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Different types of J-proteins perform distinct functions in chaperone processes and diseases development. Accurate identification
of types of J-proteins will provide significant clues to reveal the mechanism of J-proteins and contribute to developing drugs for
diseases. In this study, an ensemble predictor called JPPRED for J-protein prediction is proposed with hybrid features, including split
amino acid composition (SAAC), pseudo amino acid composition (PseAAC), and position specific scoring matrix (PSSM). To deal
with the imbalanced benchmark dataset, the synthetic minority oversampling technique (SMOTE) and undersampling technique
are applied. The average sensitivity of JPPRED based on above-mentioned individual feature spaces lies in the range of 0.744-0.851,
indicating the discriminative power of these features. In addition, JPPRED yields the highest average sensitivity of 0.875 using
the hybrid feature spaces of SAAC, PseAAC, and PSSM. Compared to individual base classifiers, JPPRED obtains more balanced
and better performance for each type of J-proteins. To evaluate the prediction performance objectively, JPPRED is compared with
previous study. Encouragingly, JPPRED obtains balanced performance for each type of J-proteins, which is significantly superior

to that of the existing method. It is anticipated that JPPRED can be a potential candidate for J-protein prediction.

1. Introduction

J-proteins, a prototypical molecular chaperone family, were
originally identified in Escherichia coli by Georgopoulos et al.
[1] and found ubiquitously in cells from prokaryotes to
eukaryotes [2]. J-proteins, also called heat shock protein 40s
(HSP40s), act as obligate cochaperone partners of the Hsp70
chaperone to participate in a variety of cellular processes
by interacting with HSP70s through the specific J-domain
and activating the chaperone activity of HSP70s [3]. The J-
proteins combined with HSP70s are probably recognized as
self-antigens which may be tumor makers for cancers [4].
They can be regarded as prediction standard to diagnose can-
cers early [5] and critical in congenital and adaptive immunity
[6]. In addition, J-proteins play significant roles in response
to cellular stress, including refolding of proteins damaged by
harmful stresses [7] and degradation of misfolded proteins

[8].

J-proteins have 4 distinct types based on the composition
of domains, including a signature J-domain with its con-
served His, Pro, and Asp (HPD) motif, a Gly/Phe-rich region,
a CXXCXGXG zinc-finger domain, and a less conserved C-
terminal substrate-binding domain [9]. Type I J-proteins are
characterized by all the 4 regions. Type II J-proteins lack
the zinc-finger domain. Type III J-proteins only contain the
J-domain. Type IV J-proteins have been recently described
and classified as “J-like proteins,” exhibiting variations in
the HPD motif of J-domain [2]. The structures of peptide-
binding sites for 4 types of J-proteins might be distinct from
each other, which can lead to remarkable differences in their
chaperone functions [9]. Types I J-proteins can suppress
protein aggregation and facilitate the refolding of damaged
proteins [10]. Types II J-proteins are implicated in protein
folding processes and can help translation initiation and
protein degradation [11]. Type III J-proteins are more struc-
turally and functionally divergent and involved in protein
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translocation [12]. Type IV J-proteins seem to interact with
HSP70s in a different manner to exert their functions [13].

Different types of J-proteins have distinct roles in the
development of diseases. Type I J-proteins may provide
significant clues to develop plasmodium-specific J-proteins
inhibitors against malaria infection [13]. In addition, type I -
proteins are tumour promoting [15], while type II J-proteins
may be largely regarded as tumor suppressors [16]. The type
II J-proteins can also participate in promoting degradation
of terminally misfolded cytosolic proteins [17], which may
provide new ideas to treat or cure conformational diseases.
The type IV J-proteins are a very promising group in terms of
potential drug targets, as indicated in [13].

In view of the different functions in biological processes
and organisms, accurate identification of types of J-proteins
will be of benefit to gain novel insights into the mechanism
of J-proteins and contribute to developing drugs to cure
or alleviate some types of diseases. The explosive growth
of protein sequences generated in the postgenomic age has
made a large gap between the number of sequence-known
and the number of structure-known proteins [18]. Therefore,
it would be urgent to develop computational methods for
rapidly and effectively identifying the types of J-proteins.

To the best of our knowledge, only one machine learning
method has been proposed to identify the types of J-proteins.
Feng et al. [14], using the tripeptide composition of reduced
amino acid alphabet as the encoding scheme, presented a
support vector machine based method to identify the types
of J-proteins. This method has its own merits but achieves
severely unbalanced performance for the 4 types of J-
proteins, which may attribute to the following shortcomings.
(1) This method used a single feature extraction strategy.
Generally, multiple features can not only preserve enough
discriminative information for protein attribute predictions,
but also complement each other to enhance the performance
and robustness of a predictor [19]. Thus, hybrid features
have been increasingly used in recent studies for construct-
ing classifiers [20, 21]. (2) The earlier work did not apply
feature selection method to select the high discriminative
features from the tripeptide composition of reduced amino
acid alphabet, which would lead to dimension disaster and
poor performance [22]. Feature selection is essential to
remove the redundancy information or noise existing in the
extracted features and decrease the models complexity in
classification problems [23]. (3) The existing method was
based on individual classifier, which could have its own
inherent defects limiting the prediction performance [24]. In
general, the ensemble classifier that integrates multiple basic
classifiers of diverse learning policies can perform better than
its component classifiers [25]. (4) The method did not deal
with the serious class imbalance problem, which would lead
to high prediction accuracy for the majority class but poor
prediction accuracy for the minority class [26].

In order to address the above-mentioned limitations and
improve the performance for identifying the types of J-
proteins, this study puts forward an ensemble method with
hybrid features extracted from SAAC, PseAAC, and PSSM.
The proposed method is implemented in the following steps.
(1) The benchmark dataset is obtained from heat shock
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protein information resource (HSPIR). (2) Protein sequences
are converted into a numerical feature vector based on SAAC,
PseAAC, and PSSM. (3) SU-IFS is adopted to obtain the
optimal feature set. (4) The SMOTE and undersampling
technique are applied to deal with the imbalanced benchmark
dataset. (5) The ensemble method is developed by integrating
20 subclassifiers trained by 20 subdatasets based on 10-fold
cross validation. (6) The predicted class label is determined
based on the majority voting strategy. To evaluate the pre-
diction performance of the proposed ensemble predictor
objectively, the present model is compared with [14]. The
proposed method will be referred to as JPPRED (J-Protein
PREDiction) in the rest of the paper. The computational
framework of the proposed method is illustrated in Figure 1.

2. Materials and Methods

2.1. Data Collection. J-protein sequences are collected from
HSPIR [27] at http://pdslab.biochem.iisc.ernet.in/hspir/hsp40
.php, which contains 3901 sequences.

In order to obtain a reliable and high quality dataset, the
following criteria are further performed. (1) Sequences which
are fragments of other proteins are excluded because their
information is redundant and not integrity. (2) Sequences
containing nonstandard letters such as “B,” “X,” or “Z” are
excluded because their meanings are ambiguous. (3) The
sequence identity cutoff threshold is set as 40% to dislodge
the redundant sequences using CD-HIT program [28]. After
the above screening procedures, the final benchmark dataset
consists of 1199 J-protein sequences, including 63 type I J-
proteins, 55 type II J-proteins, 1061 type III J-proteins, and
20 type IV J-proteins (see Table S1, in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/705156).
Since the original benchmark dataset is processed by exclud-
ing the sequences which contain nonstandard letters, there
are slight differences between the numbers of different types
of J-proteins in our study and those in [14].

2.2. Feature Extraction. To develop an accurate prediction
model for pattern recognition problems in bioinformatics,
one of the key steps is to represent the protein sequences with
appropriate descriptors that can truly reflect the intrinsic cor-
relation with the target sequences to be predicted [29]. In gen-
eral, an individual feature extraction strategy can only repre-
sent partial target’s knowledge, which could limit the predic-
tion performance. Multiple features can take full advantage
of the supplementary information from different features to
enhance the prediction accuracy. With this in mind, a diverse
set of features extracted from SAAC, PseAAC, and PSSM are
adopted in this study to encode protein sequences.

2.2.1. Split Amino Acid Composition. Previous study has
explored and compared the frequencies of 20 nature amino
acids among the 4 types of J-proteins, which indicates that
the frequencies of the 19 nature amino acids are remarkably
different [14]. Therefore, it is reasonable to extract features
from amino acid composition (AAC).

In view of different domain organizations of 4 types
of J-proteins as shown in Figure 2, three-part composition
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FIGURE 1: The computational framework of the proposed method. SAAC: split amino acid composition; PseAAC: pseudo amino acid
composition; PSSM: position specific scoring matrix; SU: symmetric uncertainty; IFS: incremental feature selection; SMOTE: synthetic
minority oversampling technique; RBF: radial basis function; RF: random forest; NB: naive Bayes; LR: logistic regression.
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FIGURE 2: Structural classification of J-proteins (http://pdslab.biochem
Jdisc.ernet.in/hspir/hsp40.php).

based on split amino acid composition (SAAC) is adopted
in the study. Compared with the traditional amino acid
composition (AAC), split amino acid composition (SAAC),
the successor of AAC [30], takes the importance of the N-
terminal and C-terminal into account and assigns adequate
weight to the compositional bias [31], which is known to be
present in the protein terminus [32]. Therefore, it has been
widely applied in protein function predictions [33, 34] and
achieves excellent results.

Based on SAAC, a given protein sequence is split into 3
parts including N-terminal, C-terminal, and the remaining
center portion. The AAC of each part is calculated separately
and merged together to obtain a 60-dimension feature vector.
The discriminative power of the features based on different
lengths of N or C-terminal varying from 15 to 25 is investi-
gated.

2.2.2. Pseudo Amino Acid Composition. To include the global
or long-range sequence-order information, the concept of
pseudo amino acid composition [35] was proposed. Since

then, the PseAAC approach has rapidly penetrated into many
areas of computational proteomics [36-39] and a long list of
references cited in a review [29]. Thus, in this paper, we also
use the concept of PseAAC to construct a correlation factor
to describe the long-range sequence-order information.

Being the most intuitive features for protein biochemical
reactions, physicochemical properties of amino acids have
a deep influence on the diversity and specificity of protein
structures and functions [40]. Features incorporating physic-
ochemical properties can contain much valuable information
for improving the performance of a predictor. It is really
important to choose appropriate physiochemical properties
for residue representation.

To extract features from physicochemical properties
with PseAAC, we consider 12 important physiochemical
properties, including hydrophobicity, hydrophilicity, average
accessible surface area, average flexibility indices, net charge,
side chain volume, polarity, heat capacity, isoelectric point,
transfer free energy to surface, van der Waals, and side
chain interaction parameter. For a given protein sequence
with the length of L, PseAAC can be represented by discrete
correlation factors

E=[fufof] (y<l),
fy= (L- Y)Z<P’J ;PiJ') (P(iw)j_%;f’ij)’

where p;; is the jth physicochemical property value of
the amino acid at the ith position. y denotes the distance
between one residue and its neighbor at a certain number of
residues away, which is closely related with sequence order
information and performs an important role in the predictive

)



quality of a model. The discriminative power of the features
based on different y varying from 1 to 10 is investigated.

2.2.3. Position Specific Scoring Matrix. Protein sequences
have developed starting from a very finite number of ancestral
species protein sequences, which evolves involving changes,
insertions, and deletions of single or several residues [41].
Ultimately, two protein sequences may have a few distinct
amino acid residues, but they may still share some structure
similarities and the same function [42]. Therefore, evolution-
ary conservation can determine important biology functions
[43]. Among the domain organizations of J-proteins, C-
terminal domains are less conserved, and the other 3 domains
are all conserved motifs [44].

Evolutionary conservations can be obtained by the posi-
tion specific scoring matrix (PSSM), which has been proved
to be highly effective in protein attribute predictions [20, 45].
Generated by PSI-BLAST [46], PSSM profile is composed of
L 20 elements for a given protein sequence with length of L,
defined as

[E1 1 Eip o Erj - Ej 5]
Ey .1 Eyyy oo Ez—»;‘ By g
Ppgont = . ' . . > 2)
E,_, E,_, - Eiq], o E;
LEL 1 Ep o - EL—»j o Ep g0

where the values in the ith row are the probabilities of the
ith residue in a given protein sequence mutating to 20 native
amino acids. Previous study has illustrated that normalizing
the PSSM can weaken noise and bias in the original elements
to improve the prediction performance [47]. The PSSM is
normalized using the following sigmoid function to scale
each element to a range of 0 to 1:

fx)= (3)

1+e™
where x is the original PSSM value.
Autocovariance (AC), depicting the average interactions
between two residues, has been successfully adopted to grasp
the local discriminative information [48]. To acquire more
evolutionary and local sequence order information, AC is
adopted to extract features from PSSM and defined as

) 1 LA o o
AC" = (L_,\);(EHJ“EJ‘)(EMHJ'—EJ')’ @
(j=12,...,20; A=1,2,...,K),

where E; is the average value along the jth column in the
PSSM. A is the distance between two considered amino
acid residues, which is closely related to sequence order
information and plays an important role in the performance
of a predictor. Therefore, we evaluate the discriminative
power of the features based on different A varying from 1 to 5.
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2.3. Feature Selection. After running the hybrid feature
extraction methods, primary protein sequences are converted
into numerical feature vectors with the same dimension.
The prediction performance is largely based on discrimina-
tive features. However, the simple combination of features
extracted from different methods may bring information
redundancy and noise, which can cause dimension disaster
and deteriorate the discriminative power of the classifiers
[22].

Feature selection techniques are essential to pick out
informative features and gain deeper insights into intrinsic
properties of protein sequences, which can prevent over-
fitting, enhance the efliciency, and improve the prediction
quality [49].

The optimal feature set can be achieved by examining
the performance of all combinations of features. However, it
has heavy computing burden. To economize computational
resource, the symmetric uncertainty (SU) attribute evalu-
ator combined with incremental features selection (IFS) is
adopted in this study to obtain the optimal feature set.

2.3.1.  Symmetric Uncertainty. Symmetrical uncertainty
(SU) [50], a normalized information theoretic measure, is
employed to evaluate the relevancy of each feature with
respect to the class based on entropy and conditional entropy
values.

The SU of the feature variable f; and the class variable C
is measured by

IG(f;1C) ]
SU(f,C) =2 | ———=|. 5
(f::C) [H(ﬁ)+H(C) ©)
Denote a set of values of f; as {f, f7,..., ij, .. f{'}. Infor-

mation entropy that measures the uncertainty of a feature
variable f; is calculated as

n

H(f)=-YP(f])log,(P(f/)). ©6)

j=1

where P( fij ) represents the prior probability of fl.j .
The information entropy of class variable C is formulated

by
H(C) = -} P(q)log, (P (), )

where P(c;) represents the prior probability of ¢; and ¢; denotes
one of values of class variable C.

The entropy H(C | f;) of C after observing f; is calculated
as

H(CI f;)
==Y P(A) 2P(al f)og (P 1 ).

i

where P(¢; | fij ) is the posterior probability of ¢; given the
value f; of f;.
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Information gain IG(f; | C) that represents the amount
by which the entropy of f; decreases provided by class
variable C is defined as

IG(f;|C)=H(C)-H(C| f;). )

SU normalizes the values of information gain within
range [0, 1] [51]. The feature which has high value of SU is
more relevant to the class label. According to values of SU, the
ranked feature list can be acquired. The smaller the index is,
the more relevant the feature is. The WEKA (Waikato Envi-
ronment for Knowledge Analysis) software package is used
for the feature selection algorithm SU, where default parame-
ters are employed. The software package can be downloaded
at http://www.cs.waikato.ac.nz/ml/weka/downloading.html.

2.3.2. Incremental Feature Selection. Based on the ranked
feature list according to the relevance to the class evaluated
by SU, the incremental feature selection (IFS), one of the well-
known searching strategies of feature selection, is employed
to determine the optimal features.

The IFS procedure starts with an empty subset and adds
features in the ranked feature list one by one from higher to
lower rank into the feature subset [49]. When a new feature
is added, a new feature subset is generated. The ith feature
subset can be formulated as

F, = {fl’fZ""’fi}

For each feature subset F;, an ensemble predictor is
constructed and tested using 10-fold cross validation test. The
feature subset that yields the best prediction performance and
has lower dimension is determined as the optimal one.

(1<i<N). (10)

2.4. Ensemble Learning Method. Single classifier has its own
shortcomings and could not always perform well on all
datasets [52]. Ensemble learning emerges as the promising
measure to overcome this problem. A well-defined ensemble
of multiple classifiers has been proved to achieve better
prediction performance than its component individual clas-
sifiers, which has been increasingly and widely applied in
protein attribute prediction problems [53, 54].

The classification performance of an ensemble classifier is
based on diversity and individual accuracy of its individual
component [55]. Diversity represents the multiple classi-
fiers that have diverse learning strategies while individual
accuracy means the explored classifiers all have excellent
individual prediction performance [56]. Identifying types
of J-proteins is a multiple classification problem. The one-
versus-rest strategy is adopted in this study.

As indicated in Section 2.1, the benchmark dataset con-
tains nearly equal number of type I and type II J-proteins.
The type IV J-proteins account for the vast majority of the
benchmark dataset. On the contrary, there are few type
IV J-proteins in the benchmark dataset. To deal with the
imbalanced benchmark dataset, the number of type IV J-
proteins is expanded to 60 based on SMOTE [57]. Then,
an ensemble learning method based on the undersampling
technique is utilized for identifying different types of J-
proteins. Using the first round of 10-fold cross validation as

Type Type I1I Type

11V VIV
A Ao ¥

LIEL,

B Training dataset
M Testing dataset

FIGURE 3: The generation process of 20 subdatasets in the first round
of 10-fold cross validation.

an example, the specific procedures of the undersampling
technique are as shown in Figure 3.

Based on the theory of 10-fold cross validation, type I,
type IL, type III, and type IV J-proteins are randomly divided
into 10 equally sized parts, respectively. In the first round,
the testing dataset is composed of the tenth part from type
L, type 11, type III, and type IV J-proteins. The remaining J-
proteins form the training dataset. Then, type III J-proteins
from the training dataset are further processed by dividing
them into 20 equally sized subparts. Type I, type II, and
type IV J-proteins from the training dataset are combined
with each subpart from type III J-proteins to construct
20 subdatasets. Ensemble classifiers, including radial basis
function network, random forest, naive Bayes, and logistic
regression, are trained by these 20 subdatasets, respectively.
The final class label is determined based on the majority
voting strategy. This process is repeated 10 times to traverse
every part of type I, type II, type III, and type IV J-proteins.
If more than one class label obtains the same votes, a given
protein is classified as the class label that has the nearest
distance from the feature vector of the given protein.

2.5. Performance Measures. In statistical prediction, there are
3 cross validation methods to examine the performance of
a predictor, including independent dataset test, subsampling
test (e.g., 5-fold or 10-fold cross validation), and jackknife
test [58]. Among these three methods, the jackknife test is
deemed the most objective and rigorous one that can exclude
the memory effects during the entire testing process and can
always yield a unique result for a given benchmark dataset,
as elucidated in [59] and demonstrated by Equation 50 of
Chou and Shen [60]. Therefore, the jackknife test has been
increasingly and widely adopted by investigators to test the
power of various predictor [38, 61-64]. To reduce the com-
putational complexity, we adopt the 10-fold cross validation
test in this study. The benchmark dataset is randomly divided
into 10 equally sized parts, where 9 parts are merged as one
training set to develop a model and then the model is tested by



the remaining part. This process is repeated 10 times to ensure
every part as the testing set once. The ultimate result is the
average of the 10 prediction results.

To assess the performance of the predictor intuitively,
sensitivity (Sn), specificity (Sp), and accuracy (Acc) are
employed, which are defined as

N X0
S = O+ TP ()
NG
PO = BT ING' ()
4 .
Acc = —Zi:l TP () R
N

where TN, TP, FN, and FP stand for the number of true
negative, true positive, false negative, and false positive,
respectively. i represents the type of the target sample. N is
the total number of the samples.

Due to the distinct numbers of types of J-proteins in
the benchmark dataset, average Sn (AvgSn) is proposed to
further test the predictive power more objectively, which is
formulated as

4
AvgSn = ZILZSn (). (12)

i=1

3. Results and Discussions

3.1. Optimal Parameters for Individual Feature Spaces. To
achieve the best characterization of protein sequences, we
first evaluate the impact of key representative parameters
on the prediction performance of individual feature spaces.
JPPRED is constructed for each of individual feature spaces,
including SAAC, PseAAC, and PSSM.

A good prediction system is usually expected to pro-
vide high sensitivity for every class lable. Therefore, AvgSn
is introduced as the optimization objective to determine
the corresponding optimal parameters, respectively, Lnc for
SAAC, A for PSSM, and y for PseAAC.

Figure 4 gives the classification results using SAAC based
features with different lengths of N- and C-terminals (Lnc).
As Lnc increases, AvgSn almost monotonically increases in
the initial phase. Afterwards, AvgSn is fluctuating with the
increase of Lnc. JPPRED achieves the highest AvgSn of 0.791
when 22 amino acids on both the N- and the C-terminals are
selected to extract features from SAAC. SAAC discriminates
the types of J-proteins with an acceptable AvgSn because it
considers the amino acid composition of the signal peptide
on both the N- and the C-terminals. It reveals that the
frequencies of 20 nature amino acids of N-terminal, C-
terminal, and middle parts are remarkably different among
different types of J-proteins, which is consistent with the
results in [14]. Therefore, SAAC based features are reasonable
to identify the types of J-proteins.

The prediction performance of JPPRED using PseAAC
based features with different y varying from 1 to 10 is
illustrated in Figure 5. From Figure 5, JPPRED achieves the
best AvgSn of 0.744 at y = 8. Based on physicochemical
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FIGURE 4: Performance of JPPRED using SAAC based features with
different lengths of N- and C-terminals (Lnc).
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FIGURE 5: Performance of JPPRED using PseAAC based features
with various .

properties, PseAAC based features take into account the
knowledge of sequence order, achieving a passable prediction
performance. This is the first attempt to employ PseAAC to
identify the types of J-proteins, which may help provide new
annotations for the properties of different types of J-proteins.

The parameter A represents the distance between two
amino acids in the sequence. AC along each column of PSSM
represents the neighboring effect between amino acids and
evolutionary information in a given protein sequence. Per-
formance predictions of JPPRED using PSSM based features
with different A are shown in Figure 6. The highest AvgSn of
0.851 is obtained for A = 5. PSSM based features take into the
sequence order information consideration and also preserve
the evolution information of the protein sequence. They yield
the best prediction performance among the individual feature
spaces. These results demonstrate that there is a big difference
of evolution conservation among different types of J-proteins,
which is in accordance with [44].

3.2. Performance Analysis of Ensemble Learning Method Using
Different Feature Spaces. In order to explore the effectiveness
of various feature spaces, the prediction results constructed
by individual and hybrid feature spaces are listed in Table 1.
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TABLE 1: Performance of JPPRED using various feature spaces by 10-
fold cross validation.

Feature space AvgSn Acc
SAAC 0.791 0.746
PSSM 0.851 0.808
PseAAC 0.744 0.606
SAAC + PseAAC 0.814 0.766
SAAC + PSSM 0.832 0.847
PseAAC + PSSM 0.863 0.821
SAAC + PseAAC + PSSM 0.875 0.852

0.86

0.85

0.84

0.83
& 082t
z

0.81

08
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FIGURE 6: Performance of JPPRED using PSSM based features with
various A.

Individual feature spaces identify the types of J-proteins with
AvgSn ranging from 0.744 to 0.851, indicating that all the
3 individual feature spaces have acceptable discrimination
power. PSSM based features discriminate the types of J-
proteins with best performance among the 3 feature spaces
with AvgSn of 0.851 and Acc of 0.808. Moreover, the PSSM
information also has shortcomings. The generation of PSSM
of a protein depends largely on the searching dataset. If no
homologous sequence is found in the searching dataset, the
PSSM cannot be obtained [49]. In the implementation pro-
cess of our proposed method, when there is no homologous
sequence of a given protein in search dataset, we assign a
zero matrix to the PSSM of the protein. As a minority of
sequences have no homologous sequences in the benchmark
dataset, the overall prediction performance of JPPRED will
not be affected. So PSSM is an appropriate feature extraction
strategy here. It is worth mentioning that Acc of these
individual feature spaces are relatively low, essentially due to
the imbalance in the numbers of different types of J-proteins.

As shown in Table 1, the hybrid feature space of SAAC and
PseAAC achieves better prediction performance compared
to that of SAAC based features and that of PseAAC based
features. The same result occurs in the hybrid feature space
of PseAAC and PSSM. However, the hybrid feature space
of SAAC and PSSM performs worse compared to the PSSM
based features. This phenomenon may be due to the fact that
SAAC introduces some redundancy features in the hybrid

feature space of SAAC and PSSM. It should be noted that,
compared to the hybrid space of SAAC and PSSM, the
combination of PseAAC and PSSM can better enhance the
prediction quality of JPPRED. Furthermore, JPPRED yields
the highest AvgSn of 0.875 using the combination of SAAC
and PseAAC in conjunction with PSSM based features, about
1.2% higher than that achieved by hybrid feature spaces of
PSSM and PseAAC. Other performance measures have also
indicated powerful discriminant ability of JPPRED using the
hybrid feature spaces.

The obtained results reveal that different feature spaces
include diverse types of information and contribute to the
prediction accuracy differently. Any feature spaces that may
show poor performance on certain protein attributes pre-
diction cannot be declared as nondiscriminative features.
They may contain some important information that might be
missed by other powerful feature extraction techniques. The
hybrid feature spaces can complement each other to enhance
the prediction performance of a predictor.

3.3. Performance Comparison of Ensemble Learning Method
and Individual Base Classifiers. In order to verify the strength
of the proposed ensemble method, prediction results of
JPPRED and its individual base classifiers, including RE
NB, LR, and RBF network, are investigated and compared.
As presented in Table 2, compared with the 4 individual
classifiers, JPPRED achieves slightly lower sensitivity for
type III J-protein prediction. However, JPPRED has definite
advantages in predicting the other 3 types of J-proteins.
JPPRED yields sensitivity of 0.905 for type I J-proteins, 0.745
for type II J-proteins, and 1 for type IV J-proteins, about
4.8%, 5.4%, and 30% higher than that of the highest per-
forming individual classifier, respectively. The AvgSn reflects
the average discriminative power for different types of J-
proteins. JPPRED achieves a satisfactory AvgSn of 0.875,
about 35.1%, 8.9%, 36.4%, and 62.5% higher than that of
4 individual classifiers, respectively. In addition, JPPRED
obtains balanced sensitivity and specificity for each type of
J-proteins. On the contrary, individual base classifiers lead
to high sensitivity and low specificity for type III J-proteins,
low sensitivity, and high specificity for type I, II, and IV J-
proteins. JPPRED obtains lower accuracy of 0.852 compared
to that of RE NB, and LBF metwork, which may be due
to the imbalanced data. For the classification of imbalanced
data, accuracy is not an appropriate measure because it may
be still high when the sensitivity is very low [65]. These
results indicate that combining different individual classifiers
trained by balanced subdatasets can effectively enhance the
prediction performance for predicting types of J-proteins and
deal with the imbalanced data problem.

3.4. Feature Selection Results. SU lists the ranked 256 features
with the maximum relevance to the class of samples. Then,
the IFS method combined with ensemble learning method is
employed to extract the optimal feature set. In the IFS pro-
cedures, adding the ranked features one by one from the SU
list, 256 individual predictors are built for the corresponding
256 subfeature sets. We then test the prediction performance
for each predictor and obtain the IFS results (see Table S2).
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TABLE 2: Performance of ensemble learning method and individual base classifiers by 10-fold cross validation.
Subfamily Measure Ensemble RF NB LR RBF network
. Sn 0.905 0.698 0.857 0.556 0
Type I J-protein
Sp 0.849 0.935 0.882 0.853 0.934
. Sn 0.745 0.418 0.691 0.400 0
Type II J-protein
Sp 0.857 0.947 0.890 0.858 0.927
Type II J-protein Sn 0.851 0.979 0.895 0.889 1
Sp 0.855 0.486 0.768 0.442 0
Type IV J-protein Sn 1 0 0.700 0.200 0
Sp 0.849 0.938 0.884 0.848 0.900
AvgSn 0.875 0.524 0.786 0.511 0.250
Acc 0.852 0.922 0.881 0.837 0.885

TABLE 3: Performance of JPPRED with or without feature selection
by 10-fold cross validation.

Subfamily Measure No feaFure Featqre
selection selection
Type I J-protein Sn 0.905 0.921
Sp 0.849 0.859
Type II J-protein Sn 0.745 0.782
Sp 0.857 0.866
Type III J-protein n 0.851 0.861
1% 0.855 0.877
Type IV J-protein Sn 1 1
P 0.849 0.860
Dimension 256 224
AvgSn 0.875 0.891
Acc 0.852 0.862

Figure 7 gives the IFS curve with AvgSn as the y-axis and
the number of features as the x-axis. The curve reaches its
peak with the AvgSn of 0.891, when the first 224 features in
the SU feature list are used. These 224 features are deemed as
the optimal feature set. The predictive Acc based on these 224
features are 0.862.

3.5. Contribution of Feature Selection to the Ensemble Learning
Method. We investigate the influence of feature selection on
the performance of JPPRED. The prediction performance
of JPPRED using feature selection or not by 10-fold cross
validation is shown in Table 3. From Table 3, sensitivity and
specificity for each type of J-proteins with feature selection are
all significantly better than those without feature selection.
Using feature selection, the number of features is reduced
from 256 to 224 and the AvgSn, Acc are improved from 0.875
to 0.891 and 0.852 to 0.862, respectively. These results indicate
that some noise is present in the original feature set due to
the existence of redundant or uninformative features. SU-IES
can significantly reduce this noise to effectively improve the
performance of JPPRED.
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FIGURE 7: IFS curve that shows the values of AvgSn against feature
subsets generated by the SU-IFS method.
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FIGURE 8: Distribution of each type of features in the optimal feature
set.

3.6. Analysis of Optimal Features. The distribution of the
number of each type of features in the optimal feature set is
investigated and shown in Figure 8. From Figure 8, among
the 224 optimal features, there are 97 PSSM based features,
53 SAAC based features, and 74 PseAAC based features,
indicating that all types of features play some roles in the
determination of types of J-proteins.

The percentage of the optimal features accounting for the
corresponding feature types is also investigated. 97% of PSSM
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TABLE 4: Performance comparison of the proposed method with [14].
Reference Subfamily Sn Sp Dimension AvgSn Acc
Type I J-protein 0.746 0.988
(14] Type II J-protein 0.491 0.991 512 0.651 0.9406
Type III J-protein 0.986 0.620
Type IV J-protein 0.381 1
Type I ]-protein 0.921 0.859
This study Type I1]-protein 0.782 0.866 224 0.891 0.862
Type III J-protein 0.861 0.877
Type IV J-protein 1 0.860

based features, 88.3% of SAAC based features, and 77.1% of
PseAAC based features are chosen as the optimal features,
indicating that PSSM based features play an irreplaceable role
in predicting types of J-proteins. These results are in accor-
dance with previous studies that evolution conservations
exist in the J-domains or J-like domains and the frequencies
of 20 nature amino acids are remarkably different among
different types of J-proteins. The discriminative power of
PseAAC based features is smaller compared to that of PSSM
and SAAC. Though PseAAC based features rank low in
the optimal feature list, they play a complementary role in
improving the prediction performance of JPPRED.

3.7. Comparison with Existing Method. To further evaluate
the effectiveness of the proposed method, it is essential to
compare the performance of the present model with the
previous predictors. The performance comparison results are
shown in Table 4. Results in Table 4 show that [14] achieves
high sensitivity of 0.986 for type III J-proteins, notably
accompanied with extremely low sensitivities for type I, II,
and IV J-proteins, respectively. Specificities of [14] present
the opposite case. These results indicate that [14] cannot
effectively deal with the imbalance between majority class and
minority classes. On the contrary, JPPRED obtains balanced
sensitivity and specificity for each type of J-proteins. The
AvgSn of 0.891 using 224 features is significantly superior to
that of [20] using 512 features. It is noted that because the
number of type III J-proteins is extremely large, the samples
in type I1I J-proteins tend to be identified correctly, which will
lead to a large Acc value as given in [14]. Obviously, Acc is
not a proper objective index for this serious data imbalance
problem. We can draw the conclusion that JPPRED not only is
indeed an effective and powerful approach for predicting the
types of J-proteins but also can deal with the data imbalance
problem. It is convinced that JPPRED will be a useful tool for
J-proteins prediction.

From the results above, the excellent performance of
JPPRED can be ascribed to 3 aspects. (1) JPPRED adopts mul-
tiple feature extraction strategies, including SAAC, PseAAC,
and PSSM, which are related to the properties of different
types of J-proteins. (2) JPPRED applies SU-IFES to select the
high discriminative ones from original features, which can
improve the prediction performance. (3) JPPRED proposes
an ensemble classifier integrating multiple basic classifiers
of diverse learning policies, which can not only overcome

the drawbacks of individual classifiers but also deal with the
serious class imbalance problem.

4. Conclusions

J-proteins, a prototypical molecular chaperone family, act
as obligate cochaperone partners of the Hsp70 chaperone
to participate in a variety of cellular processes. The distinct
structures of peptide-binding sites for 4 types of J-proteins
lead to remarkable differences in their chaperone functions
and in the development of diseases. Therefore, accurate
identification of types of J-proteins will be of benefit to reveal
the mechanism of J-proteins and contribute to developing
drugs to cure or alleviate diseases. In this study, an ensemble
predictor called JPPRED has been presented with hybrid
features extracted from SAAC, PseAAC, and PSSM. To solve
the dimension disaster and improve the performance, SU-
IFS method is adopted to obtain the optimal feature set. To
deal with the data imbalance problem, the ensemble method
is developed by integrating the 20 subclassifiers trained by
20 subdatasets. The average sensitivities of JPPRED based
on 3 individual feature spaces are 0.791, 0.851, and 0.744,
respectively, indicating the satisfying discriminative power of
these features. PSSM based features discriminate the types
of J-proteins with best performance among the 3 individual
feature spaces. JPPRED yields the highest average sensitivity
of 0.875 using the hybrid feature spaces of SAAC, PseAAC,
and PSSM, indicating that the hybrid feature spaces can com-
plement each other to enhance the prediction performance
of a predictor. In addition, SU-IFS can significantly improve
the performance of JPPRED with features reducing from 256
to 224. Analysis of optimal features reveals that all types of
features play roles in the determination of types of J-proteins.
To evaluate the prediction performance objectively, JPPRED
is compared with previous study. JPPRED obtains balanced
performance for each type of J-proteins with average sensitiv-
ity of 0.891, which is significantly superior to that of previous
method. Therefore, JPPRED can be a potential candidate for
predicting the types of J-proteins.
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