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Abstract Phylogenetic networks are a generalization of evolutionary trees that are
used by biologists to represent the evolution of organisms which have undergone retic-
ulate evolution. Essentially, a phylogenetic network is a directed acyclic graph having
a unique root in which the leaves are labelled by a given set of species. Recently,
some approaches have been developed to construct phylogenetic networks from col-
lections of networks on 2- and 3-leaved networks, which are known as binets and
trinets, respectively. Here we study in more depth properties of collections of binets,
one of the simplest possible types of networks into which a phylogenetic network can
be decomposed. More specifically, we show that if a collection of level-1 binets is
compatible with some binary network, then it is also compatible with a binary level-1
network. Our proofs are based on useful structural results concerning lowest stable
ancestors in networks. In addition, we show that, although the binets do not determine
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the topology of the network, they do determine the number of reticulations in the
network, which is one of its most important parameters. We also consider algorith-
mic questions concerning binets. We show that deciding whether an arbitrary set of
binets is compatible with some network is at least as hard as the well-known graph
isomorphism problem. However, if we restrict to level-1 binets, it is possible to decide
in polynomial time whether there exists a binary network that displays all the binets.
We also show that to find a network that displays a maximum number of the binets is
NP-hard, but that there exists a simple polynomial-time 1/3-approximation algorithm
for this problem. It is hoped that these results will eventually assist in the development
of new methods for constructing phylogenetic networks from collections of smaller
networks.

Keywords Reticulate evolution · Phylogenetic network · Subnetwork · Binet ·
Algorithm

1 Introduction

Phylogenetic networks are a generalization of evolutionary trees which biologists use
to represent the evolution of species that have undergone reticulate evolution. Such
networks are essentially directed acyclic graphs having a unique root in which the
leaves are labelled by a set X of species (Huson et al. 2010). In contrast to evolutionary
trees, which can only represent speciation events, phylogenetic networks permit the
representation of evolutionary events such as gene transfer and hybridization which
are known to occur in organisms such as bacteria and plants, respectively. Although
theoretical properties of evolutionary trees have been studied since at least the 1970s,
phylogenetic networks have been considered from this perspective only more recently,
especially the rooted variants which we will focus on in this paper.

One of the most important open questions concerning phylogenetic networks is
how to construct them for biological datasets (Bapteste et al. 2013). It is now common
practice for biologists to construct evolutionary trees frommolecular data, and several
computer programs are available for this purpose (Felsenstein 2004). However, the
problem of constructing networks from such data is an active area of research, and
there are only a limited number of programs available for biologists to perform this
task. A survey of some of these methods and the theory underpinning phylogenetic
networks may be found in Gusfield (2014), Huson et al. (2010), Morrison (2011).

One approach that has been recently developed for constructing phylogenetic net-
works involves building them up from smaller networks, using what can be thought
of as a divide-and-conquer approach (Oldman et al. 2016). In particular, for a set X
of species, a network is constructed for every subset of X size 3 (called a trinet), and
then the trinets are puzzled together to build a network (see Fig. 1 for an example of a
trinet). This approach constructs and is based on level-1 networks, networks that are
slightly more general than evolutionary trees (see Sect. 2 for the definition of such
networks).

At first sight, it might appear that trinets are the simplest possible networks that
could be considered for building up networks from smaller ones. However, trinets con-
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Fig. 1 An example of two level-1 trinets (left) that display the same set of three binets (right). All arcs are
directed downwards

tain even simpler networks called binets, networks with 2 leaves (see e.g. Fig. 1 for a
level-1 trinet and the binets that it displays). Note that whereas binets are the smallest
informative building blocks for phylogenetic networks, for rooted phylogenetic trees,
these are 3-leaf trees (see e.g. Byrka et al. 2010). Interestingly, even though binets
are in themselves very simple, the collection of binets displayed by a network can
still contain some useful information concerning the network. Indeed, in the afore-
mentioned approach for building level-1 networks from trinets, binets are used in the
process of puzzling together the trinets.

In light of these considerations some obvious questions immediately arise concern-
ing binets. For example, when is a collection of binets displayed by some phylogenetic
network (the compatibility problem), and how much information might we expect to
extract concerning a phylogenetic network by just looking at the collection of binets
that it displays? In this paper, we shall address these and related algorithmic questions
concerning binets. It is hoped that these results will be useful in future for developing
improved methods for constructing phylogenetic networks from smaller networks.

We now present a summary of the rest of the paper. After introducing some prelimi-
naries concerning phylogenetic networks in the next section, we derive a key structural
result for networks (Corollary 1) which is useful in identifying which of the two pos-
sible types of binet is displayed on two leaves within a binary phylogenetic network
(that is a network in which all internal vertices have degree 3). Using this theorem, in
Sect. 4 we show that the collection of level-1 binets displayed by any binary phyloge-
netic network can always be displayed by some binary level-1 network (Theorem 3).
This reduces the problem of understanding binets displayed by arbitrary binary net-
works to level-1 networks. To prove this result, we develop a framework which also
implies that there is a polynomial-time algorithm in |X | for deciding whether or not
a collection of level-1 binets with combined leaf set X can be displayed by some net-
work with leaf set X , and, if it is, gives a level-1 network that does this (see Sect. 6).
Note that this is related to an algorithm presented in Huber et al. (2015).

In Sect. 5, we turn to the question as to what can be deduced about the features of a
phylogenetic network just by considering the collection of binets that it displays. Note
that, as might be expected, there are networks—even trinets—that display the same set
of binets but that are not equivalent. For example, the two trinets in Fig. 1 both display
the same set of binets, but they are not equivalent. Even so, we will show in Theorem 4
that if two level-1 networks both display exactly the same collection of binets, then
they must have the same number of reticulation vertices (in-degree-2 vertices). Note
that the number of such vertices corresponds to the number of reticulate evolutionary
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events, such as hybridization, that took place in the evolutionary history of the species
labelling the leaves of the network. Consequently, the binets displayed by a network
can at least capture a useful course-grained feature of the network in question.

In Sects. 6 and 7, we consider some algorithmic questions concerning binets. As we
have mentioned above, it can be decided in polynomial time in |X | as to when a col-
lection of binets with combined leaf set X is displayed by some level-1 network on X .
However, we show that if we consider arbitrary binets (i.e. not necessarily binary or
level-1) then this decision problem becomes at least as hard as the graph isomorphism
problem (see Theorem 5), one of the most famous problems whose complexity is still
unknown. In addition, in Sect. 7 we consider a related problem which, for a given
collection of binary level-1 binets, asks for a network which displays the maximum
number of binets in this collection. This is closely related to the maximum rooted
triplet consistency problem for evolutionary trees (Byrka et al. 2010). We show that
the binet problem is NP-complete (Theorem 6), by giving a reduction from the feed-
back arc set problem. However, we also show that the problem is 1/3-approximable.
In fact, given any collection of binary level-1 binets we can always find some network
that displays at least 1/3 of the binets (see Theorem 7). We conclude in Sect. 8 with
discussion of some possible future research directions, and a brief discussion of a
potential application of our results.

2 Preliminaries

Throughout this paper, X is a nonempty finite set (which usually represents a set of
species or organisms).

2.1 Digraphs

A directed graph, or digraph for short, G = (V, E) consists of a finite set V = V (G)

of vertices and a set E = E(G) of arcs, where each arc is an ordered pair (u, v) of
vertices in V in which u is said to be a parent of v, denoted by u = p(v), and v a child
of u. All digraphs studied here contain no loops, that is, vertices that are children of
themselves. The in-degree of vertex u is the number of vertices v in V such that (v, u)

is an arc, and the out-degree of u is the number of vertices w with (u, w) being an arc.
A root is a vertex with in-degree 0. A leaf is a vertex of out-degree 0, and the set of
leaves is denoted by L(G). Any vertex in G that is neither a root nor a leaf is referred
to as an interior vertex. In addition, an interior vertex is a tree vertex if it has in-degree
1, and a reticulation vertex if it has in-degree greater than 1.

A directed path or dipath in a digraph is a sequence u0, u1, . . . , uk (k ≥ 1) of
vertices such that (ui−1, ui ) is an arc for 1 ≤ i ≤ k. An acyclic digraph is a digraph
that does not contain any directed path starting and ending at the same vertex. If an
acyclic digraph G contains a unique root, which is usually designated by ρ = ρ(G),
then it will be referred to as a rooted acyclic digraph.

An acyclic digraph G induces a canonical partial order ≺G on its vertex set V , that
is, v ≺G u if there exists a directed path from u to v. In this case, we shall say that v
is below u. When the digraph G is clear from the context, ≺G will be written as ≺.
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In addition, we write v � u if u = v or u ≺ v. Given a subset U of the vertex set of
an acyclic digraph, we say that u ∈ U is a lowest vertex in U if there is no v ∈ U
with v ≺ u.

LetG be the undirected graph obtained from digraphG by ignoring the direction of
the arcs in G. Then G is connected if G is connected, that is, there exists an undirected
path between every pair of distinct vertices in G. Note that a rooted acyclic digraph is
necessarily connected (since each connected component of an acyclic digraph has at
least one root). A cut vertex is a vertex ofG whose removal disconnectsG. Similarly, a
cut arc is an arc ofG whose removal disconnectsG. A directed graph is biconnected if
it contains no cut vertex, and a biconnected component of G is a maximal biconnected
subgraph, which is called trivial if it contains precisely one arc (which is necessarily
a cut arc), and non-trivial otherwise.

2.2 Phylogenetic Networks

A phylogenetic network N on X is a rooted acyclic digraphwhose leaves are bijectively
labelled by the elements in X and which does not contain any vertex with in-degree
one and out-degree one. For simplicity, we will just write L(N ) = X in case there
is no confusion about the labelling. To simplify the argument, throughout this paper
we will also assume that all leaves in a phylogenetic network have in-degree one. In
addition, a phylogenetic network is binary if each tree vertex, as well as the root, has
out-degree 2, and each reticulation vertex has in-degree 2 and out-degree 1. Finally,
we say a binary phylogenetic network is level-k (k ≥ 0) if each of its biconnected
components contains at most k reticulation vertices. To some extent, the concept of
the level of a phylogenetic network can be regarded as a measure of its ‘distance’ to
being aphylogenetic tree. In particular, a binary phylogenetic network is a phylogenetic
tree if and only if it is level-0. A phylogenetic network is called simple if it contains
precisely one non-trivial biconnected component H and no cut arcs other than the
ones leaving H .

Two networks N1 = (V1, E1) and N2 = (V2, E2) on X are said to be isomorphic
if there exists a bijection f : V1→V2 such that f (x) = x for all x ∈ X , and (u, v) is
an arc in N1 if and only if ( f (u), f (v)) is an arc in N2.

Finally, the cluster of a vertex u, denoted by CN (u) = C(u), is defined as the subset
of X consisting of the leaves below u. Here we will use the convention that C(u) = {u}
if u is a leaf.

2.3 Stable Ancestors and Binets

Given a phylogenetic network N on X and a subset U ⊆ V (N ), a stable ancestor of
U in N is a vertex v in V (N )\U such that every path in N from the root to a vertex in
U contains v. Note that for two stable ancestors u and u′ of U , we have either u � v

or v � u. Therefore, there exists a unique lowest vertex in the set of stable ancestors
of U , which will be referred to as the lowest stable ancestor of U in N and denoted
by lsaN (U ) = lsa(U ). Note that for a subset Y of X with |Y | ≥ 2, there exist two

123



1140 L. van Iersel et al.

elements x and y in Y such that lsa(Y ) = lsa ({x, y}). For simplicity, we also write
lsa ({x, y}) as lsa(x, y).

The following property of lowest stable ancestors will be useful.

Lemma 1 Suppose that u and v are two vertices in a phylogenetic network such that
u ≺ v ≺ lsa(u), then we have lsa(v) � lsa(u).

Proof Since u ≺ v, we know that there exists a dipath P fromρ to u that contains v. By
the definition of lowest stable ancestor, we know that lsa(u) and lsa(v) are contained
in P . Hence, either lsa(v) � lsa(u) or lsa(u) ≺ lsa(v). If lsa(u) ≺ lsa(v), then
we have v ≺ lsa(u) ≺ lsa(v). Then there exists a dipath P ′ from ρ to v that does
not contain lsa(u) (otherwise lsa(u) would be a stable ancestor of v that is below
lsa(v)). Using that u ≺ v ≺ lsa(u), it follows that there exists a dipath from ρ to u
that does not contain lsa(u), a contradiction. Therefore, lsa(v) � lsa(u). 
�

For Y ⊆ X , the subnet of N on Y , denoted by N |Y , is defined as the subgraph
obtained from N by deleting all vertices that are not on any path from lsa(Y ) to
elements in Y and subsequently suppressing all in-degree 1 and out-degree 1 vertices
and parallel arcs until no such vertices or arcs exist.Anetwork N ′ is said to bedisplayed
by network N if N ′ = N |Y for some Y ⊆ X .

Note that, by definition, N |X = N if and only if lsa(X) = ρ(N ). In this case,
N is referred to as a recoverable network. Note that every subnet of N is necessarily
recoverable. Moreover, a collection of subnets is displayed by some network if and
only if it is displayed by some recoverable network. Therefore, we assume all networks
in this paper to be recoverable.

A binet is a phylogenetic network with precisely two leaves, while a trinet is a
phylogenetic network with precisely three leaves. Let

B(N ) = {N |Y : Y ⊆ X and |Y | = 2}

be the collection of binets displayed by N . Note that there are precisely three binary
level-1 binets on a set {x, y}, and they can be grouped into two types: the “tree type”,
T (x, y), and the “reticulate type” R(x; y) and R(y; x) (see Fig. 2). A collection of
binets B on X is a collection of binets such that the union of the leaf sets of the binets
is equal to X .

x y

T (x, y)

x y

R(x; y)

y x

R(y; x)
xy

level-2

Fig. 2 The three binary level-1 binets on {x, y} and an example of a level-2 binet
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Fig. 3 Example for the proof of
Theorem 1. The lowest stable
ancestor of v is not equal to the
root ρ. An undirected path Pu
between ρ and lsa(v) that does
not contain the incoming arc of
lsa(v) is indicated in bold.
Path Pu contains one alternating
vertex r , for which the lowest
stable ancestor is indeed equal
to ρ

ρ

lsa(v)

x

r

y

v

q

p

3 A Structure Theorem

In this section we present a key result (Corollary 1) concerning the structure of the
non-trivial biconnected component of a simple network. Note that a similar result has
been obtained for a special collection of (non-binary) phylogenetic networks in Huber
et al. (2016).

Let G be a directed acyclic graph and let P = v0, v1, . . . , vt be an undirected path
in the underlying undirected graph G, then a vertex vi (with 1 ≤ i ≤ t − 1) is called
alternating (with respect to P) if we have either {(vi−1, vi ) , (vi+1, vi )} ⊆ E(G) or
{(vi , vi−1) , (vi , vi+1)} ⊆ E(G). The number of alternating vertices contained in P
is denoted by alt(P). Using this concept, we now prove the following theorem. See
Fig. 3 for an example.

Theorem 1 Let N be a binary phylogenetic network on X whose root ρ is in some
non-trivial biconnected component H. Then there exists a lowest vertex in H with
lsa(v) = ρ.

Proof LetΓ0(H)be the set of reticulation vertices v in H forwhich the distance (length
of a shortest directed path) between ρ and lsa(v) is minimum over all reticulation
vertices in H . Note that Γ0(H) �= ∅.

We first show that lsa(v) = ρ for all v ∈ Γ0(H). Suppose this were not the case.
Then there exists a vertex v ∈ Γ0(H) such that lsa(v) ≺ ρ. Note that lsa(v) necessar-
ily has out-degree 2 and therefore has in-degree 1 since N is binary and lsa(v) �= ρ.
Denote the parent of lsa(v) by v∗. Since H is biconnected, there exists some undi-
rected path from ρ to lsa(v) that does not contain the edge e = {

lsa(v), v∗}.
Let Pu = v0, . . . , vt , where v0 = ρ and vt = lsa(v), be such an undirected path
for which alt(Pu) is minimum.

We claim that alt(Pu) = 1. To see this, note first that since v0 = ρ, vt = lsa(v)

and vt−1 �= v∗, we know that (v0, v1) and (vt , vt−1) are arcs of N . Hence, alt (Pu) is
odd and strictly positive. Assume for the sake of contradiction that alt (Pu) �= 1, then
we have alt (Pu) ≥ 3. Let vk (1 < k < t) be the second alternating vertex contained
in Pu (when travelling from v0 to vt ).

Now fix a directed path Pd in N from ρ to vk .
If the arc

(
v∗, lsa(v)

)
is not contained in Pd , then, we can find an undirected path

from ρ to lsa(v) that does not contain e and has fewer alternating vertices than Pu by
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following Pd until we reach a vertex in {vk, . . . , vt } and then following Pu to lsa(v).
This gives a contradiction.

Now assume that the arc
(
v∗, lsa(v)

)
is contained in Pd . Then we can find an

undirected path from ρ to lsa(v) that does not contain e and has only one alternating
vertex as follows. Follow Pu up to vk and then follow Pd backward from vk to lsa(v).
Since this path has fewer alternating vertices than Pu , we again obtain a contradiction.

We have thus shown that alt (Pu) = 1. Denoting this alternating vertex in Pu by
r , then r is necessarily a reticulation by the choice of Pu . Hence, Pu consists of two
directed paths: a directed path from ρ to r that does not contain lsa(v) and a directed
path from lsa(v) to r . However, this means that lsa(v) ≺ lsa(r), a contradiction to
the assumption that v ∈ Γ0(H).

Hence, we know that Γ0(H) is the set of reticulation vertices v of H such that
lsa(v) = ρ and that Γ0(H) is not empty.

Now fix a vertex v in Γ0(H) that is lowest over all vertices of Γ0(H), that is, there
does not exist a vertex u in Γ0(H) such that v ≺ u. It remains to show that v is lowest
over all vertices of H . Assume that this is not the case. Then the child c of v is also
in H . If c were a reticulation then, by Lemma 1, lsa(v) � lsa(c). However, this
would imply that lsa(c) = ρ, contradicting the choice of v. Hence, c is a tree vertex.

Since H is biconnected, there exists some undirected path from ρ to c that does not
contain v. Let Pu = w0, . . . , wt be such a path such that alt (Pu) is minimum. Note
that we have w0 = ρ and wt = c.

Since c is a tree vertex and Pu does not contain its parent v, (wt , wt−1) is an arc
of N . Together with (w0, w1) being an arc in N , we know that alt (Pu) is odd and
strictly positive. We now show, using a similar proof as above, that alt (Pu) = 1. If
this were not the case, then we would have alt (Pu) ≥ 3. Let wk (1 < k < t) be the
second alternating vertex contained in Pu . We know that (wk, wk−1) and (wk, wk+1)

are two arcs contained in N . Now fix a directed path Pd in N from ρ to wk .
If the vertex v is not contained in Pd , then we can find an undirected path from ρ

to c that does not contain v and has fewer alternating vertices than Pu by following Pd
from ρ it reaches a vertex from {wk, . . . , wt } and then following Pu up to c. If v is
contained in Pd , then we follow Pu from ρ to wk and then follow Pd from wk to c and
obtain an undirected path from ρ to c that does not contain v and has one alternating
vertices, which is less than the number of alternating vertices in Pu . In either case, we
obtain a contradiction.

We have thus shown that alt (Pu) = 1. Denoting this alternating vertex in Pu by
r , then r is necessarily a reticulation by the choice of Pu . Hence, Pu consists of two
directed paths: a directed path from ρ to r that does not contain v and a directed path
from c to r . However, this means that v ≺ lsa(r), and hence lsa(v) � lsa(r) in view
of Lemma 1. This implies that r ∈ Γ0(H), a contradiction to the assumption that v is
lowest among Γ0(H). 
�

The following is a direct consequence of the above theorem.

Corollary 1 Suppose that N is a simple binary phylogenetic network. Let H be the
unique non-trivial biconnected component of N . Then there exists a lowest vertex v

of H such that there exist two arc-disjoint directed paths from the root of N to v.
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4 Displaying Binets by Binary Networks

A collection of binary level-1 binets is compatible if there exists some binary network
that displays all binets from the collection. In this section, we study the compatibility
of binets. Our main result in this section (Theorem 3) shows that when studying the
compatibility of binets, we can restrict to binary level-1 networks.

We will restrict ourselves throughout this section to thin collections of binets, i.e.
collections containing at most one binet on x and y for all distinct x, y ∈ X . Clearly,
any collection of binets that is not thin is not compatible.

First, we need some new definitions. Given a digraph G, a sink set of G is a proper
subsetU ⊂ V (G) such that there is no arc leavingU , that is, there exists no arc (x, y)
with x ∈ U and y ∈ V (G)\U . A bipartition (or split) of V (G) into nonempty sets A
and B, denoted A|B, is called
– Type I if both A and B are sink sets (i.e. there is no arc from any element in A to
any element in B or vice versa);

– Type II if either A or B (but not both) is a sink set; and
– Type III if for all x ∈ A, y ∈ B (x, y) is an arc in G if and only if (y, x) is an arc
in G.

We say that A|B is a typed split of G if it is a split of Type I, II or III.
For a collection B of binary level-1 binets on X , we introduce the digraph D(B)

with vertex set X and (x, y) being an arc in D (B) if T (x, y) ∈ B or R(x; y) ∈ B. See
Fig. 4 for an example.

The following two lemmas show important properties of typed splits that will be
used to establish Theorems 2 and 3.

Lemma 2 Suppose that B and B′ are two thin collections of binary level-1 binets
on X with B ⊆ B′. Then each typed split of D

(B′) is a typed split of D (B).

Proof Suppose that A|B is a typed split of D
(B′). If A|B is of Type I in D

(B′), then
it is of Type I in D (B) since D (B) is a subgraph of D

(B′). Similarly, if A|B is of
Type II in D

(B′), then it is of Type I or II in D (B). If A|B is of Type III in D
(B′) then

(since B′ is thin) any binet on x and y with x ∈ A and y ∈ B is T (x, y). Therefore,
A|B is of Type I or III in D (B). 
�
Lemma 3 Suppose that B is a thin collection of binary level-1 binets on X. If B is
displayed by a binary network, then D (B) has a typed split.

Proof Suppose that B is displayed by a binary network. Then B is displayed by a
binary recoverable network N . Let B′ be the set of binary level-1 binets contained in
B(N ). Then we have B ⊆ B′ ⊆ B(N ). By Lemma 2, it suffices to show that D

(B′)

has a typed split.
Consider the root ρ of N , which is equal to lsa(X) since N is recoverable. Denote

the two children of ρ by u1 and u2. We consider two cases.
The first case is that at least one arc incident with ρ is a cut arc. Then the other arc

incident with ρ is also a cut arc. Then let A = C (u1) and B = C (u2). Note that A|B
is a split because neither A nor B is empty. In addition, for all x ∈ A, y ∈ B we have
N |{x,y} = T (x, y) and hence A|B is a Type III split with respect to D

(B′).
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x1
x2

x3

x5 x6

x4

D(B)

x1 x2 x3

x4 x6 x5

N

Fig. 4 Adigraph D(B) representing the set of binetsB = {T (x4, x3) , R (x4; x1) , R (x4; x2) , T (x5, x1) ,

R (x5; x2), R (x5; x3) , T (x6, x2) , R (x6; x1) , R (x6; x3)} and a network N displaying B. The direction
of the arcs in N is downward, and omitted

In the second case, both arcs incident with ρ are not cut arcs. Hence, the root
ρ is contained in a non-trivial biconnected component H containing u1 and u2. By
Corollary 1, there exists a lowest vertex v in H with two arc-disjoint paths P1, P2 from
ρ to v. Since v is a lowest vertex in H , we know that v is a reticulation vertex and the
arc leaving v is a cut arc. Let B = C(v) and A = X\B. Then B is clearly nonempty.
In addition, A is nonempty, as otherwise lsa(X) � v, a contradiction to the fact that
lsa(X) = ρ (as N is recoverable). Therefore, A|B is a split.

Consider x ∈ A and y ∈ B and the subnetwork N |{x,y}. There is at least one directed
path from ρ to x , and each such path contains at least one arc of P1 or P2. Hence, in
the process of obtaining N |{x,y} from N , the paths P1, P2 do not become parallel arcs.
Therefore, N |{x,y} contains two arc-disjoint paths from ρ to v and we can conclude
that N |{x,y} �= T (x, y).

Therefore, if N |{x,y} ∈ B∗, that is, N |{x,y} is level-1, then N |{x,y} = R(x; y).
This implies that there is no arc (y, x). Therefore, A|B is a Type I or Type II split of
D (B∗). 
�

Note that the condition that B is displayed by a binary network in the above lemma
can not be weakened to that B is displayed by a network. For example, consider the
binet collection B and network N in Fig. 4. Although network N displays B, digraph
D (B) has no typed split (as can be easily checked).

We now introduce two operations, which can be used to combine two phylogenetic
networks into a new one. Suppose that N1 and N2 are two phylogenetic networks
with disjoint leaf sets. Let T (N1, N2) be the phylogenetic network obtained from
N1 and N2 by adding a new vertex v and two arcs from v to the roots of N1 and
N2. In addition, the network R(N1; N2) is obtained by taking a binet R (y1; y2),
with y1, y2 /∈ L (N1) ∪ L (N2), and replacing yi by the root of Ni , for i = 1, 2. See
Fig. 5 for examples.
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x

y

q

p

R(R(x; y);R(p; q))

q

px

y

T (R(x; y), R(p; q))
Fig. 5 Examples of two networks built recursively by using the operations introduced in the text

For a binet set B on X and a subset A ⊆ X , we define

B|A = {S ∈ B : L(S) ⊆ A} .

The next theorem can be used to determine in polynomial time whether a collection
of binary level-1 binets is displayed by some binary level-1 network. See Sect. 6 for
more details.

Theorem 2 Suppose that B is a thin collection of binary level-1 binets on X. If there
exists a typed split A|B of D (B) such that B|A and B|B are both displayed by some
binary level-1 network, then B is displayed by a binary level-1 network. Moreover, if
B is displayed by a binary level-1 network, then there exists at least one typed split
of D (B) and, for each typed split A|B of D (B), B|A and B|B are both displayed by
some binary level-1 network.

Proof First suppose that there exists a typed split A|B of D (B) such that B|A and
B|B are displayed by binary level-1 networks NA and NB , respectively.

If A|B is a Type I or Type III split of D (B), then consider the network N =
T (NA, NB). Then N is a binary level-1 phylogenetic network on X and

B ⊆ {T (x, y) : x ∈ A, y ∈ B} ∪ B (NA) ∪ B (NB) = B(N ),

and so B is displayed by N .
If A|B is a Type II split of D (B), then without loss of generality we may assume

that B is a sink set in D (B). Now consider the network N = R (NA; NB). Then N is
a binary level-1 phylogenetic network on X and

B ⊆ {R(x; y) : x ∈ A, y ∈ B} ∪ B (NA) ∪ B (NB) = B(N ),

and so B is displayed by N .
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Now suppose thatB is displayed by a binary level-1 network N . By Lemma 3, there
exists a typed split A|B of D (B). Then B|A ⊆ B (N |A) and B|B ⊆ B (N |B). 
�

We now prove the main result of this section.

Theorem 3 Suppose that B is a thin collection of binary level-1 binets on X. Then
B is displayed by a binary level-1 network if and only if it is displayed by a binary
network.

Proof Suppose that B is displayed by a binary network. We claim that B is also
displayed by a binary level-1 network. We shall establish this claim by induction on
|X |.

If |X | = 2, then B contains at most one binet, which has leaf set X . Therefore we
know that B is displayed by a binary level-1 network.

Now assume that |X | > 2, and the claim holds for all sets X ′ with 2 ≤ |X ′| < |X |.
Let N be a binary network on X withB ⊆ B(N ). ByLemma3, there exists a typed split
A|B of D (B). Note thatB|A ⊆ B (N |A) andB|B ⊆ B (N |B). Therefore, by induction,
each ofB|A andB|B is displayed by a binary level-1 network. By Theorem 2, it follows
that B is displayed by a binary level-1 network. 
�

5 Binets Determine the Number of Reticulations of a Binary Level-1
Network

In this section we show that, although the collection of binets displayed by a level-
1 network does not necessarily determine the network (see Fig. 1), it does in fact
determine the number of reticulations in the network. We begin by showing that it
suffices to consider level-1 networks in which all cycles (in the underlying undirected
graph) have length 3.

First, we introduce some further notation. A semi-cycle C of an acyclic-directed
graph is the union of two non-identical, internally vertex-disjoint, directed paths from s
to t , with s = s(C) and t = t (C) two distinct vertices that are referred to as the source
and terminal of C , respectively. The length of a semi-cycle is the number of distinct
vertices that it contains.

We now show that we may restrict to networks in which all semi-cycles have
length 3.

Lemma 4 If N is a binary level-1 network, then there exists a binary level-1 network
N ′ in which every semi-cycle has length 3, such that B (

N ′) = B(N ) and N and N ′
have the same number of reticulation vertices.

Proof Consider a semi-cycle of N with source s and terminal t and length at least 4.
Let (u1, v1), . . ., (uk, vk), (t, w) be the arcs leaving the semi-cycle. Then k ≥ 2.
Let N∗ be a network obtained from a binary tree on {v1, . . . , vk} by replacing vi by
the subgraph of N rooted at vi , for i = 1, . . . , k. Let Nw be the subgraph of N rooted
at w. Then we construct N ′ from N by replacing the subgraph of N rooted at s by the
network R (N∗; Nw). It is straightforward to see that N ′ is a binary level-1 network
with the required properties. 
�
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Fig. 6 The three cases for the location of x in each of the networks N1 and N2 in the proof of Theorem 4.
a The parent of x is not in a semi-cycle. b The parent of x is the terminal of a semi-cycle. c The parent of x
is a non-terminal non-source vertex of a semi-cycle

We now establish the main result of this section.

Theorem 4 If N1 and N2 are rooted binary level-1 phylogenetic networks on X with
B (N1) = B (N2) then N1 and N2 have the same number of reticulation vertices.

Proof The proof is by induction on the number of leaves |X |. The induction basis
for |X | = 2 is clear. Now suppose that N1 and N2 are two non-isomorphic rooted
binary level-1 phylogenetic networks on |X | ≥ 3 with B (N1) = B (N2) but with
different numbers of reticulation vertices. We add an out-degree-1 root to each of N1
and N2 with an arc to the original root. By Lemma 4, we may assume that all semi-
cycles in N1 and N2 have length 3.

Choose an arbitrary leaf x ∈ X and let X ′ = X \{x}. Let N ′
1 and N

′
2 be the networks

obtained from N1|X ′ and N2|X ′ , respectively, by adding an out-degree-1 root with an
arc to the original root. Then N ′

1 and N ′
2 have the same number of reticulation vertices

by induction.
Since all semi-cycles in N1 and N2 are assumed to have length 3, there are three

cases for the location of x in each of the networks N1, N2, illustrated in Fig. 6.
If the parent of x is in a semi-cycle in Ni , let vi be the source of this semi-cycle,

and let vi be the parent of x otherwise. Let Bi := C(vi )\{x} and Ai := X ′\Bi (recall
that C(vi ) denotes the cluster of vi ).

We now consider the different ways in which we could add x to both networks.
Since N1 and N2 have different numbers of reticulation vertices, there are two cases
to consider (after eliminating symmetric cases), as illustrated in Fig. 7.

The first case is that the parent of x is not in a semi-cycle in N1 but is the terminal of a
semi-cycle in N2. First suppose that B1∩ B2 �= ∅. Then choose an arbitrary vertex y ∈
B1 ∩ B2. Then N1|{x,y} = T (x, y) while N2|{x,y} = R(y; x), a contradiction. Hence,
we may assume that B1 ∩ B2 = ∅. Then B1 = A2 and B2 = A1. Clearly, B1, B2 �= ∅.
Take y ∈ B1 = A2 and z ∈ B2 = A1. Then N1|{x,y} = T (x, y) and hence N2|{x,y} =
T (x, y), from which we can deduce that N2|{z,y} = T (z, y). In addition, N2|{z,x} =
R(z; x) and hence N1|{z,x} = R(z; x), from which we can deduce that N1|{z,y} =
R(z; y). This leads to a contradiction since N2|{z,y} = T (z, y).

The second case is that the parent of x is not in a semi-cycle in N1 but is the non-
terminal non-source vertexof a semi-cycle in N2. First suppose that B1 ∩ B2 �= ∅. Then
choose an arbitrary vertex y ∈ B1 ∩ B2. Then N1|{x,y} = T (x, y) while N2|{x,y} =
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B1

v1

x

A1

N1

B2

v2

x

A2

N2

B1

v1

x

A1

N1

B2

v2

x

A2

N2

(a) (b)

Fig. 7 The two possible ways to add leaf x to N ′
1 and N ′

2 in the proof of Theorem 4 such that the obtained
networks N1 and N2 have different numbers of reticulation vertices. a Case 1: the parent of x is not in a
semi-cycle in N1 but is the terminal of a semi-cycle in N2. b Case 2: the parent of x is not in a semi-cycle
in N1 but is the non-terminal non-source vertex of a semi-cycle in N2

R(x; y), a contradiction. Hence, we may assume that B1 ∩ B2 = ∅. Then, as in the
previous case, B1 = A2 �= ∅ and A1 = B2 �= ∅. Take y ∈ B1 = A2 and z ∈ B2 = A1.
Then, similar to the previous case, N1|{x,y} = T (x, y) and hence N2|{x,y} = T (x, y),
from which we can deduce that N2|{z,y} = T (z, y). In addition, N2|{z,x} = R(x; z)
and hence N1|{z,x} = R(x; z), from which we can deduce that N1|{z,y} = R(y; z).
This again leads to a contradiction since N2|{z,y} = T (z, y). 
�

6 Complexity of Binet Compatibility

A direct consequence of Theorem 2 is that there exists a simple polynomial-time
algorithm to decide whether there exists a binary level-1 network displaying a given
collection B of binary level-1 binets (see Huber et al. 2015 for a related algorithm).
In particular, a sink set of D (B) can be found in polynomial time by computing the
strongly connected components of D (B) (Tarjan 1972) and checking for each of them
whether it is a sink set. This can be used to find a typed split, if it exists. If such a split
does not exist, then B is not compatible. Otherwise, we can try to construct networks
forB|A andB|B recursively and combine them as described in the proof of Theorem 2.
This algorithm is similar to the Aho algorithm for deciding whether a set of rooted
trees can be displayed by some rooted tree (Aho et al. 1981).

From Theorem 3, it now follows that the following problem can also be solved in
polynomial time.

Binet compatibility (BC)
Input: a set B of binary level-1 binets.
Question: is B compatible, i.e. does there exist a binary network N with B ⊆
B(N )?

We show now that the assumption that all binets in B are binary and level-1 is
essential. Indeed, for general binets, the compatibility problem is at least as hard as
the well-known graph isomorphism problem (GI) (Goldberg 2003; Zemlyachenko
et al. 1985), which is not known to be solvable in polynomial time. This is even true
when the given binet set is thin (contains at most one binet for each pair of leaves).
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Fig. 8 The three binets constructed in the proof of Theorem 5, and a network N that displays all three
binets if the digraphs G1 and G2 are isomorphic

Theorem 5 Deciding whether there exists a phylogenetic network displaying a given
thin set B of binets is GI-hard.

Proof We reduce fromDAG-isomorphism, which is known to be GI-complete Zemly-
achenko et al. (1985). Let G1,G2 be two directed acyclic graphs, which form
an instance of the DAG-isomorphism problem. For i = 1, 2, we add vertices
ρi , ui , vi , wi , ri , a new leaf labelled x , an arc from wi to each in-degree-0 vertex
ofGi and from each out-degree-0 vertex ofGi to ri and arcs (ρi , ui ), (ui , vi ), (ρi , vi ),
(vi , wi ) and (ri , x). In G1, we add a new leaf labelled y and an arc (u1, y). In G2,
we add a new leaf labelled z and an arc (u2, z). We have thus transformed G1 into a
binet B1 and G2 into a binet B2. The third binet is B3 = T (y, z). See Fig. 8 for an
illustration.

We claim that G1 and G2 are isomorphic if and only if there exists a network
displaying B1, B2 and B3.

First assume that G1 and G2 are isomorphic. Then we can construct a network
displaying B1, B2 and B3 as follows. Take B1 and subdivide the arc (u1, y) by a new
vertex u′

1 and add leaf z with an arc
(
u′
1, z

)
. The obtained network clearly displays B1

and B3 and it also displays B2 since G1 and G2 are isomorphic.
Now assume that there exists some network N displaying B1, B2 and B3. Then

N |{x,y} = B1. Hence, N contains a cycle (in the underlying undirected graph) con-
taining a reticulation v, such that x and the image of G1 are below the arc leaving v,
while y is below some other arc leaving the cycle. Since N |{y,z} = T (y, z), leaf z is
not below v in N . Therefore, deleting v, x and the parent of x from the subgraph of N
rooted at v gives G1.

Similarly, N contains a cycle containing a reticulation v′, such that x and the image
of G2 are below the arc leaving v′, while z is below some other arc leaving the cycle.
Since N |{y,z} = T (y, z), leaf y is not below v′ in N . Therefore, deleting v′, x and the
parent of x from the subgraph of N rooted at v′ gives G2.

Moreover, v = v′ since N |{y,z} = T (y, z). Hence, G1 and G2 are isomorphic. 
�
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7 Maximum Binet Compatibility

If a collection of binets is not compatible, the question arises whether it is possible
to find a largest compatible subset of the binets, in polynomial time. Here we show
that this is unlikely to be the case. The decision version of this problem is defined as
follows.

Maximum Binet compatibility (MBC)
Input: a set B of binary level-1 binets and an integer k.
Question: does there exist a compatible subset B′ of B with |B′| ≥ k?

We now establish the complexity of this problem (see Theorem 6). Recall from
Sect. 5 that s(C) and t (C) denote the source and terminal of a semi-cycle C , respec-
tively.

Lemma 5 If the binet R(x; y) is displayed by a binary level-1 network N, then
lsa(x, y) is the source of a semi-cycle C in N. In addition, y is below t (C) and
x is not below t (C).

Proof Let u = lsa(x, y). Note that u is not a reticulation vertex, as otherwise the
child of u would be a stable ancestor of x and y that is below u. Hence, u has two
children, denoted by u1 and u2.

Observe that neither (u, u1) nor (u, u2) is a cut arc, since otherwise we would have
N |{x,y} = T (x, y), while by the assumption of the lemma N |{x,y} = R(x; y). Hence, u
is the source of a semi-cycle C . Let v := t (C) be the terminal of C . If neither x nor y
is below v, then N |{x,y} = T (x, y), a contradiction. If both x and y are below v, then v

is a stable ancestor of x and y, a contradiction to lsa(x, y) = u. Therefore, precisely
one of x and y is below v. If x is below v and y is not, then N |{x,y} = R(y; x), a
contradiction. Therefore, y is below v and x is not. 
�

In view of the last lemma, for each binet R(x; y) = N |{x,y}, there exists a unique
semi-cycle CN (x; y) containing lsa(x, y).

Lemma 6 If the two binets R(x; y) and R(y; z) are both displayed by a binary level-1
network N, then

s (CN (y; z)) ≺ t (CN (x; y)) .

Proof Let C1 = CN (x; y) and C2 = CN (y; z). By Lemma 5, y ≺ t (C1) but y is not
below t (C2), from which we know that C1 �= C2. Since s (C1) and s (C2) are stable
ancestors of y in view of Lemma 5, we have either s (C1) ≺ s (C2) or s (C2) ≺ s (C1)

but not both.
Note that if s (C1) ≺ s (C2), then s (C1) ≺ t (C2) and hence y ≺ s (C1) ≺ t (C2),

a contradiction. Thus s (C2) ≺ s (C1), from which it follows that s (C2) ≺ t (C1). 
�
Given a digraph G, letR(G) be the collection of binets {R(x; y) | (x, y) ∈ E(G)}

induced by G. Note that R(G) is a binet set on V (G), i.e. the leaves of the binets in
R(G) correspond to the vertices of G.
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Fig. 9 A level-1 network N∗ on
X = {x1, . . . , xn}

xn xn−1 xn−2 x1

Proposition 1 Let G be a digraph. ThenG is acyclic if and only ifR(G) is compatible.

Proof Let n = |X |, with X the vertex set of G. Suppose first that G is acyclic, then
there exists a topological sorting of G, that is, the vertices of G can be ordered as
x1, . . . , xn so that

(
xi , x j

) ∈ E(G) implies i < j . Hence, the network N∗ in Fig. 9
displays R(G) since N∗ displays each binet R

(
xi ; x j

)
with i < j .

Conversely, suppose thatR(G) is compatible. By Theorem 3, there exists a binary
level-1 network N with R(G) ⊆ B(N ). It remains to show that G is acyclic. If not,
then there exists a directed cycle (x1, x2, . . . , xm) for somem ≥ 3. Denote xm+1 = x1.
In view of Lemma 5, let Ci = CN (xi ; xi+1) be the semi-cycle in N containing
lsa (xi , xi+1) for 1 ≤ i ≤ m. Then Lemma 5 implies x1 ≺ s (Cm) and that x1 is not
below t (C1). On the other hand, by Lemma 6 we have

s (Cm) ≺ t (Cm−1) ≺ s (Cm−1) ≺ . . . ≺ s (C2) ≺ t (C1) .

Together with x1 ≺ s (Cm), it follows that x1 ≺ t (C1), a contradiction. 
�
A set of binets B on X is said to be dense if for each pair of distinct elements x and

y in X , there exists precisely one binet on {x, y} in B. Hence, a dense set of binets is
always thin.

Theorem 6 The problemMBC is NP-complete, even if the given set of binets is dense.

Proof We reduce from the NP-hard problem feedback arc set in tournaments
(FAST) (Alon 2006; Charbit et al. 2007), which is defined as follows. Given a tourna-
ment, i.e. a digraph G = (V, E) with either (a, b) ∈ E or (b, a) ∈ E (but not both)
for each pair of distinct elements a and b in V , and given a positive integer k′, does
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there exist a subset F ⊆ E of at most k′ arcs whose removal makes G acyclic. If such
an arc set exists, then we call it a feedback arc set of G.

The reduction is as follows. For each instance (G, k′) of FAST, consider the corre-
sponding instance (R(G), k) of MBC with k = |R(G)| − k′. Since the set R(G) of
binets induced by G can be constructed in polynomial time, it suffices to show that G
contains a feedback arc set with size at most k′ if and only if there exists a compatible
subset of R(G) of size at least k.

First assume that there exists a feedback arc set E ′ of G with size at most k′.
That is, |E ′| ≤ k′, and the digraph G∗ obtained from G by deleting the arcs in E ′ is
acyclic. Consider the set of binets B′ = {

R(x; y) : (x, y) ∈ E\E ′}. This set contains
at least k binets. In addition, since B′ = R(G∗), it follows by Proposition 1 that B′ is
compatible.

Now assume that there exists a compatible binet set B′ ⊆ R(G) with |B′| ≥ k.
Consider the set E ′ = {

(x, y) : R(x, y) ∈ R(G)\B′} of arcs of G. Then by Proposi-
tion 1, it follows that E ′ is a feedback arc set. Moreover, |E ′| ≤ k′, which completes
the proof. 
�

We complete the section by showing that there exists a polynomial-time 1/3-
approximation algorithm for the MBC problem, which follows directly from the next
theorem and its proof.

Theorem 7 Suppose that B is a set of binary level-1 binets on X. Then there exists a
binary level-1 network N such that |B(N ) ∩ B| ≥ |B|/3.
Proof If at least a third of the binets in B are tree type, then take N to be any binary
tree on X and we are done. Hence we may assume that at least two thirds of the binets
are reticulate type.

Impose an arbitrary ordering on the elements in X , that is, write X =
{x1, . . . , xn}. Let B1 = B ∩ {

R
(
xi ; x j

) : 1 ≤ i < j ≤ n
}

and B2 = B ∩{
R

(
x j ; xi

) : 1 ≤ i < j ≤ n
}
. Without loss of generality, we may assume that |B1| ≥

|B2| (as the other case can be established in a similar way). Since at least two thirds
of the binets are reticulate type, and each of those is contained in either B1 or B2 (but
not both), we know that |B1| ≥ |B|/3. Now consider the network N∗ in Fig. 9, then
clearly we have B1 ⊆ B (N∗). Thus we have |B (N∗) ∩ B| ≥ |B1| ≥ |B|/3, from
which the theorem follows. 
�

8 Discussion

In this paper we have developed some combinatorial results concerning collections of
level-1 binets. Several interesting questions arise from these results. For example, we
have shown that the collection of level-1 binets displayed by a binary phylogenetic
network can be displayed by some level-1 network, but is there some canonical level-1
network that could be used to display such a collection? In addition, can we count the
number of binary level-1 networks that display a dense compatible collection of binets?
We have also seen that the collection of binets displayed by a binary level-1 network
determine its reticulation number. Therefore it is natural to ask which properties of a
phylogenetic network in general are determined by its binets?
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We have also studied some algorithmic questions concerning binets. Concerning the
maximumbinet compatibilty problem, note that the constant 1/3 is sharp inTheorem7.
For example, consider the binet collection {R(x; y), T (x, y), R(y; x)}. However, can
a better bound be achieved by restricting to thin collections of binets, and can improved
approximation algorithms also be found?

In another direction, it would be interesting to know whether similar results to
those proven in this paper might hold for higher-level networks. For example, what
can be said about properties of collections of level-2 binets, and does Theorem 4 hold
also for higher-level networks? Also, we could try to generalize some of our results
to k-nets, i.e. networks on k leaves, k ≥ 2. For example, does Theorem 3 hold for
trinets? In general, it would be interesting to know what additional information the
collection of k-nets displayed by a network might contain for k ≥ 3. Note that it has
been shown that trinets do not completely determine rooted networks in general Huber
et al. (2015). However, do they determine properties of networks such as the number
of reticulations?

Similarly, it would be interesting to extend some of our algorithmic results to higher-
level networks and k-nets. For example, it is known that the compatibility problem is
NP-complete for collections of level-1 trinets (Huber et al. 2015). However, to date
the maximum trinet compatibility problem has not been studied.

Eventually, it is hoped that new results in these directions could be useful for devel-
oping novel methods to construct phylogenetic networks from higher-level networks
and k-nets. For example, using our results it may be possible to develop approaches to
build a consensus network for a collection of phylogenetic trees or networks. Note that
consensus networks have already proven themselves useful in the unrooted setting,
where they are used to summarize key features displayed by a collection of trees or
networks (see e.g. Holland et al. 2004). A consensus method based on binets could
work by breaking each of the given networks down into a collection of binets, and
then developing methods to pool together the information contained in the resulting
binets so as to construct some consensus network, or at least some constraints that
any such network should satisfy. Note that similar approaches have been developed
to build consensus trees for a collection of phylogenetic trees by breaking each of the
trees down into a collection of triplets [see e.g. Bryant (2003, Sect. 2)]. Probably it
would be of some interest to first consider how to construct a level-1 consensus net-
work for a collection of level-1 networks by breaking each of them down into level-1
binets. This is already likely to be quite challenging in view of our result concerning
NP-completeness of MBC.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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