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Graphene-based materials (GBMs) are emerging as attractive materials for biomedical 
applications. Understanding how these materials are perceived by and interact with 
the immune system is of fundamental importance. Phagocytosis is a major mechanism 
deployed by the immune system to remove pathogens, particles, and cellular debris. 
Here, we discuss recent studies on the interactions of GBMs with different phagocytic 
cells, including macrophages, neutrophils, and dendritic cells. The importance of assess-
ing GBMs for endotoxin contamination is discussed as this may skew results. We also 
explore the role of the bio-corona for interactions of GBMs with immune cells. Finally, we 
highlight recent evidence for direct plasma membrane interactions of GBMs.
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O brave new worlds, that have such people in them!
Edwin A. Abbott, Flatland. A Romance of Many Dimensions (1884).

iNTRODUCTiON

Graphene and its derivatives have attracted considerable attention for various applications in  
science and technology (1, 2). Graphene oxide (GO), in particular, is being intensively investigated 
for various biomedical applications including drug delivery and bioimaging, and as biosensors (3). 
GO offers interesting physicochemical properties including its large surface area, ease of surface 
functionalization, and superior colloidal stability in aqueous media (4). However, increasing 
production and use of graphene-based materials (GBMs) also necessitates careful scrutiny of the 
impact of such materials on cells and tissues (5). Understanding the interactions with the immune 
system is of particular importance (6). Once inside the body, a foreign material will encounter 
phagocytic cells of the innate immune system, such as neutrophils, macrophages, and dendritic 
cells (DCs). These cells represent the first line of defense against foreign intrusion (microorganisms, 
particles), and they also clear cell debris, thus playing an important role in tissue homeostasis. 
Macrophages are involved in the initiation, propagation, and resolution of inflammation (7), while 
DCs are antigen-presenting cells that act as a bridge between the innate and adaptive arms of the 
immune system. Neutrophils are specialized in killing bacteria and other microorganisms, although 
recent studies have suggested that these cells may also orchestrate adaptive immune responses (8). It 
is important to note that macrophages that reside in different tissues are not only important effectors 
of the innate immune response but may also contribute to acute or chronic tissue injury resulting 
from toxicant exposure through the release of a host of soluble mediators, e.g., reactive oxygen or 
reactive nitrogen species, proteolytic enzymes, and pro-inflammatory cytokines or chemokines (9). 
Thus, as emphasized before by Laskin et al. (9), macrophages are mediators of both “defense and 
destruction.”
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FiGURe 1 | Classification of graphene-based materials (GBM). In the European Commission funded GRAPHENE Flagship project, three physicochemical 
descriptors were defined to enable the classification of GBMs: number of graphene layers, average lateral dimension, and atomic carbon/oxygen ratio. The 
proposed classification framework will help to determine the role of specific physicochemical properties on the health and safety profile of GBMs. Reproduced from: 
Wick et al. (10) with permission from John Wiley & Sons, Inc.
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Recently, a classification system (Figure 1) was proposed by 
researchers in the EU-funded GRAPHENE Flagship Project as 
a starting point for the categorization of distinct graphene types 
(10). In brief, three physicochemical properties of GBMs were 
highlighted: (i) the number of graphene layers, (ii) the average 
lateral dimensions, and (iii) the carbon-to-oxygen (C/O) atomic 
ratio; the inclusion of the C/O ratio as a functional property can 
be justified by the fact that GBMs are both structurally and chemi-
cally heterogeneous. Indeed, as stated by Wick et al. (10) different 
members of the GBM family do not share the same “standard” 
surface. The surface of pristine graphene is hydrophobic while 
in the case of GO, surfaces consist of hydrophobic islands inter-
spersed with hydrophilic regions. This could potentially influence 
the interactions of these materials with biological systems. Here, 
we discuss recent studies on the interaction of GBMs with cells of 
the innate immune system, including macrophages, neutrophils, 
and DCs. Notably, while these cells all share the propensity for 
phagocytosis, we also explore emerging evidence that GBMs 
may exert direct effects on the plasma membrane of immune 
cells in the absence of cellular uptake. The biodegradation of 
carbon-based materials by immune cells including neutrophils 
and macrophages has been highlighted in other recent review 
articles (3, 11, 12) and is not discussed here. We will mainly focus 
our discussion on studies using macrophages or macrophage-like 

cell lines as there are few studies to date on GBM effects on 
neutrophils and DCs. Nevertheless, as more and more studies are 
emerging, we may begin to understand how the immune system 
responds to 2D objects—a journey into flatland.

THe iMPORTANCe OF eNDOTOXiN 
ASSeSSMeNT

Endotoxins, also known as lipopolysaccharides (LPS), are large 
(200–1,000  kDa), hydrophobic, heat-stable molecules that form 
part of the outer membrane of gram negative bacteria (13). LPS 
is a potent inflammatory mediator which activates immune 
cells via pattern recognition receptors leading to the secretion of  
pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, 
and interleukin (IL)-1β (14). As many nanomaterial-enabled 
drug carriers or diagnostic devices are engineered to target the 
immune system (or to avoid interactions with it), it is increasingly 
important to understand immune response to these materials  
(15, 16). Of particular importance in this context is the fact that 
nano-biomaterials and pharmaceutical products alike are com-
monly contaminated with endotoxins which could lead to septic 
shock and organ failure if administered to patients (17). Endotoxin 
detection in pharmaceutical products is performed using two dif-
ferent methods. The rabbit pyrogen test (RPT) enables the detection 
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of pyrogens in general by measurement of fever development after 
injection of the test sample; it is expensive and requires the use 
of large numbers of animals (18). The second type of endotoxin 
detection method, the Limulus amebocyte lysate (LAL) assay, is 
based on the blood of wild horseshoe crab populations. While the 
RPT assay can only detect the presence of endotoxins indirectly, 
the LAL assay is more specific to endotoxins as it takes advantage 
of the LPS-sensitive serine protease Factor C. Upon activation, 
Factor C induces a coagulation cascade leading to the amplification 
of the LPS stimulus and the formation of a firm gel clot. All LAL 
assays are in principle based on this coagulation cascade, but they 
have been further modified to enable quantitative determination 
of endotoxins (18). Both of these tests have a long history of use 
for traditional pharmaceuticals and medical devices and are rou-
tinely used in drug development. More recently, the recombinant 
factor C (rFC) assay and the macrophage activation test (MAT) 
were recognized as alternatives to the LAL assay. The MAT, which 
mimics the human fever reaction, was established as an alternative 
test for pyrogen testing (19). Importantly, the European Directive 
2010/63/EU on the protection of animals used for scientific 
purposes enforces the replacement of animal tests when validated 
alternatives exist. While the LAL assay is known to be very sensi-
tive, several laboratories have reported problems of interference of 
various types of nanomaterials with one or more of the LAL assay 
formats (20–22). Indeed, carbon-based nanomaterials including 
GBMs were shown to interfere with the LAL assay, which may 
lead to erroneous results or mask the effects of the materials 
themselves (23, 24). In a recent study, the authors suggested that 
repeated cycles of autoclaving may reduce the endotoxin content 
of carbon-based nanomaterials including pristine graphene and 
that the native versus depyrogenated materials elicited distinct 
macrophage responses in  vitro (25). However, the chromogenic 
LAL assay was employed to assess for endotoxin contamination, 
calling into question whether the proposed depyrogenation 
procedure worked (25). TLR4 reporter cells were suggested as an 
alternative assay to evaluate endotoxin contamination of metal/
metal oxide nanoparticles (21). However, recent work has implied 
that GO could trigger cell death in macrophages via TLR4 (dis-
cussed below), meaning that the use of such reporter cells could 
also yield ambiguous results. Mukherjee et  al. (23) developed a 
novel assay for endotoxin detection to circumvent problems with 
assay interferences of GBMs. The assay, designated the TNF-α 
expression test (TET), is based on the detection of TNF-α secretion 
in primary human monocyte-derived macrophages incubated in 
the presence or absence of a specific endotoxin inhibitor. It was 
shown that when non-cytotoxic doses of GBMs were applied, the 
TET enabled unequivocal detection of LPS with a sensitivity that 
was comparable to the LAL assay. Guidelines for the preparation 
of endotoxin-free GO were also presented (23).

BiO-CORONA FORMATiON: SHeLTeR 
FROM THe STORM

When a nanomaterial is introduced into a living system it inter-
acts with biological molecules (proteins, lipids, etc.) leading to 
the formation of a so-called bio-corona on the surface (26), or, to 
put this in immunological terms, the nanomaterial is opsonized 

(the process whereby pathogens or cells are rendered more 
susceptible to phagocytosis). Detailed studies of various types 
of nanoparticles have shown that bio-corona formation depends 
not only on the size or surface curvature of the particle but 
also on surface properties such as the degree of hydrophobicity 
(27–29). The bio-corona has been shown to modulate cellular 
uptake of nanomaterials (30), and a recent study suggested that 
proteins present in the original protein corona are retained on the 
nanoparticles until they reach the lysosomes (31). Moreover, the 
adsorption of proteins may mitigate the cytotoxic effects of nano-
materials. Indeed, in vitro studies have shown that the adsorption 
of serum proteins reduces the cytotoxicity of carbon nanotubes 
(CNTs) (32) as well as GO (33), and based on a combination of 
experimental and theoretical approaches, it was suggested that 
the bio-corona mitigates the cytotoxicity of GO by limiting its 
penetration into the cell membrane (34). Furthermore, modeling 
studies suggested that graphene, due to its hydrophobic nature, 
may interrupt hydrophobic protein–protein interactions (35). 
Indeed, it is important to recognize the differences in phys-
icochemical properties between different members of the GBM 
family, not least with respect to the potential interaction with 
proteins. Graphene is essentially a single atomically thin sheet of 
sp2-bonded carbon atoms, whereas GO is an oxidized graphene 
sheet derivatized by carbonyl and carboxyl groups at the edges 
and displaying epoxide and hydroxyl groups on the basal plane 
(36). Moreover, graphene and GO have different surface ener-
gies—an important parameter affecting dispersibility. Thus, 
graphene is hydrophobic and dispersible in organic solvents 
whereas GO can be dispersed in water (37). The latter property 
derives mostly from the ionizable edge carboxyl groups, the 
basal plane being essentially a network of hydrophobic islands  
of unoxidized benzene rings surrounded by polar groups (38). 
Additionally, small GO sheets are more hydrophilic than larger 
ones because of greater charge density, which could impact on 
bio-interactions.

Intravenously injected nanomaterials can adsorb a wide range 
of proteins in the blood (39). The bio-corona of blood proteins 
is rapidly formed, and it has been shown to affect hemolysis and 
thrombocyte activation (40). Furthermore, complement activa-
tion on the surface of nanomaterials is of particular concern when 
it comes to clinical applications. In fact, complement proteins have 
been consistently identified in or on nanoparticle coronas (28, 30, 
40, 41). The complement system is a critical component of the 
innate immunity in the blood; it is a proteolytic cascade typically 
triggered via three distinct pathways (classical, lectin, and alterna-
tive) that converge to generate the same set of effector molecules 
at the third component of complement (C3) (42). Complement 
proteins opsonize pathogens and cells for engulfment via com-
plement receptors and could conceivably promote nanomaterial 
uptake as well. However, certain complement factors may instead 
confer “stealth” properties to nanomaterials by preventing fur-
ther complement activation, as shown in a recent study on GO  
(43). Complement activation also liberates two potent effector 
molecules (C3a and C5a) that play important roles in the recruit-
ment and activation of inflammatory cells as well as anaphylaxis, 
a serious allergic reaction that is rapid in onset and may cause 
death (44). Several reports have documented pathway-specific 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


A B

FiGURe 2 | Macrophages are professional phagocytic cells capable of ingesting micron-sized graphene oxide (GO). These TEM images show primary human 
monocyte-derived macrophages cultured for 24 h in cell medium alone (A) or with 10 µg/mL GO (B). The cells readily internalized GO (present in cytoplasmic 
vesicles) without ultrastructural signs of cell death. Cells were maintained in RPMI-1640 medium supplemented with 10% fetal bovine serum. TEM: Kjell Hultenby, 
Electron Microscopy Core Facility, Karolinska Institutet.
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complement activation by various types of nanomaterials including  
carbon-based nanomaterials such as CNTs (45, 46) and GO  
(47, 48). The question is: could particle surfaces be engineered to 
avoid protein adsorption and/or unscheduled complement acti-
vation? The attachment of polymers such as poly(ethylene glycol) 
(PEG) on particle surfaces is a common approach in nanomedi-
cine, and the traditional view has held that PEGylation completely 
prevents protein adsorption, thereby preventing the clearance 
of particles by the reticuloendothelial system. However, if this 
were true, then how does one explain complement activation on 
PEGylated particles? In recent years, the view has emerged that 
PEGylation of nanomaterials only partially blocks protein adsorp-
tion and may even promote the formation of a bio-corona that is 
distinct in comparison to the corona formed on pristine nanoma-
terials (49, 50). Indeed, in a recent study using macrophage-like 
RAW264.7 cells, the adsorption of specific proteins was shown 
to be required to prevent uptake of PEG- or poly(ethyl ethylene 
phosphate) (PEEP)-coated polystyrene particles (51).

The choice of polymer coating matters. Luo et  al. (52) 
reported that PEG-coating prevented uptake of GO by murine 
peritoneal macrophages while coating with cationic poly(ether 
imide) (PEI) favored uptake at low doses, but compromised cell  
viability at high doses. In another recent study, the authors pro-
vided evidence that PEGylated GO of approximately 200  nm 
in lateral size induced immune responses (cytokine release) in 
murine peritoneal macrophages; interestingly, comparable levels 
of activation were also observed following PEGylation of the 
non-carbon-based 2D material, molybdenum-disulfide (MoS2)  
(53). The authors speculated that integrin signaling could account 
for the enhanced cytokine responses in cells exposed to PEG-GO. 
Overall, the study suggested that PEGylation does not serve to 
passivate the surfaces of 2D materials. Xu et  al. (54) prepared 
a series of GO derivatives including aminated GO (GO-NH2), 
poly(acrylamide)-functionalized GO (GO-PAM), poly(acrylic 
acid)-functionalized GO (GO-PAA), and PEG-functionalized 

GO (GO-PEG), and compared their toxicity with pristine GO. 
The GO materials all displayed lateral dimensions in the range of 
100–500 nm and the ζ-potential was negative for all the materials 
in cell culture medium due to protein adsorption. Among these 
GO derivatives, GO-PEG and GO-PAA induced less toxicity 
toward murine J774A.1 macrophage-like cells than pristine GO, 
and GO-PAA proved to be the most biocompatible one, both 
in  vitro and in mice (54). The differences in biocompatibility 
were suggested to be due to differences in the compositions of  
the bio-corona, especially whether or not immunoglobulin  
G (IgG) was present; GO-PAA and GO-PEG had less IgG content 
in their protein coronas (30−40%) than GO, GO-NH2, and GO- 
PAM (50−70%). IgG is a well-known opsonin that plays a key role 
in the clearance of pathogens. This study points toward strategies 
for safe design of GO for biomedical applications and underscores 
the importance of the bio-corona (54).

eFFeCTS ON MACROPHAGeS: 
BReAKiNG AND eNTeRiNG

Macrophages (“big eaters”) are professional phagocytes arising from  
the bone marrow; these cells are referred to as monocytes when  
they are present in the peripheral circulation and “macrophages” 
when they reside in tissues. Macrophage phagocytosis of patho-
gens is facilitated through opsonization by immunoglobulins 
and components of the complement system, but engulfment 
may also be non-specific. We have noted that primary human 
monocyte-derived macrophages efficiently engulfed GO without 
signs of acute (24  h) cell death (Figure  2). GO was found in 
membrane-enclosed vesicles in the cytoplasm, suggesting uptake 
via endocytosis. Other recent studies using macrophage-like 
THP.1 cells suggested that phagocytosis influences the degree  
of cytotoxicity of GO to some extent (55). However, while inhibi-
tion of phagocytosis blunted the cytotoxicity of single-layer GO, 
the effects of multi-layered GO were shown to be similar regardless 
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of whether or not phagocytosis occurred. Furthermore, other 
recent studies have reported that GO sheets with large lateral 
dimensions could align with the plasma membrane of mac-
rophages (so-called “masking” effect) and it was hypothesized 
that this parallel arrangement of GO sheets on the cell surface 
could either promote their internalization, or isolate the cells 
from their environment, thus compromising cell viability and/or 
cell function (56). Similarly, Ma et al. (57) reported that large GO 
sheets showed a stronger “adsorption” to the plasma membrane 
of murine macrophage-like J774.A1 cells with less phagocytosis, 
while small GO sheets were more readily taken up by cells. The 
authors also found that large GO promoted a pro-inflammatory 
polarization of macrophages both in vitro and in vivo. In contrast, 
other investigators have reported that small GO sheets elicited 
more profound effects on human immune cells (monocytes) when 
compared to large GO (58). Li et al. (59) suggested, on the basis of 
experimental and theoretical studies, that micron-sized graphene 
sheets entered cells through membrane piercing or slicing (“edge-
first” uptake). In fact, several studies in recent years using differ-
ent cell models have suggested that GO could exert direct effects 
on the plasma membrane of cells, with or without cell death. For 
instance, micron-sized GO sheets were found to induce the for-
mation of vacuoles in the cytosolic compartment of cells leading 
to an increased cell membrane permeability for small molecules; 
this vacuolization was only observed in cells that overexpressed 
the water channel, aquaporin (AQP1) (60). GO was also shown to 
compromise plasma membrane and cytoskeletal function in vari-
ous cell lines without significant signs of cell death, and interac-
tions with integrins in the cell membrane were implicated in this 
process (61). The authors proposed that this could be exploited 
to sensitize cancer cells to chemotherapeutic agents, but it was 
not demonstrated whether these effects were specific for cancer 
cells. Furthermore, single-layer graphene was found to produce 
holes (pores) in the membranes of A549 lung carcinoma cells and 
macrophage-like RAW264.7 cells, leading to a substantial loss of 
cell viability (62). Pore formation occurred even in the presence 
of serum, and molecular dynamics simulations suggested that the 
pore formation was dependent on lipid extraction. Indeed, previ-
ous experimental and theoretical studies have suggested that the 
antibacterial behavior of graphene arises from the formation of 
pores in the bacterial cell wall (63), possibly due to lipid extrac-
tion from bacterial membranes (64). Finally, in another recent 
study, nano-sized GO sheets were shown to induce membrane 
ruffling in a variety of different cell lines with concomitant shed-
ding of membrane fragments (65). The underlying mechanism 
was not disclosed, although changes in the levels of Ca2+ in the 
cell are known to regulate the formation of such actin-driven 
membrane protrusions. Thus, it appears that GBMs are capable 
of interacting with cells in a variety of different ways including 
masking, piercing, ruffling/shedding, pore formation (possibly 
via membrane lipid extraction), and/or internalization into cells. 
How does one make sense of such disparate observations? First 
of all, there could be important differences in the test material 
itself, including the thickness and the lateral dimensions (and, of 
course, the dose of the material added to cell cultures). Moreover, 
differences in cell culture conditions (including whether or not 
the cell culture medium is supplemented with serum) may come 

into play. Indeed, it has been noted that the composition of the 
cell culture medium itself could critically affect the way in which 
GO (and other nanomaterials) interact with cells (66). Finally, the 
fact that different cell models are used may account for the strik-
ing differences in cellular outcomes in the studies reported here. 
Thus, it is important to understand that transformed cell lines 
are only a model of normal cells, and that so-called macrophage-
like cell lines do not fully recapitulate the behavior of primary 
macrophages (67). It is also important to realize that there are 
many different macrophage populations and that the phenotype 
or activation status of macrophages may affect how these cells 
respond to nanomaterials, as we and others have recently shown 
(68, 69). Notwithstanding, the view is emerging that GO could 
have direct effects on the cell membrane and further studies are 
needed to understand these interactions. This is obviously impor-
tant if GBMs are to be used as “smart” carriers of a therapeutic 
payload to specific cell populations in the body.

eFFeCTS ON MACROPHAGeS: 
iNFLAMMASOMe ACTivATiON

Inflammasomes are multiprotein complexes that activate 
caspase-1, which leads to maturation and secretion of the  
pro-inflammatory cytokines IL-1β and IL-18 (70). Inflammasome 
activation is important for host defense and pathogen clearance. 
In addition, inflammasome activation is implicated in the devel-
opment of various chronic inflammatory diseases, and the NLRP3 
inflammasome is activated by endogenous “danger” signals such 
as monosodium urate, the causative agent in gout (71), and by 
cholesterol crystals that are present in atherosclerotic lesions (72). 
Moreover, an emerging body of literature shows that carbon-
based nanomaterials, including long and fiber-like multi-walled 
CNTs (73, 74) as well as small, spherical carbon nano-onions (75) 
and hollow carbon spheres (76), are able to activate the inflam-
masome complex in phagocytic cells (macrophages) with subse-
quent secretion of IL-1β. GO was recently shown to trigger IL-1β 
production in myeloid (THP.1) and epithelial (BEAS-2B) cells, 
respectively (77). We have found that GO of varying lateral dimen-
sions triggered the inflammasome in primary human monocyte-
derived macrophages and we noted that cellular uptake of GO 
was required for IL-1β production (Mukherjee et al., unpublished 
observations). Similarly, Cho et al. (55) reported that phagocyto-
sis inhibition abolished IL-1β secretion in THP.1 cells exposed 
to single-layer GO, but not in cells exposed to multi-layered GO. 
Taken together, a range of carbon-based nanomaterials including 
not only fiber-like materials but also spherical particles and flat 
materials such as GO trigger inflammasome activation. Needless 
to say, it is important to exclude endotoxin contamination of the 
test material when conducting such experiments as LPS is known 
to act as a co-signal for inflammasome activation (78). Indeed, 
endotoxin is often used to stimulate cells in vitro when assess-
ing NLRP3 inflammasome activation (73), and this is certainly 
relevant in the context of a microbial challenge. However, it is 
pertinent to ask how the inflammasome is activated in sterile 
(nanomaterial) induced inflammation. In a recent publication, 
Jessop et al. (79) provided evidence for a role of high-mobility 
group box 1 (HMGB1) for MWCNT-induced inflammasome 
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activation in  vitro and in  vivo. Cholesterol crystals are known 
to act as “danger” signals and a recent study demonstrated that 
cholesterol crystals triggered neutrophils to release neutrophil 
extracellular traps (NETs) (see below) which, in turn, primed 
macrophages for cytokine release (80). This finding suggests 
that a “danger” signal may drive sterile inflammation through 
its interaction with neutrophils. Further studies should address 
whether the release of HMGB1 or other “danger” signals plays a 
role in GO-induced inflammasome activation.

Toll-like receptors (TLRs) are so-called pattern recognition 
receptors that recognize structurally conserved molecules 
expressed by microbes, leading to the activation of immune 
responses (81). TLR4, the pattern recognition receptor for LPS 
(endotoxin), has been suggested to recognize a host of other 
endogenous factors, ranging from proteins to metal ions. How-
ever, direct activation of a single receptor by such a range of 
molecular signals is difficult to explain from a structural point 
of view, and care should be taken to exclude potential endotoxin 
contamination (82). On the other hand, it has been suggested that 
TLRs might sense the display of hydrophobic patches on a variety 
of molecules, which may explain the apparent promiscuity of 
this class of pattern recognition receptors (83). Interestingly, Qu 
et al. (84) reported that GO with a size of about 1–2 µm induced  
TLR4-dependent cell death in bone marrow-derived mac-
rophages from mice and presented evidence that this occurred, at 
least in part, through a paracrine TNFα-dependent mechanism. 
In previous work, Chen et  al. (85) showed that GO induced 
autophagy and cytokine secretion in a TLR-dependent manner 
in the mouse macrophage cell line RAW264.7. In contrast, our 
recent studies have suggested that GO triggers inflammasome 
activation with secretion of IL-1β in primary human monocyte-
derived macrophages without engaging the TLR signaling 
pathway (Mukherjee et al., unpublished results). Notably, no cell 
death was observed in macrophages exposed to GO, in marked 
contrast to the aforementioned studies. Care was taken to control 
for endotoxin contamination prior to cell exposures. We suggest 
that endotoxin testing should be mandatory when studying  
putative interactions of GO with TLRs.

In most of the examples provided here, the impact of GO on 
isolated macrophages or macrophage-like cells was investigated. 
While such studies may provide important insights regarding the 
mode of entry of GO into cells and on the signaling pathways 
affected following cellular interactions, studies in living organ-
isms are needed to assess the overall response to GO and the 
interplay between both arms of the immune system. Shurin 
et al. (86) recently provided a detailed analysis of how exposure 
to GO modulates the allergic pulmonary response. To this end, 
the authors used a murine model of ovalbumin (OVA)-induced 
asthma, and found that GO, given at the sensitization stage, aug-
mented airway hyperresponsiveness (AHR) and airway remod-
eling, while at the same time, the levels of the Th2 cytokines, IL-4, 
IL-5, and IL-13 were suppressed in bronchoalveolar lavage (BAL) 
fluid in exposed mice (86). Moreover, exposure to GO during 
sensitization with OVA decreased eosinophil accumulation and 
increased recruitment of macrophages in BAL fluid. Exposure to 
GO also increased the macrophage production of the mammalian 
chitinases, chitinase 3-like 1, and AMCase, whose expression is 

associated with asthma (87), and molecular modeling suggested 
that GO may directly interact with chitinases, affecting their 
activity (Figure  3). Taken together, these results indicated that 
pulmonary exposure to GO initiates a novel mechanism of 
nanomaterial-induced airway remodeling and AHR in a mouse 
model of asthma that is independent from eosinophilic airway 
inflammation and Th2-mediated immune responses, with the 
possible involvement of mammalian chitinases (86).

eFFeCTS ON NeUTROPHiLS: TANGLeD 
UP iN BLUe

Neutrophils are the most abundant type of white blood cells and play 
a key role in the defense against invading pathogens. Neutrophils 
use a variety of strategies to eliminate invading microbes: (i) 
microbial uptake followed by intracellular destruction through an 
array of proteolytic and oxidative enzymes, (ii) degranulation and 
secretion of antimicrobial factors such as myeloperoxidase (MPO) 
leading to extracellular destruction of microbes, and (iii) release of 
NETs with entrapment and non-phagocytic killing of microbes (88, 
89). NETs consist of a network of chromatin fibers decorated with 
antimicrobial proteins such as neutrophil elastase (NE) and MPO 
to enable the extracellular killing of bacteria or fungi. Interestingly, 
neutrophils are apparently able to sense the size of microbes and 
release NETs selectively in response to large pathogens, thereby 
minimizing the risk of tissue damage associated with the release of 
NETs (90). Moreover, increasing evidence suggests that the release 
of NETs might also occur in non-infectious, sterile inflammation, 
and may contribute to tissue damage (91). For instance, crystals 
of monosodium urate, the causative agent of gout, were shown to 
induce release of NETs (92). Cholesterol crystals can also trigger 
NET formation, leading to priming of macrophages for cytokine 
release (80). Furthermore, in a very recent study, exposure to 
high doses of polystyrene nanoparticles and nanodiamonds trig-
gered a “self-limiting” (resolving) NETosis-driven inflammation 
in mice (93). No NET formation was seen in response to large 
(100–1,000 nm) particles. We recently observed size-dependent 
triggering of NETs in primary human neutrophils exposed to GO 
with a more pronounced effect seen for micrometer-sized GO 
sheets versus GO sheets with nano-sized lateral dimensions; we 
also observed a disruption of lipid rafts in neutrophils incubated 
with GO (Mukherjee et al., unpublished results). Care was taken 
to control for endotoxin contamination, as LPS is known to prime 
neutrophils for NET production. Effects of GBMs on neutrophils 
in vivo could impact adversely on the innate immune defense; this 
remains to be studied.

eFFeCTS ON DeNDRiTiC CeLLS: AiDiNG 
AND ABeTTiNG

DCs are professional antigen-presenting cells (94) and as 
such they are indispensable for the regulation of the balance 
between immunity (literally meaning “exemption,” the capabil-
ity of an organism to resist microorganisms) and tolerance  
(i.e., indifference or non-reactivity toward substances that would 
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FiGURe 3 | GO triggers macrophage production of the mammalian chitinases, chitinase 3-like 1 (CHI3L1) and acidic mammalian chitinase (AMCase), whose 
expression is associated with asthma. (A) GO stimulates accumulation of AMCase and CHI3L1 in the lungs of mice. Levels of CHI3L1 and AMCase were measured 
in BAL fluid of mice 7 days after exposure to GO, or in supernatants from cultured macrophages isolated from BAL fluid of mice exposed to GO or vehicle 24 h after 
exposure. (B) Molecular modeling suggests that GO may directly interact with chitinases. The two predicted binding sites of GO, site 1 and site 2, are shown for 
AMCase and CHI3L1, respectively. The occlusion of the entrance to the chitin binding site in AMCase could lead to inhibition of its activity. Reproduced from: Shurin 
et al. (86), with permission from The American Chemical Society.
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otherwise elicit an immune response; an active rather than a 
passive condition). DCs take up foreign molecules as well as host-
derived proteins and process them intracellularly to antigens that 
are presented in the context of major histocompatibility (MHC) 
class I and II molecules on the cell surface. In a recent in vitro 
study, pristine GO was found to suppress antigen presentation 
to T cells using OVA as a model antigen (95). DCs were exposed 
to GO prior to OVA-loading and then mixed with B3Z86/90.14 
(B3Z) CD8+ T  cells specific for the H-2Kb-restricted anti-
mouse OVA257-264 (SIINFEKL) peptide. Production of IL-2 
was monitored as a sign of T  cell activation upon recognition  
of the OVA epitope 257–264 in the context of the H-2Kb molecules 
(MHC class I). Interestingly, while GO also stimulated maturation 
of DCs, the immunosuppressive effect of GO was dominant (95). 
Further studies are needed to understand whether all GBMs 

behave in this way. In fact, as discussed below, some varieties of 
GO have shown promise as antigen carriers.

Commonly used adjuvants (i.e., agents that are added to a 
vaccine to boost the immune response toward a specific anti-
gen) include substances such as mineral oil and alum or other 
inorganic compounds. However, while these compounds have 
been in clinical use for many years, the precise mechanism of 
action remains poorly understood (96). Recent studies showed 
that the aluminum adjuvant, alum triggered the release of IL-1β 
in macrophages and DCs in an NLRP3-dependent manner  
(97), and mice deficient in Nalp3 failed to mount a significant 
antibody response to an antigen administered with aluminum 
adjuvants (98). In contrast, Freund’s complete and incomplete 
adjuvant (i.e., mineral oil with or without inactivated mycobac-
teria) appeared to act in an inflammasome-independent manner. 

http://www.frontiersin.org/Immunology/
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Sun et al. (99) demonstrated that aluminum-based adjuvants can 
be engineered to optimize their immunostimulatory properties. 
Specifically, the authors synthesized a library of aluminum oxyhy-
droxide (AlOOH) nanorods and compared these to commercial 
alum and could show that shape, crystallinity, and hydroxyl con-
tent played an important role in NLRP3 inflammasome activation 
(99). Rettig et al. (100) provided evidence that particle size may 
also influence the immune response to “danger.” Using single-
stranded RNA (a known “danger” signal) mixed with protamine 
to form particles of different sizes, the authors could show that 
particle size determined whether an anti-viral or anti-bacterial/
anti-fungal immune response was triggered. This was suggested to 
be due at least in part to the selective phagocytosis of nano-sized 
particles by plasmacytoid DCs, which produced interferon-α. It 
will be of interest to study the potential effects of GBMs of diff ering 
lateral dimensions on DCs and whether these materials could also 
be exploited as adjuvants to stimulate immune responses. GBMs 
might also prove advantageous as antigen carriers. Li et al. (101) 
exploited the fact that GO can spontaneously adsorb proteins to 
explore the use of this material for intracellular vaccine delivery. 
Using an in vitro model, the authors could show that GO adsorbed 
proteins were efficiently internalized by DCs leading to antigen 
cross-presentation to CD8+ T cells. In a more recent in vivo study, 
polymer-modified GO (GO-PEG-PEI) with nano-scale lateral 
dimensions was shown to act as an antigen carrier to shuttle anti-
gens into DCs (102). Furthermore, compared with free Helicobacter 
pylori Urease B antigen and the clinically approved aluminum 
adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B was 
found to induce stronger cellular immunity upon intradermal 
administration (102). Pristine GO or GO-PEG did not show the 
same effect. The high surface area of GO allowing for high antigen 
loading capacity along with the positive charge afforded by the 
polymer coating could help to explain this effect. The possibility 
that GO per  se could have adjuvant properties should also be 
explored, in light of the fact that small and large GO sheets trig-
ger the NLRP3 inflammasome (discussed above). Finally, Meng 
et al. (103) recently reported that ultrasmall GO decorated with 
the antioxidant compound carnosine modulates innate immunity 
and improves adaptive immu nity. The authors could show that 
GO covalently modified with carnosine, when mixed with the 
model antigen, OVA promoted robust and durable OVA-specific 
antibody responses, increased lymphocyte proliferation efficiency, 
and enhanced CD4+ T and CD8+ T cell activation. The authors 
proposed that GO-carnosine could be useful as an adjuvant to 
effectively enhance humoral and innate immune responses in vivo.

CONCLUDiNG ReMARKS

In the current essay, we have highlighted recent research on 
the interactions of GBMs, in particular GO, with the immune 

system, focusing our discussion mainly on in  vitro studies. 
While we are far from a comprehensive understanding of 
these interactions, one may ask whether there are any general 
conclusions at this point. One technical, yet non-trivial issue 
when performing studies of GBMs and immune-competent 
cells concerns the importance of knowing not only the test 
material (10), and whether there are traces of endotoxin as 
this may impact on subsequent immune responses, but also 
the test system, i.e., the cell model including the composition 
of the cell medium, and whether this is supplemented or not 
with serum. Furthermore, it is important to realize that the 
plasma membrane is not only an impassive barrier between the 
interior of a cell and the extracellular space but also serves as an 
important platform for cellular communication between cells, 
and between the exterior and interior of a cell (104). This is 
true not least for immune-competent cells that are specialized 
in sensing and sampling their environment. It follows from this 
argument that the effects of a biomaterial on the cell membrane 
could have ramifications for immune cell communication 
and function. It is of interest to note that the adjuvant, alum, 
was previously shown to trigger responses in DCs by altering 
membrane lipid structures, demonstrating that not all immune 
signaling is receptor mediated, and suggesting that the plasma 
membrane could behave as a “sensor” for solid structures (105). 
Thus, the impact of a biomaterial is not necessarily linked to 
whether or not the material is internalized as direct effects on 
the plasma membrane could also come into play. In the field 
of nanotoxicology, much time and effort has been devoted to 
the determination of the dose of nanoparticles delivered to and 
internalized by cells, but for atomically thin materials with large 
lateral dimensions, some toxicological outcomes may depend 
on direct effects on the plasma membrane, and not only on 
cellular uptake of the material. In other words, as we continue 
to probe immunological responses toward GBMs and other 
2D materials, we should not forget that significant insights 
may come from studying seemingly superficial interactions. 
Or, as actress Ava Gardner once put it, “Deep down, I’m pretty 
superficial.”
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