
likely resulted in lower participation thereafter.

Table 2. Breakdown of overall survey results by summary
demographics and test responses.

n = 187, 573 completed survey

Overall demographics

Age (mean = std) 43.0+139

Sex (M/F/Other) 50,568 /134,891/2114
Active COVID n

Infection tests (PCR)

% of participants

Tests reported 30,534 16.28%

Positive 2745 0.15%

Negative 25,445 13.57%

Awaiting results/unknown 2343 0.12%

Serology tests n % of participants
Tests reported 13,550 7.22%

Positive 117 0.60%

Negative 11,567 6.17%

Awaiting results/unknown 864 0.46%

Flu tests n % of participants
Tests reported 3894 2.08%

Positive tests 794 0.42%

Negative 3061 1.63%

Awaiting results/unknown 38 0.02%

Other tested infections n % of participants
Tests reported 1691 0.90%
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asymptomatic, 48.3% (47.8%) had mild symptoms, 29.7% (33.7%) were
moderate, 9.3% (6.6%) severe, and 0.5% (0.4%) critical. Those with mild
symptoms recovered sooner than those with moderate or severe
symptoms. The distribution in the duration of symptoms is shown in
Fig. 5. There were 21 symptoms that were reported. The distribution of
symptoms by severity, for male and female participants, is tabulated in
Table 4. We do not have information regarding the timing of symptoms,
i.e, we do not know which symptoms appeared first.

Making predictions of hospitalization based on symptoms

Using the symptoms along with demographics as input features, we
trained a logistic regression classifier to predict the need for hospitaliza-
tion. We only considered symptomatic individuals for this analysis. We
trained a logistic regression model to predict the need for hospitalization
with five-fold validation (80% of the data used to train, 20% used to test),
using the symptoms as input features, along with the age, sex, and BMI.
There were 196 individuals who required hospitalization, and 2179

Table 3. Self-reported health characteristics of participants who
reported either a positive PCR test or a positive serological test; note
that some participants may have received both.

Characteristics of COVID-19 participants

Age (mean =+ std)
Sex (M/F/Other)

41.2+12.8 years
834/2691/21

individuals who did not. For this classifier, we did not include any tunable
hyper-parameters.

Making predictions of illness based on health metrics
The physiological signs can be used to predict the onset of COVID-19. Let
us denote the n™ day after the start of symptoms as D,,. D, is the day when
symptoms started. We make the assumption that individuals are healthy,
i.e, class “Negative” from day D, to day D, where D, < D,. Subjects are
considered to be sick from day D, up to day Dy where D, = D,. The days
between D, and D, are treated as a buffer space when subjects may or
may not be sick, and hence ignored. The choices of D,, Dy, D, and D, are
made through cross validation. As a guide to choosing the days, we note
the median incubation period is estimated at 5.1 days'®. Since we are using
the date relative to the start of symptoms as the ground truth label, we
consider only symptomatic individuals.

The following physiological data were calculated for each user on a daily
basis using the data recorded from their Fitbit device:

® The estimated mean respiration rate during deep (slow wave) sleep
(we default to light sleep if deep sleep data are insufficient).

® The mean nocturnal heart rate during non-rapid eye movement
(NREM) sleep.

® The root mean square of successive differences (RMSSD) of the
nocturnal RR series.

® The Shannon entropy of the nocturnal RR series.

Data are collected simultaneously from the PPG sensor and the
accelerometer. RR data are only stored when no motion above a set
threshold is detected, and when the coverage in a 5-min window exceeds
70%. Data are only collected when the subjects are at rest. The RR data are

Self reported health n % ) N i N
. then cleaned to remove noise due to missed heart beats, motion artifacts,
Hypertension 636 17.9% electronic noise, etc. The Fitbit system estimates periods of light, deep
Asthma 635 17.9% (slow wave), and REM sleep®® and this is used in deciding which sections of
Diabetes 252 7.1% the overnight data to process. The respiration rate is obtained by fitting a
Coronary arterial disease 51 1.4% Gaussian model to the spectrum of the interpolated RR intervals as a
Stroke 32 0.9% function gf frequencx—this relies on the phenomenpn of respiratory sinus
Chronic lung disease 4 1.4% arrhythmla (RSA) to induce a mea.surablie modulation of the R_R interval
series. In cases where there is no discernible RSA, we do not estimate the
Chronic kidney disease 36 1.0% respiration rate. The RMSSD is a time domain measurement used to
Congestive heart failure 23 0.6% estimate vagally mediated changes®. It is computed in 5-min intervals, and
the median value of these individual measurements over the whole night
Table 4. Prevalence of symptoms.
Symptom All (%) Asx. Mild(%) Mod(%) Sev/crit(%)
Male (female) - Male (female) Male (female) Male (female)
Fatigue 66.1 (76.1) - 69.9 (80.5) 82.9 (92.3) 76.8 (89.1)
Headache 53.7 (71.4) - 57.6 (76.0) 68.2 (86.9) 57.1 (78.3)
Body ache 58.4 (64.4) - 59.4 (64.8) 77.1 (81.4) 69.6 (81.9)
Decrease in taste & smell 50.2 (64.9) - 54.3 (69.6) 62.4 (77.1) 53.6 (76.1)
Cough 55.2 (59.9) - 50.0 (59.1) 78.8 (76.2) 76.8 (81.9)
Fever 59.4 (52.0) - 57.6 (48.0) 78.2 (68.5) 83.9 (80.4)
Chills 51.0 (51.1) - 50.4 (47.0) 68.8 (68.6) 64.3 (73.9)
Congestion 36.9 (53.0) - 42.8 (60.8) 48.2 (61.5) 19.6 (43.5)
Loss of appetite 39.3 (48.0) - 36.6 (44.6) 51.8 (61.8) 62.5 (79.0)
Shortness of breath 37.2 (46.1) - 25.4 (38.1) 57.6 (64.4) 80.4 (84.1)
Sore throat 30.1 (45.7) - 30.1 (49.6) 41.8 (56.3) 32.1 (39.1)
Diarrhea 32.7 (42.0) - 30.8 (38.5) 44.7 (57.3) 44.6 (58.0)
Chest pain 30.2 (41.9) - 27.2 (35.4) 42.9 (59.7) 44.6 (65.2)
Neck pain 14.3 (26.3) - 15.2 (23.9) 18.8 (37.3) 14.3 (30.4)
Hoarse voice 15.0 (23.5) - 13.0 (22.0) 20.0 (32.0) 28.6 (27.5)
Stomach ache 10.1 (22.9) - 10.5 (20.1) 13.5 (33.2) 10.7 (28.3)
Eye pain 13.8 (21.0) - 15.2 (19.9) 15.9 (28.7) 17.9 (23.2)
Confusion 15.2 (18.0) - 109 (13.5) 23.5 (25.8) 30.4 (38.4)
Vomiting 2 (10.6) - 3(7.2) 5 (14.6) 12.5 (29.0)
Rash 7 (8.3) - 8 (6.7) 9 (11.6) 8 (15.9)
Swelling in the fingers & toes 1(64) - 8 (4.2) 4 (9.5) 4 (14.5)

npj Digital Medicine (2020) 156

Seoul National University Bundang Hospital



is calculated. The Shannon entropy is a non-linear time domain
measurement computed using the histogram of RR intervals over the
entire night. The RMSSD and entropy are computed between midnight
and 7 a.m. The sleeping heart rate is estimated from non-REM sleep only.
The respiration rate is computed from deep sleep when possible, and from
light sleep in the case of insufficient deep sleep.

Mild: 1276 cases, Symptom Duration - mean: 18.8, median: 11.0, mode: 7
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Fig. 5 Duration of symptoms. Distribution of symptom duration for
mild, moderate, and severe/critical cases. The median symptom
duration is 11 days for mild cases, 16 days for moderate cases, and
25 days for severe/critical cases. For mild, moderate, and severe/
critical cases, the fraction of participants with duration of symptoms
exceeding 60 days is found to be 3.9%, 6.4%, and 16%, respectively.
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We validated our respiration rate algorithm against flow sensor data
obtained from 19 subjects wearing Fitbit Versa devices. Ground truth data
were obtained using polysomnography measurements conducted at the
Sleep Med lab in South Carolina. The mean absolute error with 39 nights of
data is 0.75 b.p.m. on average with 7 data points greater than 1 b.p.m. error.
The large error cases are due to either (i) low signal-to-noise ratio in the RR
data (SNR < 3) or (2) individuals with severe apnea. The comparison of
respiration rate with the ground truth was done using the whole night’s data.
For the COVID-19 detection algorithm, however, we used RR data collected
during deep sleep when possible, since sinus arrhythmia is more prominent
in deep sleep. Fitbit heart rate and sleep measurements have been studied
by an external group?' who found that Fitbit Charge HR devices showed a
97% sensitivity and a 91% accuracy in detecting sleep. The average heart rate
measured using Fitbit Charge HR devices was 59.3 7.5 b.p.m., while the
heart rate measured from ECG was found to be 60.2 + 7.6 b.po.m.?". For details
on how Fitbit measures HRV, we refer the reader to Natarajan et al?2

Since health metrics such as respiration rate, heart rate, and HRV can
vary substantially between users, we use the Z -scored equivalents:

z, ="t 3)

Ox

where x could stand for respiration rate, heart rate, RMSSD, or entropy; iy
and oy are the rolling mean and rolling standard deviation of the metric
being measured. For each day D,, we construct a 5x4 matrix with the
normalized Z-scores corresponding to the four health metrics, measured
on days D, --- D,_4. Each day is represented by a matrix with that day’s
data along with the previous 4 days data. Each row of the matrix
represents a day of data, while each column represents a metric. We
linearly interpolate missing data, but only do so if there is a minimum of
3 days of data. We create an “image” from each matrix by resizing each 5 x
4 matrix to a 28 X 28 x 1 matrix, with the last dimension indicating that
there is only one color channel. The pixel values are rescaled to the range
(0,1). We included 1257 symptomatic individuals with sufficient data for
analysis; 70% of the subjects were randomly selected to comprise the
training set. The remaining 30% of subjects were split equally into two
hold-out sets with 15% each: one for cross-validation, and the other for
testing. Data present in the test set are considered representative of
unseen data, and are reported. This random split of 70:15:15 is performed
five times (i.e., five folds), but cross-validation is performed only once.

Figure 6 shows the neural network architecture. Each image is input
to a 1-dim. convolutional stage with m filters, and a filter size of k.
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Fig. 6 The neural network architecture. The nocturnal respiration rate, heart rate, RMSSD, and entropy for day D, along with the previous
4 days data are Z-scaled, arranged in the form of a 5 x 4 matrix and rescaled to 28 x 28 x 1. This image is fed to a 1-dim. convolutional layer
with m filters. The first dense layer reduces these m features to a smaller number of N, features which are concatenated with an array of
external inputs such as age, gender, BMI, etc. The last dense layer leads to a softmax filter.
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After maxpooling, the convolutional stage produces a set of m features.
Non-linearity in the form of a “Relu” layer is introduced. A dense layer is
used to reduce the m convolutional features to a smaller feature set N,. At
this stage, an array of n external inputs is applied including features such
as age, gender, and BMI that need to bypass the convolutional stage. In
addition, we also include the Z-scored respiration rate, heart rate, RMSSD,
and entropy for day D, as a part of the array. The final dense layer leads to
a softmax layer with two possible output classes.

Reporting Summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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