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Abstract

Sugars act not only as substrates for plant metabolism, but also have a pivotal role in signal-

ing pathways. Glucose signaling has been widely studied in the vascular plant Arabidopsis

thaliana, but it has remained unexplored in non-vascular species such as Physcomitrella

patens. To investigate P. patens response to high glucose treatment, we explored the

dynamic changes in metabolism and protein population by applying a metabolomic finger-

print analysis (DIESI-MS), carbohydrate and chlorophyll quantification, Fv/Fm determination

and label-free untargeted proteomics. Glucose feeding causes specific changes in P. pat-

ens metabolomic fingerprint, carbohydrate contents and protein accumulation, which is

clearly different from those of osmotically induced responses. The maximal rate of PSII was

not affected although chlorophyll decreased in both treatments. The biological process, cel-

lular component, and molecular function gene ontology (GO) classifications of the differen-

tially expressed proteins indicate the translation process is the most represented category in

response to glucose, followed by photosynthesis, cellular response to oxidative stress and

protein refolding. Importantly, although several proteins have high fold changes, these pro-

teins have no predicted identity. The most significant discovery of our study at the proteome

level is that high glucose increase abundance of proteins related to the translation process,

which was not previously evidenced in non-vascular plants, indicating that regulation by glu-

cose at the translational level is a partially conserved response in both plant lineages. To

our knowledge, this is the first time that metabolome fingerprint and proteomic analyses are

performed after a high sugar treatment in non-vascular plants. These findings unravel evolu-

tionarily shared and differential responses between vascular and non-vascular plants.
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Introduction

Both microorganisms and multicellular organisms coordinate their metabolic activity accord-

ing to changes in nutrient availability. This coordination is achieved through the sensing of

energy availability and relaying this information to metabolic regulators that ultimately impact

their growth and development [1, 2]. In plants, sensing the availability of energy in the form of

sugars is particularly critical since these molecules play a key role in the carbohydrate metabo-

lism and cellular redox balance through their close rapport with fatty acid β-oxidation, respira-

tion, and photosynthesis [3–6].

In vascular plants, various forms of sugar have emerged as important regulators of plant

development, glucose is the most prominent and evolutionarily conserved [4]. In the last

decades, extensive studies in A. thaliana have revealed that sugars have dual function acting as

a fuel and also as signaling molecules. Both functions play pivotal roles in integrating the meta-

bolic, developmental, and environmental cues required for plant survival [4]. In Arabidopsis,
multiple signals that modulate the growth and development have been described, this process

requires energy and functional ribosomes, in this sense sugars supply energy and carbon build-

ing blocks for protein and RNA biosynthesis [6–8]. Forward genetics, involving the screening

of mutants insensitive or hypersensitive to the effects of glucose on Arabidopsis seedling devel-

opment, has been a powerful approach for identifying genes involved in glucose sensing and

signaling [9–13]. Interestingly, these screenings have identified mutants associated with

abscisic acid (ABA), ethylene, auxin, cytokinin, stringolactones, gibberellins, and brassinoster-

oids, thus demonstrating an active cross-talk between sugar and phytohormone responses [4,

6, 7, 12, 14, 15]. One of the key components of glucose sensing and signaling is hexokinase1

(HXK1), an evolutionary conserved glycolytic enzyme responsible for regulating the expres-

sion of a broad range of genes, in addition to its standard catalytic function [6, 10, 16–19]. In

addition, glucose activates TOR (Target of rapamycin) complex, which has a crucial role as an

energy master regulator of plant growth, development, root meristem activity, cell cycle con-

trol, flowering, senescence through the modulation of transcription, ribosome biogenesis and

translation [6–8]. In plants two systems that respond to changes in nutrient and energy status

have been reported, the TOR complex kinase, which promotes growth in response to high glu-

cose [20], and the plant Snf1-related kinase 1 (SnRK1) which is active upon sugar deprivation

[21] TOR and SnRK1 act downstream of sugar sensing and their activities are modulated by

the sugar status of plants [8].

Genome-wide expression profiling studies have revealed that high glucose concentrations

alter the expression of genes involved in metabolic processes, signal transduction, metabolite

transport, and stress responses [10, 18, 22–24]. Other important processes regulated by sugar

include post-transcriptional level regulation that comprises transcript stability and processing,

synthesis of proteins regulating selective mRNA translation, ribosome biosynthesis, protein

stability/degradation, and modulation of enzymatic activities [7, 8, 13]. Examining glucose-

mediated changes at the transcriptional level is informative, but the proteins are ultimately

responsible for nearly every task of cellular activity and metabolism. Glucose sensing and sig-

naling through the mentioned pathways link carbon nutrient status to plant growth and devel-

opment, and several aspects of sugar perception and signaling are likely to be unique to higher

plants [25]. Then, some of these mechanisms could be conserved in ancestral lineages of

plants, such as bryophytes, even though the information available about these mechanisms is

scarce. In this scenario, exploring the role of glucose as a signaling molecule in non-vascular

plants is important and necessary.

Vascular plants (which include xylem and phloem tissues to transport water, nutrients, phy-

tohormones, and photosynthates) have been used as model plants to study several aspects of
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physiology, molecular biology, and development [26]. However, some aspects such as per-

forming crosses to obtain stable phenotypes, the presence of multiple cell types and tissues,

leading to complex sink/source relations that limit some studies. In that sense, P. patens is a

bryophyte lacking the vascular system (thereby it requires a constant co-equilibration of tissue

water content with the environment) represents a less complex plant [27, 28]. This moss has

been a premier model system as it possesses a simple anatomy and developmental pattern, a

short life cycle, a haploid genome during most of its life cycle, a high rate of homologous

recombination, allowing the study of the biology and evolution of non-vascular plants, also P.

patens was the first non-seed plant to have its genome sequenced [27, 29, 30]. The evolutionary

importance of P. patens is highlighted since it is phylogenetically related to the first plants that

conquered the earth. Similar to the first terrestrial plants, P. patens had to acquire mechanisms

of tolerance to grow under demanding environmental conditions, including salinity, cold, and

drought [31–33]. In P. patens, exogenous glucose stimulates caulonemal filament formation, a

response that is lost in an hxk1 knockout mutant [34, 35]. Since caulonemal formation is the

first step towards the production of gametophores, high-energy availability seems to be the sig-

nal for sexual reproduction. Some efforts have been made to study the mechanisms by which

P. patens responds to glucose stimulus, but until now, conclusive results have been elusive [34,

35].

Holistic changes at proteome and metabolome levels are inherent for adaptation to any

physiological condition. To discover the role of glucose in P. patens, a comprehensive

approach was used to determine the dynamic changes in the metabolism and protein popula-

tion after glucose exposure. High glucose conditions gave rise to a glucose-specific osmotic-

independent perturbation in metabolomic fingerprints, carbohydrate content and metabolism;

specifically, the number of certain proteins related to translation, photosynthesis, oxidative

stress, and protein refolding. To our knowledge, this is the first time that metabolome finger-

print and proteomic analyses are performed in a non-vascular plant after a high sugar concen-

tration treatment. Our findings contribute to unravel differential, as well as the overlapping

responses to glucose between A. thaliana and P. patens, two model plants representing evolu-

tionarily distant plant lineages, expanding the knowledge about the role of glucose as a specific

signaling molecule in non-vascular plants.

Materials and methods

Plant material and growth conditions

Protonemata of P. patens ecotype Gransden were grown in PpNH4 medium that containing

0.68 mM MgSO4•7H2O, 1.836 mM KH2PO4, 2.452 mM CaNO3•4H2O, 2.714 mM Di-ammo-

nium tartrate, 6.18x10-4 mM FeSO4•7H2O, microelements (9.9nM H3BO3, 1.6 nM

CuSO4�5H2O, 1.4 nM MnCl2�4H2O, 1.5 nM CoCl2�6H2O, 1.3 nM ZnSO4�7H2O, 1.6 nM KI,

0.8 nM Na2MoO4�2H2) and agar (7g/L). For all treatments, culture plates were maintained

under standard conditions in a growth room at 23±1˚C under a 16/8 h light/dark photoperiod

with a light intensity of 55 μmol photons m-2s-1. To evaluate glucose effects, 10-day old proto-

nemata were exposed to 0 and 300 mM of glucose for 24 h (a complete circadian cycle to avoid

circadian rhythms effects). Plants grown in medium with no glucose was considered the con-

trol condition. Additionally, sorbitol was used as an osmotic control [32, 36, 37]. Three inde-

pendent biological experiments were performed. Protonemata from the same experiment but

independent samples were used for metabolomic fingerprint, carbohydrate quantification, and

proteomic analysis. Samples from an independent experiment were used for chlorophyll a and

b quantification. The protonemal tissues to measure the Fv/Fm were from another indepen-

dent experiment. Three independent replicates were used for all experiments.
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Direct-injection electrospray ionization mass spectrometry

A direct-injection electrospray ionization−mass spectrometry (DIESI−MS) assay was per-

formed in a DIESI–MS employing an SQD2 with a quadrupole analyzer (Waters) and Mas-

sLynx 4.0 as described previously [38, 39] for each one of the independent biological

replicates. This strategy allows the detection of significant differences among MS profiles and

the collection of large amounts of quantitative metabolic data. Therefore, the rapidity of the

analyses permits “bed-side” monitoring of plants physiological states.

Carbohydrate quantification

Carbohydrate quantification was performed on protonemata exposed to either glucose or sorbi-

tol treatments. Tissues were frozen with liquid nitrogen and lyophilized followed by extraction,

and glucose, fructose, sucrose, and starch contents were measured as previously reported [40].

Protein extraction

The protonemata exposed to 0 and 300 mM of glucose or sorbitol for 24 h were frozen in liquid

nitrogen. Plant tissue was ground to a fine powder in liquid nitrogen and homogenized on ice

for 1 h with 500 uL of ice-cold extraction buffer (8 M urea, 2 M thiourea, 0.04 mM dithiothrei-

tol) supplemented with a cocktail of protease and phosphatase inhibitors (Roche Diagnostics).

After centrifugation at 4˚C for 20 min, the supernatant was collected and precipitated overnight

with acetone at –20˚C. The pellet was washed with cold 90% (v/v) acetone and suspended in

ABC buffer (100 mM ammonium bicarbonate, 2% SDS w/v). Total protein was determined

with the Bradford method. Protein quality and quantity were verified by SDS-PAGE.

Tryptic digestion and LC-MS analysis

Total proteins from three biological replicates were reduced with dithiothreitol (DTT), alkyl-

ated with iodoacetamide (Sigma Aldrich), and digested with trypsin (Promega Modified Tryp-

sin Sequencing Grade). The resulting peptides were applied to a pump LC-MS nanoflow

EASY-nLC II instrument coupled to a mass spectrometer LTQ Orbitrap-Velos system with

nano-electrospray ionization (Thermo Fisher Scientific Co., San Jose, CA). To validate MS/

MS-based peptide and protein identifications, algorithms, and tools were used as previously

reported [41] and are described in the following sections.

Criteria for protein identification

All MS/MS samples from three biological replicates were analyzed using Sequest (https://

omictools.com/sequest-tool) and X! Tandem (http://wiki.thegpm.org/wiki/X!!Tandem) for

peptide identification. Both tools were set up to search on the uniprot-physcomitrella+patens.

fasta file (UP000006727, 35539 entries) assuming trypsin digestion. Sequest and X! Tandem

were used considering a fragment ion mass tolerance of 0.60 Da and a parent ion tolerance of

20 ppm. Cysteine carbamidomethyl was considered as a fixed modification, whereas histidine

carbamidomethyl, methionine oxidation, and Glu->pyro-Glu, Gln->pyro-Glu and ammonia-

loss of the N-terminus were specified as variable modifications. Protein identification from the

three biological replicates was carried out using the software tool Scaffold (version Scaf-

fold_4.4.6, Proteome Software Inc., Portland, OR). Accordingly, peptide identifications were

accepted if they could be established at greater than 96.0% probability by the Scaffold Local

FDR algorithm. Protein identifications were accepted if they could be established at greater

than 7.0% probability to achieve an FDR <1.0% and contained at least two identified peptides.

Protein probabilities were assigned with the Protein Prophet algorithm [42]. Proteins that
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contained similar peptides and could not be differentiated based on the MS/MS analysis alone

were grouped to satisfy parsimony principles. Proteins sharing significant peptide similarities

were grouped into clusters. Proteins were annotated with gene ontology (GO) terms from

gene association.goa [43]. Raw data is available at https://data.mendeley.com/datasets/

t5m28m66vc/1 (doi: 10.17632/t5m28m66vc.1).

Measurement of chlorophyll fluorescence

The maximal rate of PSII was determined by variable fluorescence (Fv)/maximal fluorescence

(Fm) measurements. Briefly, 10-day old protonemata were exposed to 0 and 300 mM of either

glucose or sorbitol for 24 h. Dark adaptation for 10 to 15 min was allowed before each mea-

surement. Then Fv/Fm was measured using the fluorimeter FluorPen100 (Photon Systems

Instruments, Czech Republic).

Chlorophyll extraction and quantification

Chlorophyll was extracted with 80% acetone from lyophilized protonemata previously exposed

to either glucose or sorbitol. The optical density (absorbance) of the extract was measured with

a microplate reader (Epoch microplate spectrophotometer, BioTek). Light absorbance was

measured at 663 and 645 nm wavelengths (maximum absorption of chlorophyll a and b).

Chlorophyll concentrations were then calculated according to Wellburn [44] and expressed as

mg chlorophyll per g dry weight (mg/g DW).

Additional bioinformatics tools

Proteins were classified into cellular components according to GO annotations based on the

UniProt database (http://www.uniprot.org/). Functional protein association networks of spe-

cific glucose-responsive proteins were performed with the STRING tool (https://string-db.org)

[45]. The interactions between proteins were visualized in Cytoscape software (version 3.6.1

[http://cytoscape.org]) [46]. GO enrichment analysis of the clusters obtained was performed

using the Blast2GO software (version 5.2.4) [47], Cytoscape plugin, ClueGO (version 2.5.2;

Laboratory of Integrative Cancer Immunology) [48] and KEGG pathway maps (Kyoto Ency-

clopedia of Genes and Genomes, Kanehisa Laboratories) (data not shown).

Statistical analyses

The statistical analysis for DIESI-MS was made as previously reported [38, 39]. For carbohy-

drate quantification, measurement of chlorophyll fluorescence and chlorophyll quantification,

three independent samples for each treatment were measured and verified by three technical

replicates. Analysis of variance (ANOVA) was done; different letters indicate statistically sig-

nificant differences (P�0.05) using a post hoc Tukey test (SAS university edition). In the case

of the proteomic analysis, the Scaffold Quantitative Testing was used for fold change and sta-

tistical calculation based on spectrum counting. The proteins with differential expression were

selected using a T-test with P�0.05 and Hochberg-Benjamini correction (α = 0.00031). The

fold changes were calculated based on the relative protein abundance found in the treatment

groups with respect to those identified in the control groups.

Results

Glucose alters moss metabolism independently from an osmotic response

In order to understand the total effect on P. patens tissues that were exposed to high glucose

concentration (300 mM) for 24 h, we first performed mass spectrometry fingerprinting with
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DIESI-MS [39].To distinguish between glucose-specific and osmotic responses, sorbitol was

included as a control in our experimental design. Through DIESI-MS analysis, a total of 1816

mass peaks were identified (1045 positively charged ions and 771 negatively charged ions).

Using a significance of P<0.05, 710 positive ions showed changes from which 327 correspond

to the control conditions, 43 to glucose treatment and 340 to sorbitol treatment. Regarding the

negative ions, 58 showed significant changes (P< 0.05), 40 ions under control condition, two

in response to glucose and 16 in sorbitol treatment (Fig 1A and S1 Table). The distribution of

the increased and decreased 710 positive ions and 58 negative ions is shown in Fig 1B. Com-

pared to control conditions, both glucose and sorbitol feeding led to an increase of 32 ions and

a decrease of 214 ions (Fig 1B and S1 Fig). Glucose led to a specific increase in 34 ions (32 posi-

tives and two negatives) and a specific decrease in 250 ions (231 positives and 19 negatives),

whereas sorbitol feeding caused a specific increase in 169 ions (162 positives and seven nega-

tives) and a decrease in 69 ions (61 positives and eitght negatives) (Fig 1B, S1 Fig and S1

Table). Shared glucose and sorbitol condition responses could be interpreted as an osmotic

effect associated response (Fig 1B and S1 Fig). The metabolomic fingerprint revealed a dendro-

gram in which sorbitol and control clustered together, whereas glucose led to a separate branch

Fig 1. P. patens metabolomic fingerprinting in response to glucose and sorbitol. Protonemata were exposed to 0 mM

(control condition) and 300 mM of either glucose or sorbitol for 24 h. (A) Diagram representing the number of positive and

negative ions identified under the evaluated conditions (ns, non-significant). (B) Venn diagram showing the distribution of

the 710 positive (+) and 58 negative (-) ions that increased (blue) and decreased (red) in response to glucose and sorbitol

treatments. (C) Cluster dendrogram showing the metabolomic fingerprint indicating a glucose specific response. (D)

Heatmap profile showing clustering based on correlation R applied to positive ions. The metabolomic fingerprint is

represented as a grayscale barcode and the ion similarity is revealed by the left dendrogram. The grayscale depicted the

relative intensity (ion abundance) under the different conditions (black indicates high, and white indicates low). Results

correspond to three independent biological samples.

https://doi.org/10.1371/journal.pone.0242919.g001
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(Fig 1C). Overall, the metabolomic fingerprint changed in the presence of 300 mM glucose

and was significantly different from sorbitol and control conditions, indicating a glucose-spe-

cific response (Fig 1 and S1 Table). In addition to the shared response, significant metabolomic

differences distinguished the samples. Using statistical data mining with P<0.05, a compre-

hensive list of ions was obtained and then grouped into categories with their respective mass

charge ratio (mz value) (S1 Fig). Several heatmap-bicluster figures were constructed, selecting

the significant negative ions only (S2 Fig), all the significant positive ions (Fig 1D), or only the

most intense significant positive ions (S3 Fig). In all cases, an optimized hierarchical clustering

based on correlation as previously described was applied [49]. Those grayscale heatmaps

depicted the relative intensity (ion abundance) under the different conditions (black indicates

high, and white indicates low, as shown in Fig 1D and S2 and S3 Figs). Hierarchical clustering

grouped the glucose- or sorbitol-specific ions (S1–S3 Figs). Glucose feeding led to a preferen-

tial decrease of a larger number of metabolites, whereas sorbitol feeding led to a decrease of a

fewer number of ions (Fig 1B and S1 Fig).

To examine some of the biochemical adjustments caused by the treatments, the levels of

four main carbohydrates (glucose, fructose, sucrose, and starch) were determined under the

same experimental conditions. As expected, glucose feeding led to a strong increase in the hex-

oses, glucose and fructose (Fig 2). In contrast, the 300 mM sorbitol feeding caused a marginal

decrease in internal glucose levels but did not alter the fructose, sucrose, or starch pools com-

pared to control conditions (Fig 2). Unexpectedly, glucose feeding despite increasing available

hexose levels led to a sucrose and starch decrease (Fig 2). Altogether these observations high-

light specific and differential effects of glucose compared to sorbitol in P. patens, therefore sup-

porting our metabolomic fingerprint analysis results (Fig 1; S2 and S3 Figs and S1 Table).

Altogether, the non-biased metabolomic fingerprinting approach and the targeted carbohy-

drate assay confirmed that glucose caused a specific response that was independent of its

osmotic effect. The fact that not all metabolites increased after glucose feeding pointed to a

coordinated response of several enzymes within the metabolic network. Considering the great

difficulty in measuring flux and catalytic activities of a large number of unknown enzymes, a

quantitative proteomic approach was then pursued to detect more or less abundant proteins

under these conditions.

Fig 2. Carbohydrate content in P. patens exposed to glucose and sorbitol. Hexoses (such as glucose and fructose) in

addition to sucrose and starch levels were measured upon treatments of protonemata with or without 300 mM of

either glucose or sorbitol for 24 h. Graphical representation of mean ± SE of three independent biological samples. An

analysis of variance (ANOVA) was done, and different letters indicate statistically significant differences (P�0.05)

using a post hoc Tukey test (SAS university edition).

https://doi.org/10.1371/journal.pone.0242919.g002
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Proteomic analysis in response to glucose

To gain insights into the biological processes responsible for the observed metabolic changes

in response to glucose signals, we performed a label-free untargeted proteomic method to

establish the proteins altered by high glucose, as well as sorbitol treatments, compared to the

control condition. A total of 319 proteins in 212 clusters were reliably identified (S2 Table).

According to our established discrimination criteria (see Materials and Methods), 240 proteins

were classified as constitutive, whereas 79 showed differential expression in high glucose (53

proteins) and sorbitol (26 proteins) treatments in comparison to the control. From the 53 pro-

teins differentially expressed in response to glucose, 44 proteins were more abundant

(increased significantly), while 9 proteins were less abundant (decreased significantly) under

these treatment conditions (Table 1). Regarding the 26 differential proteins corresponding to

the osmotic control treatment using sorbitol, only one protein increased and 25 decreased

(Table 2). Interestingly, six proteins: two Phosphoribulokinase, one UTP-glucose-1-phosphate

uridylyltransferase, one Fasciclin-like protein, and two predicted proteins were identified as

common to glucose and sorbitol treatments (Tables 1 and 2). In summary, the number of dif-

ferential proteins identified between glucose and sorbitol treatments supports our previous

observation at the metabolic level, namely that the molecular glucose-induced responses are

specific and clearly distinguishable from its osmotic effects.

Glucose induces proteins mainly related to translation, photosynthesis,

cellular response to oxidative stress and protein refolding

Proteins more abundant in response to glucose were classified according to their biological

process. The category with the highest number of proteins was translation (GO:0006412) with

8 proteins that include structural ribosomal proteins, a protein related to translation elonga-

tion (GO:0006414), as well as three nascent polypeptide-associated predicted proteins that

bind to ribosomes (without GO associated: A9RHV4, A9SV00, A9U4U1) (Table 1). These 12

proteins related to the translation process represent 27% of the 44 proteins more abundant in

high glucose compared to control treatment (Table 1; Figs 3A and 6). The second enriched cat-

egory was photosynthesis, containing five proteins that include three proteins from the photo-

system I reaction center and two Ribulose bisphosphate carboxylase small chain proteins.

Other photosynthesis-related proteins correspond to the electron transport chain that includes

two Plastocyanins, as well as one predicted protein classified in the Tetrapyrrole biosynthetic

process. Taking together these eight photosynthesis-related proteins, represent 18% (Table 1;

Figs 3A and 6). Other categories represented in this analysis were cellular response to oxidative

stress (GO:0034599) which included one Peroxiredoxin and two Superoxide dismutases; oxi-

dation-reduction process (GO:0055114) with one Monodehydroascorbate reductase III, and

two predicted proteins (without GO associated: A9SVT2, A9TVV6) with glutathione S-trans-

ferase activity (according to UniProt and STRING databases), that result in six proteins that

represent 13% of the glucose increased proteins. Protein refolding was another category repre-

sented by three proteins that include one Peptidyl-prolyl-cis-trans isomerase and two proteins

that belong to the heat shock protein 70 family, as well as another heat shock protein belonging

to the same family involved in the cellular response to heat category (according to STRING

database), these four proteins represent 9% (Table 1; Figs 3A and 6). Additional categories

such as ATP synthesis coupled proton transport and fatty acid biosynthetic process included

two proteins each. The rest of the categories contain only one protein (Table 1 and Fig 3A).

On the other hand, the most numerous category of the less-abundant proteins in response to

glucose treatment was the carbohydrate metabolic process with four proteins (Table 1 and Fig
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Table 1. Biological processes classification of the 53 Up- and Down-regulated proteins in response to glucose treatment in P. patens.
Treatment UniProt ID STRING ID Description Subcellular localization Fold change

(log2)

Glucose (Up 44

proteins)

Translation [GO:0006412]

A9RI50_PHYPA PP1S10_102V6.1 Predicted protein Cytosolic large ribosomal subunit [GO:0022625] 12.971272

A9RN38_PHYPA PP1S18_113V6.1 Predicted protein Cytosolic large ribosomal subunit [GO:0022625] 12.860161

A9RMS0_PHYPA PP1S17_306V6.1 40S ribosomal protein S3a Cytosolic small ribosomal subunit [GO:0022627] 12.249915

A9TAH6_PHYPA PP1S194_130V6.1 40S ribosomal protein S12 Cytosolic small ribosomal subunit [GO:0022627] 2.6954634

A9RT00_PHYPA PP1S26_289V6.1 40S ribosomal protein S12 Cytosolic small ribosomal subunit [GO:0022627] 2.5598142

A9SXV6_PHYPA PP1S134_153V6.1 Predicted protein Large ribosomal subunit [GO:0015934] 2.2011025

A9RKD8_PHYPA PP1S14_191V6.1 Predicted protein Large ribosomal subunit [GO:0015934] 0.79837275

A9SH83_PHYPA PP1S78_212V6.1 Predicted protein Large ribosomal subunit [GO:0015934] 0.67553025

Translational elongation [GO:0006414]

A9T682_PHYPA PP1S172_22V6.1 EF1B gamma class glutathione S-transferase - 2.4289958

Photosynthesis [GO:0015979]

A9SL09_PHYPA PP1S89_62V6.1 PsaH photosystem I reaction center subunit Chloroplast thylakoid membrane [GO:0009535]; photosystem I reaction center [GO:0009538] 4.261696

A9TCU9_PHYPA PP1S206_11V6.1 Predicted protein Chloroplast thylakoid membrane [GO:0009535]; photosystem I reaction center [GO:0009538] 3.8950694

A9TU20_PHYPA PP1S319_36V6.1 Predicted protein Photosystem I reaction center [GO:0009538] 1.5972413

A9SRS0_PHYPA PP1S109_145V6.1 Ribulose bisphosphate carboxylase small chain Plastid [GO:0009536] 0.5064318

A9S3R8_PHYPA PP1S46_42V6.1 Ribulose bisphosphate carboxylase small chain Plastid [GO:0009536] 0.5776918

Electron transport chain [GO:0022900]

A9RDX6_PHYPA PP1S3_520V6.1 Plastocyanin Chloroplast thylakoid membrane [GO:0009535] 13.087763

Q9SXW9_PHYPA PP1S254_25V6.1 Plastocyanin, chloroplastic Chloroplast thylakoid membrane [GO:0009535] 12.194749

Tetrapyrrole biosynthetic process [GO:0033014]

A9S7G9_PHYPA PP1S54_66V6.4 Predicted protein Chloroplast [GO:0009507] 1.6633108

Cellular response to oxidative stress [GO:0034599]

A9RW02_PHYPA PP1S31_128V6.1 Peroxiredoxin Mitochondrion [GO:0005739]; cytoplasm [GO:0005737] 12.149561

A9SX65_PHYPA PP1S131_153V6.1 Superoxide dismutase [Cu-Zn] Cytoplasm [GO:0005737]; extracellular space [GO:0005615] 3.751367

A9SX31_PHYPA PP1S131_71V6.4 Superoxide dismutase [Cu-Zn] Cytoplasm [GO:0005737]; extracellular space [GO:0005615] 3.0703168

Oxidation-reduction process [GO:0055114]

Q2I826_PHYPA PP1S237_59V6.5 Monodehydroascorbate reductase III - 13.932129

Protein refolding [GO:0042026];

A9TK88_PHYPA PP1S249_62V6.1 Peptidyl-prolyl cis-trans isomerase (PPIase) Chloroplast [GO:0009507]; cytosol [GO:0005829]; golgi apparatus [GO:0005794]; plasma membrane

[GO:0005886]

14.075424

A9ST56_PHYPA PP1S115_168V6.2 Predicted protein Chloroplast [GO:0009507] 11.758743

A9T8E8_PHYPA PP1S183_47V6.1 Predicted protein Cytoplasm [GO:0005737]; mitochondrion [GO:0005739]; vacuolar membrane [GO:0005774] 8.869213

Cellular response to heat [GO:0034605]

A9TQG3_PHYPA PP1S288_23V6.1 Predicted protein Cytoplasm [GO:0005737]; endoplasmic reticulum chaperone complex [GO:0034663]; endoplasmic reticulum

lumen [GO:0005788]; membrane [GO:0016020]; nucleus [GO:0005634]

13.662725

Fatty acid biosynthetic process [GO:0006633]

A9RMZ3_PHYPA PP1S18_23V6.1 Biotin carboxylase - 3.6311908

A9TC15_PHYPA PP1S201_89V6.1 Predicted protein - 2.1733608

ATP synthesis coupled proton transport [GO:0015986]

A9RHZ0_PHYPA PP1S10_393V6.1 Predicted protein Membrane [GO:0016020] 11.004703

A9SYE0_PHYPA PP1S137_86V6.1 Predicted protein Membrane [GO:0016020] 10.605091

Glutamate catabolic process [GO:0006538]

A9RXP9_PHYPA PP1S34_308V6.2 Glutamate decarboxylase Cytosol [GO:0005829] 13.399181

Glucose metabolic process [GO:0006006]

A9RDK9_PHYPA PP1S3_238V6.4 Glyceraldehyde-3-phosphate dehydrogenase Cytosol [GO:0005829] 13.15653

S-adenosylmethionine biosynthetic process [GO:0006556]

A9SRR7_PHYPA PP1S244_65V6.2 Predicted protein Cytosol [GO:0005829] 11.045008

Biosynthetic process [GO:0009058]

A9TEP5_PHYPA PP1S215_28V6.1 Predicted protein - 3.6568143

Glycine decarboxylation [GO:0019464]

A9TNF2_PHYPA˚ (Without STRING

ID)

Glycine cleavage system H protein Mitochondrion [GO:0005739] 1.0921887

Cell wall modification [GO:0042545]

A9TEQ0_PHYPA PP1S215_36V6.1 Pectinesterase Cell wall [GO:0005618] 0.6753476

Without GO associated

A9SUK7_PHYPA PP1S120_139V6.3 Predicted protein - 12.738213

A9SVT2_PHYPA PP1S126_26V6.2 Predicted protein Cytoplasm [GO:0005737] 12.63903

A9RBY5_PHYPA PP1S1_765V6.1 Uncharacterized protein Chloroplast thylakoid membrane [GO:0009535]; integral component of membrane [GO:0016021] 12.469591

A9TVV6_PHYPA PP1S339_37V6.1 Predicted protein - 4.1429434

A9RHV4_PHYPA PP1S10_319V6.1 Predicted protein Nascent polypeptide-associated complex [GO:0005854] 3.14782

A9SV00_PHYPA PP1S122_100V6.1 Predicted protein Nascent polypeptide-associated complex [GO:0005854] 2.9994178

A9U4U1_PHYPA PP1S539_1V6.1 Predicted protein Nascent polypeptide-associated complex [GO:0005854] 2.9973712

A9TWS3_PHYPA PP1S351_30V6.1 Dihydrolipoamide acetyltransferase component of pyruvate

dehydrogenase complex

- 2.350117

A9RWX8_PHYPA PP1S33_209V6.1 Predicted protein Cytoplasm [GO:0005737] 1.543775

(Continued)
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4A). It is worth noting that 20% of the 53 identified proteins in response to glucose have no

biological process GO annotated in UniProt database.

According to the cellular component classification, P. patens proteins that increased after

glucose feeding included 13 proteins associated with plastids, representing 21% (five in the

chloroplast thylakoid membrane, three in the chloroplast, three in photosystem I reaction cen-

ter and two in plastids); 11 cytoplasm and cytosol localized proteins (seven and four proteins

respectively) corresponding to 18.6%, and 11 constituents of ribosome translation machinery

proteins (three cytosolic small ribosomal subunits, three large ribosomal subunits, three

nascent polypeptide associated complex and two cytosolic large ribosomal subunits), repre-

senting 18.3% of the proteins (Fig 3B). Other cellular component categories identified in this

analysis with few proteins were found like mitochondrion, extracellular space, and membrane

(Fig 3B). In the case of proteins with less abundance in the high glucose condition in compari-

son to the control, no clear enriched category was found possibly due to the reduced number

of proteins (Fig 4B). It is important to stand out that 11 proteins more (eight) and less (three)

abundant do not have a GO associated with a cellular component (Figs 3B and 4B). Regarding

the molecular function classification, the enriched functions were related to ribosome/transla-

tion components representing 14.8% of the proteins with assigned GO (eight proteins, five

corresponding to structural constituent of ribosome, two to large ribosomal subunit rRNA

binding and one translation elongation factor activity) (Fig 3C). In the less abundant proteins,

there was no evident enriched category (Fig 4C). Similarly to the biological process and cellular

component classification, several proteins have no GO assigned to molecular function (nine

and one more and less abundant, respectively). It is worth noting that in the biological process,

cellular component, and molecular function classifications, the proteins related to translation

are the most represented categories in response to glucose.

Concerning the osmotic control, sorbitol-responsive proteins were classified according to

biological processes and only one protein was more abundant, although it has no GO assigned

(Table 2). In contrast, among the 25 decreased proteins, the enriched biological processes were

carbohydrate metabolic process with seven proteins (representing the 28% of the total of 25

less abundant proteins); and proton transmembrane transport (with three proteins that repre-

sents the 12%) (Table 2 and Fig 5A). Interestingly, four of the proteins involved in carbohy-

drate metabolic process are common to the less abundant proteins in response to glucose, as

well as two of the proteins without GO biological process associated (Tables 1 and 2),

Table 1. (Continued)

Treatment UniProt ID STRING ID Description Subcellular localization Fold change

(log2)

Glucose (Down 9

proteins)

Carbohydrate metabolic process [GO:0005975]

A9TRN4_PHYPA� PP1S299_3V6.1 Phosphoribulokinase Chloroplast [GO:0009507] -1.5467525

A9SXF3_PHYPA� PP1S132_175V6.1 Phosphoribulokinase Chloroplast [GO:0009507] -1.2861613

A9SF03_PHYPA� PP1S72_25V6.1 Predicted protein Cytosol [GO:0005829] -0.5654774

A9TPV2_PHYPA� PP1S283_22V6.2 UTP—glucose-1-phosphate uridylyltransferase Cytoplasm [GO:0005737] -0.49702644

Oxidation-reduction process [GO:0055114]

A9RJ44_PHYPA PP1S12_209V6.2 Predicted protein - -1.3040282

Translational elongation [GO:0006414]

A9T0S0_PHYPA PP1S147_106V6.1 Elongation factor Tu Mitochondrion [GO:0005739] -0.7298387

Methionine biosynthetic process [GO:0009086]

A9RWS2_PHYPA PP1S33_110V6.2 Predicted protein - -0.7030835

Without GO associated

Q4A3V1_PHYPA� PP1S545_14V6.1 Fasciclin-like protein Extracellular space [GO:0005615] -0.8814069

A9TIB8_PHYPA� PP1S237_14V6.1 Predicted protein - -0.3836249

Note: ˚ Glucose-induced protein found less abundant under sorbitol treatment.

� Common proteins found less abundant under sorbitol treatment.

https://doi.org/10.1371/journal.pone.0242919.t001
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Table 2. Biological processes classification of the 26 Up- and Down-regulated proteins in response to sorbitol treatment in P. patens.

Treatment UniProt ID STRING ID Description Subcellular localization Fold change

(log2)

Sorbitol (Up 1

protein)

Without GO associated

A9U4I0_PHYPA PP1S517_11V6.2 Predicted protein - 13.096634

Sorbitol (Down 25

proteins)

Carbohydrate metabolic process [GO:0005975]

A9SXF3_PHYPA� PP1S132_175V6.1 Phosphoribulokinase Chloroplast [GO:0009507] -13.6788845

A9U222_PHYPA PP1S429_29V6.1 Predicted protein Cytoplasm [GO:0005737] -2.6723442

A9TRN4_PHYPA� PP1S299_3V6.1 Phosphoribulokinase Chloroplast [GO:0009507] -2.6158485

A9S1S8_PHYPA PP1S41_162V6.1 Predicted protein Cytoplasm [GO:0005737] -2.3215294

A9TPV2_PHYPA� PP1S283_22V6.2 UTP—glucose-1-phosphate

uridylyltransferase

Cytoplasm [GO:0005737] -1.9669869

A9S087_PHYPA PP1S39_82V6.1 UTP—glucose-1-phosphate

uridylyltransferase

Cytoplasm [GO:0005737] -1.9669869

A9SF03_PHYPA� PP1S72_25V6.1 Predicted protein Cytosol [GO:0005829] -1.7638044

Proton trans-membrane transport [GO:1902600]

A9TYF3_PHYPA PP1S372_16V6.1 Predicted protein Chloroplast thylakoid membrane

[GO:0009535]

-2.22756

A9U2Q2_PHYPA PP1S445_15V6.1 Predicted protein Integral component of membrane

[GO:0016021]; membrane [GO:0016020]

-1.6320391

A9TWH1_PHYPA PP1S346_35V6.1 Predicted protein Integral component of membrane

[GO:0016021]

-0.8361692

Cell redox homeostasis [GO:0045454])

A9SNH9_PHYPA PP1S98_132V6.1 Dihydrolipoyl dehydrogenase Cell [GO:0005623] -13.520764

Protein glutathionylation [GO:0010731]

A9RJE6_PHYPA PP1S12_401V6.1 Predicted protein - -1.7032927

Glycine biosynthetic process [GO:0019265]

A9RNQ2_PHYPA PP1S19_25V6.1 Predicted protein Peroxisome [GO:0005777] -2.4561348

A9TY57_PHYPA PP1S369_6V6.1 Predicted protein Peroxisome [GO:0005777] -2.4561348

Protein refolding [GO:0042026]

A9SLL3_PHYPA PP1S91_109V6.1 Predicted protein Cytoplasm [GO:0005737] -2.2907598

A9SNF1_PHYPA PP1S97_279V6.1 Uncharacterized protein Cytoplasm [GO:0005737] -0.4218207

Microtubule-based process [GO:0007017]

Q8H932_PHYPA (Without STRING

ID)

Tubulin alpha chain Cytoplasm [GO:0005737]; microtubule

[GO:0005874]

-3.0423586

Translation [GO:0006412]

A9TG34_PHYPA PP1S223_73V6.1 40S ribosomal protein S8 Cytosolic small ribosomal subunit

[GO:0022627]

-2.6163216

Photosynthesis [GO:0015979]

A9SGR0_PHYPA PP1S77_69V6.1 Predicted protein Photosystem I reaction center [GO:0009538] -1.562467

Glycine decarboxylation [GO:0019464]

A9TNF2_PHYPA˚ (Without STRING

ID)

Glycine cleavage system H protein Mitochondrion [GO:0005739] -0.77886844

Without GO associated

A9TIB8_PHYPA� PP1S237_14V6.1 Predicted protein - -12.283276

A9TBG2_PHYPA PP1S198_154V6.3 Actin 7 Cytoskeleton [GO:0005856] -2.5983582

A9SYJ1_PHYPA PP1S137_232V6.1 Predicted protein - -2.0514417

A9SYH4_PHYPA PP1S137_194V6.1 Predicted protein - -2.0336146

Q4A3V1_PHYPA� PP1S545_14V6.1 Fasciclin-like protein Extracellular space [GO:0005615] -1.7911283

Note: ˚Common protein found increased (more abundant) in response to glucose.

�Common proteins found decreased (less abundant) in response to glucose.

https://doi.org/10.1371/journal.pone.0242919.t002
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suggesting that the glucose response might be partially an osmotic effect, although the sorbitol

treatment seems to have a stronger effect. Eight of the 25 less abundant proteins identified in

the sorbitol treatment (which represented 30%) were localized in cytoplasm and cytosol (seven

and one respectively), followed by four (representing 15%) chloroplastic proteins (two in the

chloroplast, one in the chloroplast thylakoid membrane and one in photosystem I reaction

center) (Table 2 and Fig 5B). Regarding the molecular function classification, the most numer-

ous category was ATP related activities with 10 proteins (representing 21%), followed by six

proteins (representing 12.5%) related to protein folding functions with two in Misfolded pro-

tein binding, two in Protein binding involved in protein folding and two in Unfolded protein

binding) (Fig 5C). Other molecular function GO categories were found with one or two pro-

teins (Fig 5C). Similarly to glucose-responsive proteins, an important fraction of proteins that

respond to sorbitol does not have GO associated with biological processes, cellular compo-

nents, or molecular functions (five, four, and three proteins respectively) (Fig 5).

Fig 3. Graphical representation of gene ontology classification for proteins up-regulated by glucose treatment. (A) Biological process classification.

Proteins involved in translation, photosynthesis, cellular responses to oxidative stress, and protein refolding were predominant. (B) Cellular component. The

majority of the proteins were localized in the plastids, cytoplasm/cytosol. (C) Molecular function. The enriched categories were without GO associated and

constituents of the ribosome.

https://doi.org/10.1371/journal.pone.0242919.g003
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Taken together, our results indicate that glucose induces specific changes in the proteome,

including proteins mainly localized in plastids, cytoplasm/cytosol and ribosome-associated,

highlighting the importance of these cellular components in response to glucose stimuli (Figs

3 and 4). Functional protein association networks (STRING), which integrate experimental,

co-expression, and co-occurrence among other pieces of evidence, support these findings (Fig

6 and S4 Fig). In summary, our proteomic approach provided evidence that the P. patens glu-

cose feeding experiments induced proteins mainly involved in translation, photosynthesis, cel-

lular responses to oxidative stress, and protein refolding processes.

High glucose levels did not impact the maximal rate of PSII

As some glucose-induced photosynthesis-related proteins were found (Table 1), we wondered

if in P. patens the maximal rate of PSII was affected by glucose feeding treatment. Measure-

ment of the Fv/Fm parameter showed that neither glucose nor sorbitol affected the maximal

rate of PSII during the first 24 h of treatment (Fig 7A). However, a decrease in chlorophyll con-

tent was observed after glucose and sorbitol treatment (Fig 7B).

Fig 4. Graphical representation of gene ontology classification for proteins down-regulated by glucose treatment. (A) Biological process

classification. Proteins involved carbohydrate metabolic process category were predominant. (B) Cellular component. The enriched category was without

GO associated and chloroplast. (C) Molecular function. There was no evident enriched category.

https://doi.org/10.1371/journal.pone.0242919.g004
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Discussion

Although various sugars have emerged as important regulators during all stages of vascular

plant development, glucose is the most prominent and evolutionarily conserved [4, 9, 10, 13,

25, 50–55]. Sugar concentrations ranging from 100 to 333 mM have been successfully used for

Arabidopsis mutant screens in addition to gene expression assays [4, 18, 23]. In P. patens, 50–

150 mM glucose also has been shown to have an effect [34, 35] (unpublished own data). In this

study, we assessed the effect of high glucose (300 mM) in the non-vascular P. patens plant in

an effort to understand its nutritional and/or metabolic role and distinguish these roles from

glucose-induced osmotic effects. Omics strategies are powerful tools that provide integral

information regarding global molecular changes in response to both internal and environmen-

tal influences. P. patens was then subject to exogenous high glucose concentration followed by

metabolomic and proteomic analyses to determine global changes in the metabolism and pro-

tein population.

Several methodologies have been used to analyze metabolic phenotyping such as mass spec-

trometry (MS), liquid chromatography (LC), gas chromatography (GS), electron impact (EI),

or the combination of these techniques (GC-MS or GC-EI-MS). However, the time it takes to

Fig 5. Graphical representation of gene ontology classification for proteins down-regulated by sorbitol treatment. (A) Biological processes.

Proteins involved in carbohydrate metabolic process and proton trans-membrane transport were predominant. (B) Cellular component. The enriched

localizations were cytoplasm/cytosol and proteins related to Plastids. (C) Molecular function. The enriched functions were related to ATP activities

and proteins-folding functions.

https://doi.org/10.1371/journal.pone.0242919.g005
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analyze a single sample and the derivatization that some molecules need represent a great dis-

advantage. In this sense, the use of the direct-injection electrospray ionization-mass spectrom-

etry (DIESI-MS) analytical technique favors an efficient ionization of hydrophilic metabolites,

avoids compounds volatility, overcomes the need of chromatographic separation and the

obtaining of multiple peaks resulting in data redundancy due to chemical derivatization, as

well as overwhelms convoluted data workflow and statistical handling; resulting in a reliable,

sensitive, and quantitative detection [39]. On the other hand, the first step in performing pro-

teomics is to determine the number of proteins to be measured. In some cases, a defined set of

proteins may be of interest to examine, so a targeted approach should be used [56]. In other

cases, an untargeted approach, also known as “shotgun” approach, may be taken to measure as

many proteins as possible and compared between samples without bias [57]. Most of the

untargeted proteomic studies for the identification of proteins in P. patens make use of two-

dimensional electrophoresis (2-DE) separation, followed by isolation of the differential spots

and a Mass-spectrometry analysis [58–62]. Although the 2-DE analysis in combination with

MS, is an untargeted approach, the main limitations of 2-DE separation are that many protein

spots are not stainable with coomassie or silver, as well as identification of high molecular

Fig 6. Functional protein association networks based on STRING. Analysis of P. patens proteins up-regulated in response to glucose. The lines

connecting proteins represent: cyan, curated databases; magenta, experimentally determined; green, gene neighborhood; red, gene fusions; blue, gene

co-occurrence; light green, textmining; black, co-expression; mauve, protein homology. Colored circles highlight biological processes.

https://doi.org/10.1371/journal.pone.0242919.g006
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mass proteins results difficult, making the 2-DE approach less suitable for large-scale compara-

tive protein expression studies [58, 63]. Recently, new methodologies with an improved sensi-

tivity have emerged to detect proteins without the use of 2-DE. Among them, the label-free

LC-MS analytical platform has increased its popularity in recent years due to the elimination

of time-consuming stages for labeling proteins and the high number of proteins that can be

detected [41, 63–66]. Thus, a label-free LC_MS Proteomics Approach was used in this study.

Feeding of glucose and sorbitol caused specific metabolic responses in P.

patens
The metabolomic fingerprinting showed that glucose feeding produced a global impact on P.

patens metabolism (Fig 1 and S1–S3 Figs). The response to glucose feeding was distinct from

that seen with the control and sorbitol treatments. Not all metabolites increased as a result of

Fig 7. P. patens maximal rate of PSII and chlorophyll levels upon exposure to glucose and sorbitol. (A)

Measurements of the chlorophyll fluorescence parameter (variable fluorescence [Fv]/maximal fluorescence [Fm]) were

carried out at 24 h after the treatment of P. patens with glucose and sorbitol. The maximal rate of PSII was no affected

by both treatments. (B) The absorption spectra of chlorophyll a and b were measured at 663 and 645 nm, respectively.

Chlorophyll concentrations are expressed as mg chlorophyll per g dry weight (mg/g DW). Graphical representation of

three independent biological samples means ± SE. Different letters indicate statistically significant differences (P
�0.05) using a post hoc Tukey test (SAS university edition).

https://doi.org/10.1371/journal.pone.0242919.g007
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high glucose feeding; in fact, some decreased, which might indicate the activation of several

primary metabolic enzymes. Several metabolites increased specifically in response to sorbitol

feeding (Fig 1 and S1–S3 Figs). The ability of the moss P. patens to partially utilize sorbitol as a

carbon source might provide one explanation for this finding. The route of carbon entry via

sorbitol dehydrogenase (SDH) and a uridine phosphate-dependent fructokinase (FK) cannot

be ruled out completely in this moss. In plant species of the Rosaceae family (such as apple),

sorbitol metabolism represents a major carbon flow pathway [67]. However, fructose levels did

not increase after sorbitol feeding (Fig 2), which can indicate that in P. patens, the total entry

of carbon into the fructose pool via SDH was relatively low [68]. It is indisputable, though, that

the entry of glucose proceeds via a plasma membrane-associated hexose carrier (HC), HK, and

Phosphoglucoisomerase (PGI), which consumes cytosolic ATP and does not generate nicotin-

amide adenine dinucleotide (NADH). The entry route of glucose is different from the sorbitol

entry route via SDH that generates redox equivalents in the form of NADH. FK may also con-

sume UTP instead of ATP [69]. It is possible that carbon signaling is not sensing glucose levels

per se, but rather it may measure activities such as carbon fluxes through the HC-HK-PGI

pathway, which consumes large amounts of ATP [70].

Glucose feeding impacts carbohydrate metabolism in P. patens
Since glucose is the primary source of energy, any change or imbalance in glucose availability

can affect different cellular functions [10, 52, 71]. High glucose feeding caused specific changes

in the metabolomic fingerprints of the moss P. patens (as shown in Fig 1 and S1–S3 Figs), and

also evidenced by carbohydrate content alterations such as the increase in hexose levels, and

decreasing sucrose and starch (Fig 2). Compared to control and sorbitol conditions, glucose

feeding produced a decrease in sucrose content and significantly altered the hexose to starch

ratio (Fig 2). It appears that starch was being remobilized by activating starch degradation or

via starch synthesis inhibition through redox-regulated key enzymes such as α-glucan water

dikinase (GWD1), stromal β-amylase (BAM1), α-amylase 3 (AMY3), Isoamylase 1 (ISA1), Iso-

amylase 2 (ISA2, DBE1), limit-dextrinase (LDA), and ADP-glucose phosphorylase (AGPase)

[72]. Indeed, changes in carbohydrate metabolism are supported by the identification of differ-

ential proteins in the glucose treatment, such as glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), phosphoribulokinases (PRK), UTP-glucose-1-phosphate uridylyltransferase and a

predicted protein (A9SF03) with transketolase activity (of the pentose phosphate pathway,

according to UniProt database) (Table 1). Besides, the identification of a dihydrolipoamide

acetyltransferase component of pyruvate dehydrogenase complex (dihydrolipoyllysine-residue

acetyltransferase activity), suggests that acetyl-CoA production occurs during high glucose

exposure. Since acetyl-CoA is committed to de novo fatty acid biosynthesis, this is likely a

mechanism for relieving the carbonated molecule excess within the system [15, 73]. Also, we

found other lipid metabolism proteins such as biotin carboxylase and one predicted protein

(A9TC15) that belongs to beta-ketoacyl-ACP synthase family (3-oxoacyl-[acyl-carrier-protein]

synthase activity) (Table 1), which supports this hypothesis.

Glucose stimulates the accumulation of translation machinery proteins

An unexpected finding in the proteomic analysis was that translation category in the biological

process classification was the most enriched, with 8 structural small and large ribosomal pro-

tein subunits besides a protein related to translation elongation and three nascent polypeptide-

associated predicted proteins that bind to ribosomes, thus giving a total of 12 proteins which

represent 27% of the proteins increased in response to glucose (Table 1). Multiple interaction

evidences were revealed among this group of proteins by STRING functional association
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networks (Fig 6). Interestingly, Price et al. (2004) [18] suggested that gene induction by glucose

feeding requires de novo protein synthesis in Arabidopsis, which is in agreement with our find-

ings in P. patens. Several pieces of evidence further support the role of sugars in the regulation

of transcript stability and processing, selective mRNA translation, ribosome biogenesis,

mRNA polysome loading, translational activity, protein stability/degradation, and modulation

of enzymatic activities, in plant growth and development control [7, 8, 13, 74]. This indicates

that glucose exerts its effects beyond transcriptional gene regulation and includes multiple

post-transcriptional regulatory mechanisms like stimulation of protein synthesis and/or stabil-

ity. It has been shown that glucose-TOR signaling regulates transcription of genes related to

central carbon and energy metabolism (glycolysis, TCA cycle, mitochondrial energy functions)

and importantly ribosomal proteins, as well as protein synthesis machinery [6–8]. The role of

sugar feeding and higher energetic status on translation regulation processes has been widely

studied mainly in Arabidopsis, evidencing complex links between global and gene-specific

translational control and chromatin activity. Particularly, upon sucrose concentration

increase, certain ribosomal protein mRNAs are enriched in polysomes, and differential phos-

phorylation of ribosomal proteins occurs under high energetic conditions (reviewed in [75].

Also, the expression level of several ribosome biogenesis related genes is increased upon sugar

feeding in Arabidopsis [76] yeast and mammalian cells [77, 78]. In addition, transcription of

multiple ribosome proteins as well as rRNA is accelerated in plant cells thought the TOR-S6K

signaling pathway [79, 80]. Outstandingly, Maekawa et al., (2018) [74] demonstrated impor-

tant links among ribosome biogenesis, nucleolar stress, and sugar responses in plants through

the study of the glucose-inducible nucleolus-localized APUM24 protein, which was shown to

be involved in the control of Arabidopsis development by regulating ribosome biogenesis [81].

Despite the importance of these processes and their physiological impact, the molecular mech-

anisms are still unclear and pending for future research, particularly in non-vascular plants.

Proteins involved in the cellular response to oxidative stress are increased

upon glucose feeding

Although glycolysis is the most important metabolic pathway for producing cellular energy

sources (such as NADPH and ATP in heterotrophs), it has been reported that sugar degrada-

tion by this pathway produces reactive carbonyls (RCs) as by-products [82–86]. Also, sugar

auto-oxidation produces superoxide radicals (O2
-) that are rapidly converted into hydrogen

peroxide (H2O2) and oxygen (O2) by superoxide dismutase (SOD) [83]. The Fenton reaction

catalyzes the conversion of these products into hydroxyl radicals (OH), which are the most

potent form of ROS [84]. Although ROS are produced during normal cell metabolism during

the life cycle in all organisms, an increase in ROS levels is also due to plant hormones, environ-

mental stress, pathogens, and altered soluble sugar levels [3, 87]. Besides stimulating the anti-

oxidant system soluble sugars by themselves might also act as ROS scavengers [88]. Conse-

quently, ROS may also induce anti-oxidant systems, such as scavenging and other protective

mechanisms [89]. Oxidative stress in plants is counteracted by the use of a range of ROS scav-

engers such as SOD, glutathione transferases (GST, molecular function predicted for A9SVT2

and A9TVV6 by UniProt and STRING databases) and peroxiredoxins (PRX) all identified as

differentially accumulated in our proteomic analysis (Table 1). In P. patens, SOD could consti-

tute one of the anti-oxidative defense strategies in conjunction with PRX and glutathione per-

oxidases (GPX) to reduce H2O2 levels and prevent cellular damage [90–95]. Ascorbate

peroxidase (APX) activity, as affected by ascorbate (specific electron donor), results in the

accumulation of monodehydro-ascorbate, which is reduced by monodehydro-ascorbate

reductase (MDHAR) and is important for maintaining proper cellular ascorbate levels via

PLOS ONE Glucose-induced proteome and metabolome fingerprint changes in Physcomitrella

PLOS ONE | https://doi.org/10.1371/journal.pone.0242919 December 4, 2020 18 / 27

https://doi.org/10.1371/journal.pone.0242919


NADPH as an electron donor [96–100]. In Arabidopsis, the expression of genes coding for

MDHAR is induced by sugars [23]. Interestingly, our data indicate that this protein is also

more abundant in response to glucose feeding in P. patens (Table 1). Thus, the ascorbate-gluta-

thione cycle seems to be activated to prevent the potential ROS-derived cellular damage in

response to high glucose levels. In P. patens and vascular plants, components of the anti-oxida-

tive system have been identified in response to high salinity, desiccation, and ABA [59, 60, 62,

101–104]. Hence, growing evidence strongly suggests that the generation of ROS is one of the

most common plant responses to different abiotic stresses. In conclusion, high glucose condi-

tions apparently induce oxidative stress responses in P. patens, a model that possesses diverse

strategies to counteract this condition.

The regulation of photosynthesis in response to feeding glucose

In addition to photosynthesis, chloroplasts also host other metabolic reactions such as amino

acid biosynthesis, hormones, vitamins, lipids, and secondary metabolites [105]. Thus, any distur-

bance in chloroplasts is communicated to the nucleus through retrograde signals to adjust all cel-

lular activities [106]. In Arabidopsis, it is well-known that glucose accumulation/feeding results

in the down-regulation of photosynthesis-associated genes, causing a decline in photosynthetic

capacity [4, 6, 18, 24, 51, 52, 71, 107, 108]. Surprisingly, P. patens maintains normal levels of the

maximal rate of PSII after 24 h of high glucose treatment, which coincides with the high number

of photosynthesis-related proteins, that represent 18% of the identified more abundant proteins

in response to glucose (Table 1 and Figs 3A and 6). Interestingly, two-electron transport chain

chloroplastic proteins were highly induced in response to glucose (Table 1). This indicates that

under high glucose levels P. patens chloroplasts are not affected on photosynthetic activity. It is

worth noting that a high number of plastid proteins (13) were identified as differentially accu-

mulated (Table 1 and Fig 3B). Photosynthetic pigments such as chlorophyll a and b decreased

during glucose and sorbitol exposure (Fig 7B), suggesting that in P. patens these parameters are

more sensitive to high glucose than the maximal rate of PSII, also indicating that the moss is not

under optimal operating conditions. In contrast to vascular plants [109–112], P. patens seems to

be less sensitive to osmotic- and glucose-induced photosynthetic inhibition. The biological sig-

nificance of these differences in photosynthetic activities between vascular and non-vascular

plants in response to glucose deserves deeper research. Altogether, our proteomic profile result-

ing from high glucose feeding suggests that this sugar activates the antioxidant system to protect

cells from ROS-derived damage, especially for the photosynthetic machinery.

Protein refolding has a relevant role during glucose response in P. patens
Other important proteins identified during sugar feeding experiments in P. patens were related

to protein refolding, with four proteins that represent 9% of the more abundant proteins with

the highest fold change: one Peptidyl-prolyl-cis-trans isomerase (14.07 fold change) and pro-

teins that belong to the heat shock protein 70 family (A9ST56 with 11.75 and A9T8E8 with

8.86 fold changes), as well as another heat shock protein belonging to the same family (13.66

fold change) involved in the cellular response to heat category (Table 1; Figs 3A and 7). All

these proteins bind to unfolded or misfolded proteins acting as chaperones that stabilize non-

native polypeptides to suppress protein aggregation [113–115]. Consistent with their putative

role in glucose-derived stress responses, HSP70 has been shown to be the major chaperone

under abiotic stress responses, including those induced by high salinity, desiccation, cold, and

high glucose concentrations [18, 22, 59, 60, 62, 116–118]. All of these abiotic stresses are tightly

coupled to ABA and sugar-accumulating conditions. In summary, the P. patens proteomic

response to high glucose levels seems to be closely related to stress responses.
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This study represents just a first approach (proteomic and metabolomic) and the beginning

of the study of sugar responses in non-vascular plants, definitely further studies are required to

validate predicted proteins because most of the Physcomitrella proteins have not been charac-

terized. Although transcript accumulation has been used in some reports to validate proteomic

results, it is clear that the probability to correlate protein and transcript levels is very low due

to very well-known multiple and rapid post-transcriptional and post-translational regulation

levels [119–122].

Conclusions

In this study, we explored the metabolomic and proteomic responses of the non-vascular

plant, P. patens, to high glucose levels. We found that glucose feeding causes specific changes

in moss metabolomic fingerprint, carbohydrate contents, and protein accumulation, which

differed from osmotically induced responses. Our most significant discovery at the proteome

level is that high glucose induced ribosomal proteins related to the translation process. It is

worth noting that in the biological process, cellular component, and molecular function classi-

fications, the categories including proteins related to translation are the most represented in

response to glucose. Consistently, it is known that in plants such as Arabidopsis that growth

and development responses to sugars are dependent on de novo protein synthesis and mRNA

translation; however, this has not been previously evidenced in non-vascular plants. Moreover,

the fact that glucose-induced proteins related to oxidative stress accumulate in P. patens under

high glucose treatment, suggests that this plant possess an efficient ROS scavenging system.

This idea is supported by the results showing that the glucose treatment did not alter the maxi-

mal rate of PSII and the electron transport chain. In summary, even though A. thaliana and P.

patens represent two evolutionary distant plant lineages, the fact that glucose feeding affects

the translational level of regulation in both model plants supports that a partially conserved

response to glucose might exist between vascular and non-vascular plants. On the other hand

differential responses may well be explained by the distant phylogenetic relationship between

both plant species, such mechanisms are pending for future research, particularly in mosses.
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S1 Fig. Ions obtained in P. patens protonemata exposed to glucose and sorbitol treatments.

Protonemata were exposed to 300 mM of either glucose or sorbitol for 24 h. The ions were

grouped into categories with their respective mass charge ratio (mz value) using statistical data

mining with P<0.05. Results shown correspond to three independent biological samples.

(PDF)

S2 Fig. Heatmap profile of 58 significant negative ions in response to glucose and sorbitol.

P. patens protonemata were exposed to 300 mM of either glucose or sorbitol for 24 h. An opti-

mized hierarchical clustering based on correlation R was applied to 58 significant negative

ions. The metabolomic fingerprint is represented as a grayscale barcode that depicted the rela-

tive intensity (ion abundance), black indicates high and white indicates low. Ion similarity is

revealed by the left dendrogram. Results shown correspond to three independent biological

samples.

(PDF)

S3 Fig. Heatmap profile of 50 top significant positive ions in response to the different

treatments. P. patens protonemata were exposed to 300 mM of either glucose or sorbitol for

24 h. An optimized hierarchical clustering based on correlation R was applied to 50 top inten-

sity significant positive ions. The metabolomic fingerprint is represented as a grayscale
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barcode that depicted the relative intensity (ion abundance), black indicates high and white

indicates low. Ion similarity is revealed by the left dendrogram. Results shown correspond to

three independent biological samples.

(PDF)

S4 Fig. Functional protein association networks based on STRING. (A) Analysis of proteins

relatively less abundant in response to glucose. (B) Proteins relatively less abundant in

response to sorbitol (Q8H932 protein was not shown by the STRING database analysis). The

lines connecting proteins are; Cyan, curated databases; magenta, experimentally determined;

green, gene neighbourhood; red, gene fusions; blue, gene co-occurrence; light green, textmin-

ing; black, co-expression; mauve, protein homology. Colored circles highlight biological pro-

cesses.

(PDF)

S1 Table. Ions with a given common behaviour compared to control conditions. Values

indicate the mass-charge ratio of the ion (mz value).

(XLSX)

S2 Table. Proteins identified in response to glucose, sorbitol, and control treatments.
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Becerra.

Supervision: Axel Tiessen-Favier, Miguel Angel Villalobos-López, Ángel Arturo Guevara-
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5. Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, et al. Sugars and Stress. 2009; 4

(5):388–93.

6. Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol. 2014; 57(2):67–79.

https://doi.org/10.1007/s12374-014-0902-7 PMID: 25530701
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39. Garcı́a-Flores M, Juárez-Colunga S, Garcı́a-Casarrubias A, Trachsel S, Winkler R, Tiessen A. Meta-

bolic profiling of plant extracts using direct-injection electrospray ionization mass spectrometry allows

for high-throughput phenotypic characterization according to genetic and environmental effects. J

Agric Food Chem. 2015; 63(3):1042–52. https://doi.org/10.1021/jf504853w PMID: 25588121

40. Vargas-Ortiz E, Espitia-Rangel E, Tiessen A, Délano-Frier JP. Grain Amaranths Are Defoliation Toler-

ant Crop Species Capable of Utilizing Stem and Root Carbohydrate Reserves to Sustain Vegetative

and Reproductive Growth after Leaf Loss. PLoS One. 2013; 8(7):1–13. https://doi.org/10.1371/

journal.pone.0067879 PMID: 23861825

41. Pando-Robles V, Oses-Prieto JA, Rodrı́guez-Gandarilla M, Meneses-Romero E, Burlingame AL,

Batista CVF. Quantitative proteomic analysis of Huh-7 cells infected with Dengue virus by label-free

LC-MS. J Proteomics. 2014; 111:16–29. https://doi.org/10.1016/j.jprot.2014.06.029 PMID: 25009145

PLOS ONE Glucose-induced proteome and metabolome fingerprint changes in Physcomitrella

PLOS ONE | https://doi.org/10.1371/journal.pone.0242919 December 4, 2020 23 / 27

https://doi.org/10.4238/2015.May.11.11
https://doi.org/10.4238/2015.May.11.11
http://www.ncbi.nlm.nih.gov/pubmed/25966253
https://doi.org/10.1016/j.plaphy.2016.09.005
http://www.ncbi.nlm.nih.gov/pubmed/27639065
https://doi.org/10.1016/j.pbi.2009.12.002
http://www.ncbi.nlm.nih.gov/pubmed/20056477
https://doi.org/10.1186/1471-2164-14-217
https://doi.org/10.1186/1471-2164-14-217
http://www.ncbi.nlm.nih.gov/pubmed/23548001
https://doi.org/10.1126/science.1150646
http://www.ncbi.nlm.nih.gov/pubmed/18079367
https://doi.org/10.1038/s41598-018-34862-1
http://www.ncbi.nlm.nih.gov/pubmed/30413758
https://doi.org/10.1105/tpc.19.00828
https://doi.org/10.1105/tpc.19.00828
http://www.ncbi.nlm.nih.gov/pubmed/32152187
http://www.ncbi.nlm.nih.gov/pubmed/11743086
https://doi.org/10.1046/j.1365-313x.2003.01883.x
https://doi.org/10.1046/j.1365-313x.2003.01883.x
http://www.ncbi.nlm.nih.gov/pubmed/14617094
https://doi.org/10.1007/s00425-004-1351-1
http://www.ncbi.nlm.nih.gov/pubmed/15322883
https://doi.org/10.1111/j.1365-313X.2005.02603.x
https://doi.org/10.1111/j.1365-313X.2005.02603.x
http://www.ncbi.nlm.nih.gov/pubmed/16367967
https://doi.org/10.1074/jbc.M306265200
http://www.ncbi.nlm.nih.gov/pubmed/12941966
https://doi.org/10.1093/jxb/eri040
http://www.ncbi.nlm.nih.gov/pubmed/15611148
https://doi.org/10.1093/pcp/pcs124
http://www.ncbi.nlm.nih.gov/pubmed/22952250
https://doi.org/10.1007/s00425-016-2596-1
https://doi.org/10.1007/s00425-016-2596-1
http://www.ncbi.nlm.nih.gov/pubmed/27638172
https://doi.org/10.1039/c2mb25056j
https://doi.org/10.1039/c2mb25056j
http://www.ncbi.nlm.nih.gov/pubmed/22513980
https://doi.org/10.1021/jf504853w
http://www.ncbi.nlm.nih.gov/pubmed/25588121
https://doi.org/10.1371/journal.pone.0067879
https://doi.org/10.1371/journal.pone.0067879
http://www.ncbi.nlm.nih.gov/pubmed/23861825
https://doi.org/10.1016/j.jprot.2014.06.029
http://www.ncbi.nlm.nih.gov/pubmed/25009145
https://doi.org/10.1371/journal.pone.0242919


42. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem

mass spectrometry. Anal Chem. 2003; 75(17):4646–58. https://doi.org/10.1021/ac0341261 PMID:

14632076

43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. The Gene Ontology Consor-

tium. Nat Genet. 2000; 25(1):25–9. https://doi.org/10.1038/75556 PMID: 10802651

44. Wellburn AR. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using

Various Solvents with Spectrophotometers of Different Resolution. J Plant Physiol. 1994; 144(3):307–

13. http://dx.doi.org/10.1016/S0176-1617(11)81192-2

45. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10:

Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(D1):

D447–52. https://doi.org/10.1093/nar/gku1003 PMID: 25352553

46. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological net-

works and gene expression data using Cytoscape. Nat Protoc. 2007; 2(10):2366–82. https://doi.org/

10.1038/nprot.2007.324 PMID: 17947979
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analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected

plants employing bioinformatics approaches. Front Plant Sci. 2016; 7:1–23. https://doi.org/10.3389/

fpls.2016.00001 PMID: 26858731

96. Conklin PL, Saracco SA, Norris SR, Last RL. Identification of Ascorbic Acid-Deficient Arabidopsis thali-

ana; Mutants. Genetics. 2000; 154(2):847–856. PMID: 10655235

97. Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M. Analysis of the molecular evolution-

ary history of the ascorbate peroxidase gene family: Inferences from the rice genome. J Mol Evol.

2004; 59(6):761–70. https://doi.org/10.1007/s00239-004-2666-z PMID: 15599508

98. Sano S, Tao S, Endo Y, Inaba T, Hossain MA, Miyake C, et al. Purification and cDNA cloning of chloro-

plastic monodehydroascorbate reductase from spinach. Biosci Biotechnol Biochem. 2005; 69(4):762–

72. https://doi.org/10.1271/bbb.69.762 PMID: 15849415

99. Gallie DR. L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development.

Scientifica (Cairo). 2013; 2013:1–24. https://doi.org/10.1155/2013/795964 PMID: 24278786

100. Kao CH. Role of L-Ascorbic Acid in Rice Plants. Crop, Environment & Bioinformatics. 2015; 12:1–7

101. Foyer CH, Noctor G. Stress-triggered redox signalling: What’s in pROSpect? Plant Cell Environ. 2016;

39(5):951–64. https://doi.org/10.1111/pce.12621 PMID: 26264148

102. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Anti-

oxidative Defense Mechanism in Plants under Stressful Conditions. J Bot. 2012; 2012:1–26.

103. Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic

stress. Plant Signal Behav. 2013; 8(4). https://doi.org/10.4161/psb.23681 PMID: 23425848

104. Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between

stress perception and physiological responses. Plant Cell. 2005; 17(7):1866–75. https://doi.org/10.

1105/tpc.105.033589 PMID: 15987996

105. Leister D. Chloroplast research in the genomic age. Trends Genet. 2003; 19:47–56. https://doi.org/10.

1016/s0168-9525(02)00003-3 PMID: 12493248

106. Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. Front Plant Sci.

2015; 6:1–26. https://doi.org/10.3389/fpls.2015.00001 PMID: 25653664
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