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In diffusion MRI analysis, advances in biophysical multi-compartment modeling have

gained popularity over the conventional Diffusion Tensor Imaging (DTI), because they

can obtain a greater specificity in relating the dMRI signal to underlying cellular

microstructure. Biophysical multi-compartment models require a parameter estimation,

typically performed using either the Maximum Likelihood Estimation (MLE) or the Markov

Chain Monte Carlo (MCMC) sampling. Whereas, the MLE provides only a point estimate

of the fitted model parameters, the MCMC recovers the entire posterior distribution

of the model parameters given in the data, providing additional information such as

parameter uncertainty and correlations. MCMC sampling is currently not routinely applied

in dMRI microstructure modeling, as it requires adjustment and tuning, specific to each

model, particularly in the choice of proposal distributions, burn-in length, thinning, and

the number of samples to store. In addition, sampling often takes at least an order of

magnitude, more time than non-linear optimization. Here we investigate the performance

of the MCMC algorithm variations over multiple popular diffusion microstructure models,

to examine whether a single, well performing variation could be applied efficiently and

robustly to many models. Using an efficient GPU-based implementation, we showed

that run times can be removed as a prohibitive constraint for the sampling of diffusion

multi-compartment models. Using this implementation, we investigated the effectiveness

of different adaptive MCMC algorithms, burn-in, initialization, and thinning. Finally we

applied the theory of the Effective Sample Size, to the diffusion multi-compartment

models, as a way of determining a relatively general target for the number of samples

needed to characterize parameter distributions for different models and data sets. We

conclude that adaptive Metropolis methods increase MCMC performance and select

the Adaptive Metropolis-Within-Gibbs (AMWG) algorithm as the primary method. We

furthermore advise to initialize the sampling with an MLE point estimate, in which case

100 to 200 samples are sufficient as a burn-in. Finally, we advise against thinning in most

use-cases and as a relatively general target for the number of samples, we recommend

a multivariate Effective Sample Size of 2,200.

Keywords: Markov Chain Monte Carlo (MCMC) sampling, diffusion MRI, microstructure, biophysical compartment

models, parallel computing, GPU computing
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1. INTRODUCTION

Advances in microstructure modeling of diffusion Magnetic
Resonance Imaging (dMRI) data have recently gained popularity
as they can obtain a greater specificity than Diffusion Tensor
Imaging (DTI), in relating the dMRI signal to the underlying
cellular microstructure, such as axonal density, orientation
dispersion, or diameter distributions. Typically, dMRI models
are fitted to the data using non-linear optimization (Assaf et al.,
2004, 2008, 2013; Assaf and Basser, 2005; Panagiotaki et al.,
2012; Zhang et al., 2012; Fieremans et al., 2013; De Santis et al.,
2014a,b; Jelescu et al., 2015; Harms et al., 2017), linear convex
optimization (Daducci et al., 2015), stochastic optimization
(Farooq et al., 2016), or analytical (Novikov et al., 2016) methods
to obtain a parameter point estimate per voxel. These point
estimates provide scalar maps over the brain, of micro-structural
parameters such as the fraction of restricted diffusion as a
proxy for fiber density. These point estimates however, do not
provide the entire posterior distribution, which can be useful in
probabilistic tractography and to quantify the uncertainty and
interdependency of parameters, for example. The gold standard
of obtaining the posterior distribution is by using Markov Chain
Monte Carlo (MCMC) sampling, as for example in (Behrens
et al., 2003; Alexander, 2008; Alexander et al., 2010; Sotiropoulos
et al., 2013). MCMC generates, per voxel, a multi-dimensional
chain of samples, the stationary distribution of which is the
posterior distribution, i.e., the probability density of the model
parameters given the data. Per voxel, these samples capture
parameter dependencies, multi modality, and the width of peaks
around optimal parameter values. For instance, summarizing
the chain under Gaussian assumptions with a sample co-
variance matrix, would provide mean parameter estimates and
corresponding uncertainties (the standard deviation), as well as
inter-parameter correlations (Figure 1).

Despite the advantages of providing the full posterior
information, MCMC sampling is currently not routinely applied
in dMRI microstructure modeling, as it often requires an
adjustment and tuning specific to each model, particularly in the
choice of proposals, burn-in length, thinning, and the number
of samples to store. In addition, sampling often takes at least
an order of magnitude more time than non-linear optimization,
even when using GPU’s to accelerate the computations by one or
two orders of magnitude (Hernández et al., 2013).

The main purpose of this paper is to provide an effective
MCMC sampling strategy combined with an efficient GPU
accelerated implementation. To this end, we investigate
the performance of a few variants of Random Walk
Metropolis MCMC algorithms over multiple popular diffusion
microstructure models, to see whether a single well performing
variation could be applied efficiently and robustly to many
models. Furthermore, we discuss the use of burn-in and
thinning in dMRI modeling and apply the concept of effective
sample sizes, to determine a lower bound on the number of
samples needed. To reduce run-time constraints we provide an
efficient parallel GPU implementation of all models and MCMC
algorithms in the open source Microstructure Diffusion Toolbox
(MDT; https://github.com/cbclab/MDT).

2. METHODS

The biophysical (multi-)compartment models and the Markov
Chain Monte Carlo (MCMC) algorithms used in this study
are implemented in a Python based GPU accelerated toolbox
(the Microstructure Diffusion Toolbox, MDT, freely available
under an open source L-GPL license at https://github.com/
cbclab/MDT). Its modular design allows arbitrary combinations
of models with likelihood and prior distributions. The MCMC
implementations are voxel-wise parallelized using the OpenCL
framework, allowing parallel computations on multi-core CPU
and/or Graphics Processing Units (GPUs).

We used the models and MCMC routine as implemented in
MDT version 0.15.0. Unless stated otherwise, we initialized the
MCMC sampling with a Maximum Likelihood Estimator (MLE)
obtained from non-linear parameter optimization using the
Powell routine with cascaded model initialization and patience
2 (Harms et al., 2017). Scripts for reproducing the results in
this article can be found at https://github.com/robbert-harms/
sampling_paper.

First, we defined and reviewed posteriors, likelihoods, and
priors relevant to diffusion multi-compartment models. We next
defined the Metropolis-Hastings as the general type of Markov
Chain Monte Carlo algorithms used in this work. Then, under
the assumptions of the symmetric and current position centered
proposals, updated one dimension at a time, we derived the
Metropolis-Within-Gibbs algorithm. The Metropolis-Within-
Gibbs algorithm is then explained with and without the use of
adaptive proposals. We subsequently defined burn-in, thinning,
effective sample size, and number of samples as the targets of the
investigation of the diffusion microstructure models.

2.1. Diffusion Microstructure Models
The general multi-compartment diffusion microstructure model
has the form of a weighted sum of single compartments:

S = S0

n∑

i=0

wiSi (1)

Where S0 is the signal for the non-diffusion weighted (or b0)
acquisitions, wi the volume fractions (signal weights, signal
fractions, or water fractions) and Si is the signal function for
the i′th of n total compartments. For this work we selected the
Tensor (Basser et al., 1994), Ball&Sticks (Behrens et al., 2003),
NODDI (Zhang et al., 2012), and CHARMED (Assaf et al.,
2004) models. Table 1 shows these multi-compartment models
(henceforth simply “models”), their constituent compartments
and total number of parameters including estimation of S0.
For signal model naming we use the postfix “_in[n]” to
identify the number of restricted compartments employed in
models which allow multiple intra-axonal compartments. For
example, CHARMED_in2 indicates a CHARMED model with 2
intra-axonal compartments (and the regular single extra-axonal
compartment), for each of two unique fiber orientations in a
voxel. Table 2 lists the compartments referenced to in Table 1,
with the corresponding optimizable parameters listed in Table 3.
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FIGURE 1 | Illustration of parameter uncertainty and correlation for the Ball&Stick model using MCMC sampling, with the Fraction of Stick (FS) and the non-diffusion

weighted signal intensity (S0). (A) On the left, a single FS sampling trace and its corresponding histogram for the highlighted voxel with a Gaussian distribution function

fitted to the samples with its mean indicated by a black dot. On the right, the mean and standard deviation (std.) maps generated from the independent voxel chains

per voxel. (B) On the left, the scatter-plot for two parameters (FS and S0) with the corresponding marginal histograms for the voxel highlighted in the maps. On the

right, the S0-FS correlation map.

TABLE 1 | The used composite multi-compartment models, their compartments (divided into intra-, extra-axonal, and isotropic) and total number of parameters.

Model Restricted
(intra-cellular)

compartments

Hindered
(extra-cellular)

compartments

Isotropic
compartments

Number of
parameters

Acquisition
requirements

Tensor – Tensor – 7 b < 1.5 · 106s/m2

Ball&Sticks _in[n] Stick (n-times) – Ball 1+ 3n –

NODDI NODDI_in NODDI_ex Ball 6 ≥ 2 b-values / shells

CHARMED _in[n] CHARMED _in (n-times) Tensor – 7+ 4n ≥ 2 b-values / shells,

bmax ≥ 4.0 · 106s/m2

For an overview of the individual compartments, please see Table 2.

See (Harms et al., 2017) for implementation details of these
compartments and multi-compartment models.

2.2. Posterior, Likelihoods and Priors
Given observations O and a model with parameters x ∈ R

n,
we can construct a posterior distribution p(x|O) from a log-
likelihood distribution l(O|x) and prior distribution p(x), as:

ln p(x|O) ∝ l(O|x)+ ln p(x) (2)

In this work we are interested in approximating the posterior
density of p(x|O) using MCMC sampling.

2.2.1. Likelihood Distribution

The likelihood distribution l(O|x) contains a signal model,
embedding the diffusion microstructure modeling assumptions
combined with a noise model. As discussed in previous work

(Alexander, 2009; Panagiotaki et al., 2012; Harms et al., 2017),
we use the Offset Gaussian model as likelihood distribution:

l(O|x) = −
∑(

O−
√
S(x)2 + σ 2

)

2σ 2
−m · log(σ

√
2π) (3)

with l(O|x) the log-likelihood function, x the parameter vector,
O the observations (the data volumes), S(x) the signal model,
σ the standard deviation of the Gaussian distributed noise (of
the complex valued data, i.e., before calculation of magnitude
data), and m the number of volumes in the dataset (number of
observations). We estimated σ a priori from the reconstructed
magnitude images using the σmult method in Dietrich et al. (2007,
Equation A6).
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TABLE 2 | The single compartment models, see Table 3 for an overview of the optimizable parameters.

Compartment Signal function Compartment model

parameters

Tensor S = e
−b
(
d‖ (n·g)2+d⊥1

(n⊥1
·g)2+d⊥2

(n⊥2
·g)2

)

n⊥1
= rotate(n,ψ )

n⊥2
= n × n⊥1

d‖, d⊥1
, d⊥2

, θ , φ, ψ

Ball S = e−bd d

Stick S = e−bd(n·g)
2

d, θ , φ

NODDI_in S =
∫
S2

f (n, κ )e−bd(n·g)
2
dn d, θ , φ, κ

NODDI_ex S = e
−bg⊺

(∫
S2

f (n,κ )D(n)dn
)
g

d‖, d⊥, θ , φ, κ

CHARMED_in S =
∑N

i=1 vi
[
S‖(q,1) · S⊥i

(q,TE)
]

S‖ (q,1) = e−4π2|q|2 (n·g)2 (1−δ/3)d

S⊥i
(q,TE) =

e
−
[
4π2|q|2

(
1−(n·g)2

)
R4
i
/

(
d·TE
2

)]
·
(

7
96

)
·
[
2−
(

99
112

)
R2
i
/

(
d·TE
2

)]

d, θ , φ

The primary direction of diffusivity n, is parameterized using polar coordinates with angles θ , φ and radius d. The variables b, g, q, 1, δ, G, and TE are sequence settings. In the Tensor

compartment, the function rotate(n,ψ ) rotates the Tensor around n by the angle ψ . In the NODDI models, the function f (n, κ )dn gives the probability of finding fiber bundles along

orientation n using a Watson distribution with parameter κ integrated over the unit sphere S
2. In the NODDI_ex model, the diffusion tensor D(n) is defined as a cylindrically symmetric

Tensor (alike the Tensor in this table except for the symmetry). In the CHARMED_in compartment N is the number of gamma cylinders used, vi is the weight per gamma distributed

cylinders and Ri is the radius per cylinder. In previous work |q|2 (n ·g)2 is sometimes denoted as |q‖|2 and |q|2
(
1− (n · g)2

)
as |q⊥|2, we inlined these identities here in the CHARMED_in

equation.

TABLE 3 | The parameter descriptions corresponding to the diffusion compartment models in Table 2.

Parameter Compartments Usage

d‖ (or d) Tensor, Ball, Stick, NODDI_in, NODDI_ex,

CHARMED_in

Parallel diffusivity along the primary direction of diffusion n

d⊥1
Tensor Perpendicular diffusivity, perpendicular to both d‖ and d⊥2

.

d⊥2
Tensor Perpendicular diffusivity, perpendicular to both d‖ and d⊥2

.

θ Tensor, Stick, NODDI_in, NODDI_ex, CHARMED_in Polar angle used to parameterize n, the primary direction of diffusion

φ Tensor, Stick, NODDI_in, NODDI_ex, CHARMED_in Azimuth angle used to parameterize n, the primary direction of diffusion

ψ Tensor Used to rotate the Tensor around its primary axis

κ NODDI_in, NODDI_ex The dispersion index of the Watson distribution

2.2.2. Priors

The prior distribution p(x) describes the a priori knowledge
we have about the model and its parameters. We construct a
complete model prior as a product of priors per parameter, pi(xi)
(see Appendix Table 1), with one or more model specific priors
over multiple parameters, pj(x|M), for model prior j of modelM
(see Appendix Table 2):

p(x) =
∏

pi(xi) ·
∏

pj(x|M) (4)

Assuming no further a priori knowledge than logical or
biologically plausible ranges, we used uniform priors
for each parameter, pi(xi) ∼ U(a, b). Additionally, for
multi-compartment models with volume fraction weighted
compartments (i.e., Ball&Stick_in[n], NODDI, and
CHARMED_in[n]) we added a prior on the n − 1 volume
fractions wk to ensure

∑n−1
k=0 wk <= 1, to ensure proper volume

fraction weighting. Note that the last volume fraction was
not sampled but was set to one minus the sum of the others,
wn = 1 −

∑n−1
k=0 wi. To the Tensor compartment (used in the

Tensor and CHARMED_in1model), to ensure strictly decreasing

diffusivities (d > d⊥0 > d⊥1 ), this prevents parameter aliasing of
the Tensor orientation parameters [see (Gelman et al., 2013) on
aliasing].

2.3. Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) is a class of numerical
approximation algorithms for sampling from the probability
density function π(·) of a target random variate, by generating
a Markov chain X(0),X(1), . . . with stationary distribution π(·).
There are a large number of MCMC algorithms, including
Metropolis-Within-Gibbs (a.k.a Metropolis) (Metropolis et al.,
1953), Metropolis-Hastings (Hastings, 1970), Gibbs (Turchin,
1971; Geman and Geman, 1984), Component-wise Hit-And-
Run Metropolis (Turchin, 1971; Smith, 1984), Random Walk
Metropolis (Muller, 1994), Multiple-Try Metropolis Liu et al.
(2000), No-U-Turn sampler (Hoffman and Gelman, 2011), and
many more. All of these algorithms are known as special cases
of the Metropolis-Hastings algorithm and differ only in the
proposal distributions they employ (Chib and Greenberg, 1995;
Johnson et al., 2013).
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The general Metropolis-Hastings algorithm works as follows.
Given a current positionX(t) at step t on a p-dimensional Markov
chain, a new positionX(t+1) is obtained by generating a candidate
position Y from the proposal density q(X(t)|·), which is then
either accepted with probability α, or rejected with probability
1 − α. If the candidate position is accepted, X(t+1) = Y, else,
X(t+1) = X(t). The acceptance criteria α is a function given by
Hastings (1970):

α(X(t),Y) = min

(
1,

π(Y)

π(X(t))

q(X(t)|Y)
q(Y|X(t))

)
(5)

where π(·) is our target density, generally given by our posterior
distribution function p(X|·). The subsequent collection of points
{X(0), . . . ,X(s)} for a sample size s is called the chain and is
the algorithm’s output. The ergodic property of this algorithm
guarantees that this chain converges (in the long run) to a
stationary distribution which approximates the target density
function π(·) (Metropolis et al., 1953; Hastings, 1970).

In this work we use a component wise updating scheme in
which a new positionX(t+1) is proposed one component (i.e., one
dimension) at a time, in contrast to updating all p dimensions at
once. Combined with a symmetric proposal distribution centered
around the current sampling position (for every component),
this scheme is typically referred to as Metropolis-Within-Gibbs
(MWG; Sherlock et al., 2010; Robert, 2015; van Ravenzwaaij

et al., 2016). Let X(t) =
(
X
(t)
0 , . . . ,X

(t)
p

)
define the components

X
(t)
i of X(t), then we can define

Yi =
(
X
(t+1)
0 , . . . ,X

(t+1)
i−1 ,Y∗

i ,X
(t)
i+1, . . . ,X

(t)
p

)

as the candidate position for component i, and

X(t+1)∗ =
(
X
(t+1)
0 , . . . ,X

(t+1)
i−1 ,X

(t)
i ,X

(t)
i+1, . . . ,X

(t)
p

)

as the temporary position in the chain while component
i is being updated. The proposals Y∗

i are generated using

the symmetric proposal qi(X
(t+1)∗ |·) which updates the ith

component dependent on the components already updated. One
iteration of the MWG algorithm cycles through all i components,
where each proposal Yi is accepted or rejected using probability
α(X(t+1)∗,Yi).

2.4. Proposal Distributions
As symmetric proposal distributions for our MWG algorithm
we used centered Normal distributions, i.e., qi(X

(t+1)∗ |·) ∼
N(X

(t)
i , σi), where σi is the proposal standard deviation of the ith

component (not to be confused with the σ used in the likelihood
distribution above). For the orientation parameter ψ we used

a circular Normal modulus π , i.e., qi(X
(t+1)∗ |·) ∼ N(X

(t)
i , σi)

mod π . The orientation parameters θ and φ are proposed
using a standard Normal distribution, but are immediately
transformed together such that the corresponding vector lies in
the right hemisphere of the unit circle. See Appendix Table 3

for an overview of the default proposal distributions used per
parameter.

2.5. Adaptive Metropolis
While in the traditional Metropolis-Within-Gibbs algorithm
each σi in the proposal distribution is fixed, variations of this
algorithm exist that auto-tune each σi to improve the information
content of the Markov chain. While technically each of these
variations is a distinct MCMC algorithm, we consider and
compare three of these variations here as proposal updating
strategies for the MWG algorithm.

The first adaptation strategy compared is the Single
Component Adaptive Metropolis (SCAM) algorithm (Haario
et al., 2005), which works by adapting the proposal standard
deviation to the empirical standard deviation of the component’s

marginal distribution. That is, the standard deviation σ
(t)
i for the

proposal distribution of the ith component at time t is given by:

σ
(t)
i =

{
σ
(0)
i , t ≤ ts

2.4 ∗ (
√
Var(X

(0)
i , . . . ,X

(t−1)
i )+ ǫi), t > ts

(6)

where ts denotes the iteration after which the adaptation starts
(we use ts = 100). A small constant ǫi is necessary to prevent
the standard deviation from shrinking to zero (we use ǫi =
10−5 · σ (0)

i ). The SCAM algorithm has been proven to retain
ergodicity, meaning it is guaranteed to converge to the right
stationary distribution in the limit of infinite samples (Haario
et al., 2005).

The other two methods work by adapting the acceptance rate
of the generated proposals. The acceptance rate is the ratio of
accepted to generated proposals and is typically updated batch-
wise. In general, by decreasing the proposal standard deviation
the acceptance rate increases and vice versa. Theoretically, for
single component updating schemes (like in this work), the
optimal target acceptance rate is 0.44 (Gelman et al., 1996).

The first of the two acceptance rate scaling strategies is from
the FSL BedpostX software package. This strategy, which we refer
to as the FSL strategy, tunes the acceptance rate to 0.5 (Behrens
et al., 2003). It works by multiplying the proposal variance by
the ratio of accepted to rejected samples, i.e., it multiplies the
standard deviation σi by

√
(a+ 1)/(b− a+ 1) after every batch

of size b with a accepted samples. We update the proposals after
every batch of size 50 (b = 50) (Behrens et al., 2003). Since this
method never ceases the adaptation of the standard deviations, it
theoretically loses ergodicity of the chain (Roberts and Rosenthal,
2007, 2009).

The last method, the Adaptive Metropolis-Within-Gibbs
(AMWG) method (Roberts and Rosenthal, 2009) uses the current
acceptance rate over batches to tune the acceptance rate to 0.44.
After the nth batch of 50 iterations (Roberts and Rosenthal,
2009), this method updates the logarithm of σi by adding or
subtracting an adoption amount δ(n) = √

1/n depending on
the acceptance rate of that batch. That is, after every batch, σi is
updated by:

σ
(t)
i =

{
σ
(t−n)
i · exp(δ(n)), arbatch > artarget

σ
(t−n)
i / exp(δ(n)), arbatch ≤ artarget

(7)

where arbatch is the acceptance rate of the current batch and
artarget is the target acceptance rate (0.44). Since this method
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features diminishing adaptation, the chain remains ergodic
(Roberts and Rosenthal, 2009).

We compared all three strategies and the default, with no
adaptation, on the number of effective samples they generated
(see below) and on accuracy and precision, using ground
truth simulation data. We sampled all models with 20,000
samples, without thinning and using the point optimized
Maximum Likelihood Estimator (MLE) as a starting point. We
reported statistics over the first 10,000 samples in the article,
considering it is the common number of samples in MCMC
sampling, and report estimates over all 20,000 samples as
Supplementary Figures. Estimates of the standard error of the
mean (SEM) are obtained by averaging the statistics over 10
independent MCMC runs.

2.6. Burn-in
Burn-in is the process of discarding the first z samples from
the chain and using only the remaining samples in subsequent
analysis. The idea is that if the starting point had a low probability
then the limited number of early samples may over sample low
probability regions. By discarding the first z samples as a burn-in,
the hope is that, by then, the chain has converged to its stationary
distribution and that all further samples are directly from the
stationary distribution (Robert, 2015). Theoretically, burn-in is
unnecessary since any empirical average

µ̂T(g) =
1

T

T∑

t=0

g(X(t)) (8)

for any function g will convert to µ(g) given a large enough
sample size and given that the chain is ergodic (Robert, 2015).
Additionally, since it can not be predicted how long it will take for
the chain to reach convergence, the required burn-in can only be
estimated post-hoc. In practice, discarding the first few thousand
samples as a burn-in often works and is less time-consuming than
generating a lot of samples to average out the effects of a low
probability starting position.

An alternative to burn-in, or, to reduce the need for burn-
in, is to use a Maximum Likelihood Estimator as starting point
for the MCMC sampling (van Ravenzwaaij et al., 2016). If the
optimization routine did its work well, the MLE should be part
of the stationary distribution of the Markov chain, removing the
need for burn-in altogether. We compare initialization using a
MLE obtained using the Powell routine (Harms et al., 2017), with
a initialization from a default a priori value (Appendix Table 4).
For most models the MLE optimization results can be used
directly, for the Tensor model we occasionally need to sort
the diffusivities and reorient the θ , φ, and ψ angles to ensure
decreasing diffusivities. To evaluate the effect of burn-in and
initialization single-slice datas was sampled using the NODDI
model with the default starting point and with MLE. For selected
single voxels the NODDI model was also sampled using the MLE
starting point and two random volume fractions as a starting
point. We compare these starting points on moving mean and
moving standard deviation, as well as on autocorrelation (the

correlation of a chain with itself) given by:

R(s, t) = E[(Xt − µt)(Xs − µs)]

σtσs
(9)

with mean µt , variance σ 2
t at time t, this computes the

autocorrelation R(s, t) between times s and t.

2.7. Thinning
Thinning is the process of using only every kth step of the chain
for analysis, while all other steps are discarded, with as goal
reducing autocorrelation and obtaining relatively independent
samples. Several authors have recommended against the use of
thinning, stating that it is often unnecessary, always inefficient
and reduces the precision of the posterior estimates (Geyer, 1991;
MacEachern and Berliner, 1994; Jackman, 2009; Christensen
et al., 2010; Link and Eaton, 2012).

The only valid reason for thinning is to avoid bias in
the standard error estimate of posterior mean, when that
mean estimate was computed over all (non-thinned) samples
(MacEachern and Berliner, 1994; Link and Eaton, 2012). In
general, thinning is only considered worthwhile if there are
storage limitations, or when the cost of processing the output
outweighs the benefits of reduced variance of the estimator
(Geyer, 1991; MacEachern and Berliner, 1994; Link and Eaton,
2012).

To evaluate the effect of thinning we sampled a single
voxel with 20,000 samples and compared the effect of using all
samples in computing the posterior mean and posterior standard
deviation of a volume fraction against using only a thinned
amount of samples We compare the effect of taking n samples
with a thinning of k (the thinning method) against just using all
n · k samples (themore samplesmethod).

2.8. Effective Sample Size
The Effective Sample Size (ESS) in the context of MCMC,
measures the information content, or effectiveness of a sample
chain. For example, 1,000 samples with an ESS of 200 have a
higher information content than 2,000 samples with an ESS of
100. The ESS can be defined as the minimum size of a set of
posterior samples (taken directly from the posterior), which have
the same efficiency (measure of quality) in the posterior density
estimation as a given chain of samples obtained from MCMC
sampling (Martino et al., 2017). Conversely, ESS theory can
quantify how many samples should be taken in a chain to reach
a given quality of posterior estimates. We use the ESS theory to
comparing proposal adaptation strategies and to estimating the
minimum number of samples necessary for adequate sampling
of diffusion microstructure models.

Multivariate ESS theory (Vats et al., 2015) is an extension of
univariate ESS theory (Kass et al., 1998; Liu, 2004; Robert and
Casella, 2004; Gong and Flegal, 2016) and computes the empirical
ESS as:

ÊSS = s

( |3s|
|6s|

)1/p

(10)

with s is the number of obtained samples, p the number of
parameters, 3s the covariance matrix of the samples and 6s an
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estimate of theMonte Carlo standard error (the error in the chain
caused by the MCMC sampling process), here calculated using a
batch means algorithm (Vats et al., 2015).

2.9. Number of Samples
The multivariate ESS theory dictates that one can terminate the
sampling when the empirical number of effective samples, ÊSS,
satisfies:

ÊSS ≥ W(p,α, ǫ) (11)

where W(p,α, ǫ) gives a theoretical lower bound with p the
number of parameters in the model, α the level of confidence of a
desired confidence region and ǫ a desired relative precision (the
relative contribution ofMonte Carlo error to the variability in the
target distribution). W(p,α, ǫ) can be determined a priori and is
defined as:

W(p,α, ǫ) = 22/pπ

(pŴ(p/2))2/p

χ2
1−α,p
ǫ2

(12)

with χ2 the chi-square function and Ŵ(·) the Gamma function
(Vats et al., 2015). Figure 2 shows the effect of α and ǫ on
W(p,α, ǫ). Given the exponential increase in the number of
samples need for very high confidence and precision, we aim for a
95% confidence region (α = 0.05) with a 90% precision (ǫ = 0.1)
in this work.

Since online monitoring of the ESS (during MCMC
sampling) is an expensive operation, and terminating on
ESS will yield different sample sizes for different voxels, we
instead use the ESS theory to estimate a fixed minimum
number of samples needed to reach a desired ESS when
averaged over a white matter mask. We sampled with the
BallStick_in1, BallStick_in2, BallStick_in3, Tensor, NODDI,
CHARMED_in1, CHARMED_in2, and CHARMED_in3models,
using respectively 15,000, 20,000, 25,000, 20,000, 20,000, 30,000,
40,000, and 50,000 samples and computed from those samples
the average ESS over three slices in the white matter masks,
namely the center slice of the volume, one slice five slices below
the center and one slice five slices above. For α = 0.05 and
ǫ = 0.1 we computed per model the theoretical minimum
required effective sample size W(p,α, ǫ). We compared those
theoretical numbers to the obtained average effective sample size
and estimated a minimum required number of samples ŝ using
the ratio:

ŝ = s+ W(p,α, ǫ)− ÊSS

ÊSS/s
(13)

where s is the number of samples we started out with,W(p,α, ǫ)
the theoretical ESS requirements and ÊSS the estimated number
of effective samples in our chain when averaged over the white
matter mask. As an estimate of computation times, we record
runtime statistics for sampling the recommended number of
samples using an AMD Fury X graphics card and an Intel Xeon
e3 18 core CPU.

2.10. Datasets
For this study we used two groups of ten subjects coming from
two studies, each whith a different acquisition protocol. The
first ten subjects are from the freely available fully preprocessed
dMRI data from the USC-Harvard consortium of the Human
Connectome project. Data used in the preparation of this work
were obtained from the MGH-USC Human Connectome Project
(HCP) database (https://ida.loni.usc.edu/login.jsp). The data
were acquired on a specialized Siemens Magnetom Connectom
with 300mT/m gradient set (Siemens, Erlangen, Germany). These
datasets were acquired at a resolution of 1.5 mm isotropic with
1 = 21.8ms, δ = 12.9ms, TE = 57ms, TR = 8,800ms, Partial
Fourier= 6/8, MB factor 1 (i.e., no simultaneous multi-slice), in-
plane GRAPPA acceleration factor 3, with 4 shells of b = 1,000,
3,000, 5,000, 10,000 s/mm2, with respectively 64, 64, 128, 393
directions to which are added 40 interleaved b0 volumes leading
to 552 volumes in total per subject, with an acquisition time of 89
min. We refer to these datasets as HCP MGH –1.5 mm –552vol
–b10k and to the multi-shell direction table as the HCP MGH
table. These four-shell, high number of directions, and very high
maximum b- value datasets allow a wide range of models to be
fitted.

The second set of ten subjects comes from the diffusion
protocol pilot phase of the Rhineland Study (https://www.
rheinland-studie.de) and was acquired on a Siemens Magnetom
Prisma (Siemens, Erlangen, Germany) with the Center for
Magnetic Resonance Research (CMRR) multi-band (MB)
diffusion sequence (Moeller et al., 2010; Xu et al., 2013). These
datasets had a resolution of 2.0 mm isotropic with 1=45.8ms,
δ=16.3ms and TE = 90ms, TR = 4,500ms Partial Fourier = 6/8,
MB factor 3, no in-plane acceleration with 3 shells of b = 1,000,
2,000, 3,000 s/mm2, with respectively 30, 40, and 50 directions
to which are added 14 interleaved b0 volumes leading to 134
volumes in total per subject, with an acquisition time of 10 min
21 s. Additional b0 volumes were acquired with a reversed phase
encoding direction which were used to correct susceptibility
related distortion (in addition to bulk subject motion) with the
topup and eddy tools in FSL version 5.0.9. We refer to these
datasets as RLS-pilot – 2 mm - 134dir - b3k and to the multi-shell
direction table as the RLS-pilot table. These three-shell datasets
represent a relatively short time acquisition protocol that still
allows many models to be fitted.

Since the CHARMED_in[n] models require relatively high
b-values (∼10,000), which are not present in the RLS-pilot
dataset, we will only use the HCP-MGH dataset when showing
CHARMED_in[n] results. Additionally, since the Tensor model
is only valid for b-values up to about 1,200s/mm2, we only use
the b-value 1,000s/mm2 shell and b0 volumes during model
optimization and sampling. All other models are estimated on
all data volumes. For all datasets we created a white matter
(WM) mask and, using BET from FSL (Smith, 2002), a whole
brain mask. The whole brain mask is used during sampling,
whereas averages over the WM mask are used in model or data
comparisons. The WM mask was calculated by applying a lower
threshold of 0.3 on the Tensor FA results, followed by a double
pass 3D median filter of radius 2 in all directions. The Tensor
estimate for this mask generation was calculated using a CI Ball
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FIGURE 2 | Overview of theoretical minimum ESS, W(p,α, ǫ), to reach a specific confidence level α with a desired relative precision ǫ for a model with number of

parameters p.

Stick/Tensor cascade optimized with the Powell method (Harms
et al., 2017).

2.11. Ground Truth Simulations
We performed ground truth simulations to illustrate the effects
of the adaptive proposals on effective sample sizes and on
accuracy and precision of parameter estimation. For all models
in the study, we simulated 10,000 repeats with random volume
fractions, diffusivities, and orientations, using both a HCP MGH
and a RLS-pilot multi-shell direction table with Rician noise of
an SNR of 30. For the Tensor model we only use the b-value
1,000 s/mm2 shell and b0 volumes of the acquisition tables. To
ensure Gaussianity of the sampled parameter distributions, we
generate the parameters with a smaller range than the support of
the sampling priors (Table 4). To allow a uniform SNR of 30 we
fix S0 to 1 · 104.

Analogous to Harms et al. (2017), we compute estimation
error as the mean of the (marginal) posterior minus ground
truth parameter value for the intra-axonal volume fraction, i.e.,
fraction of stick (FS) for Ball&Sticks_in1, fraction of restricted
(FR) for CHARMED_in1 and fraction of restricted (FR) for
NODDI. We compute a measure of accuracy as the inverse
of the mean of the average estimate error over ten thousand
random repeats and a measure of precision as the inverse of the
standard deviation of the average estimates. Finally, we aggregate

TABLE 4 | The simulation ranges per model parameters. We generate uniformly

distributed parameter values using the upper and lower bounds presented.

Parameter Lower bound Upper bound

wi 0.2 0.8

d‖,d⊥1
, d⊥2

5 · 10−11 5 · 10−9

θ , φ, ψ 0 π

κ 0.1 60

these results per model and per experiment over 10 independent
ground truth simulation trials into a mean and standard error of
themean (SEM) for both accuracy and precision.When reported,
the effective sample size (ESS) is computed using the multivariate
ESS theory, averaged over the 10,000 voxels with again an SEM
over 10 trials.

3. RESULTS

We begin by comparing the four different proposal strategies
for sampling the different microstructure compartment models:
Tensor, Ball&Sticks_in1, CHARMED_in1, and NODDI. We
then present burn-in and thinning given an effective proposal
strategy, and end with ESS estimates on the minimum number
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FIGURE 3 | MCMC sample traces for the voxel indicated in Figure 1, using Ball&Stick_in1 Fraction of Stick (FS), for no adaptive metropolis (None), the Single

Component Adaptive Metropolis (SCAM), the FSL acceptance rate scaling (FSL), and Adaptive Metropolis-Within-Gibbs (AMWG) adaptive proposal methods. Results

were computed with an initial proposal standard deviation of 0.25. A Gaussian distribution function was fitted to the samples, superimposed in blue on the sample

histograms, with its mean indicated by the blue dot.

of samples needed for adequate characterization of the posterior
distribution.

3.1. Adaptive Proposal Strategies
We compare three different adaptive proposal strategies, the
Single Component Adaptive Metropolis (SCAM), the FSL
acceptance rate scaling (FSL), and the Adaptive Metropolis-
Within-Gibbs (AMWG), against the default of no adaptive
proposals (None). Comparisons are based on multivariate
Effective Sample Size, and accuracy and precision using ground
truth simulations. Figure 3 illustrates the effect of using
MCMC algorithms with adaptive proposal strategies using the
Ball&Stick_in1 model, the HCPMGH dataset, an initial standard
deviation of 0.25, after a burn-in of 1,000 steps. The illustration
clearly shows that without adaptive proposals the chain can get
stuck in the same position for quite some time, while all adaptive
proposal methods can adapt the standard deviations to better
cover the support of the posterior distribution.

The empirical ESS (Equation 10) measures the information
content or effectiveness of a sample chain. As such, comparing
the ESS for an equal number of actual samples for different
proposal strategies evaluates how effectively each strategy
generates useful information about the posterior distribution.
Figure 4 shows that all adaptive methods clearly outperform the
default, None, by generating at least 2∼3 times more effective
samples for equal length chains. The AMWG method generates
the largest ESS in all cases, with a considerable margin with
respect to SCAM and with a small margin compared to FSL,
with margins increasing somewhat for more complex models

and the larger HCP MGH protocol. Compared on accuracy and
precision in ground truth simulations (Figure 5), the SCAM
strategy performs slightly better (highest accuracy and precision)
than the other adaptive methods for the lower number of
parameter models (Tensor, NODDI) while the AMWG and FSL
methods perform considerably better in the higher number of
parameter crossing fiber models (NODDI, CHARMED_in1).
Repeating, with double number of samples, the simulations
of empirical ESS (Supplementary Figure 1) and accuracy and
precision (Supplementary Figure 2), reproduces these results.
Given the all-round efficiency, accuracy and precision, and the
maintained ergodicity of the chain in the AMWG method, we
selected this method to generate chains in the rest of this work.

3.2. Burn-in
Figure 6 shows a comparison of mean and standard deviation
estimates over 10,000 samples (no thinning), between sampling
started from the default starting point (Appendix Table 4) and
from a Maximum Likelihood Estimator starting point, over an
increasing length of burn-in.When started from a default starting
point, the chains of most voxels will have converged to their
stationary distribution after a burn-in of about 3,000 samples.
When started from an MLE starting point, the chain starts from
a point in the stationary distribution and no burn-in is necessary.
Starting from anMLE starting point has the additional advantage
of removing salt- and pepper-like noise from the mean and std.
maps. For example, even after a burn-in of 3,000 samples, there
are still some voxels in the default starting point maps that have
not converged yet. Burn-in also seems to have a greater impact
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FIGURE 4 | Estimated multivariate Effective Sample Size (ESS), for no adaptive metropolis (None), the Single Component Adaptive Metropolis (SCAM), the FSL

acceptance rate scaling (FSL), and Adaptive Metropolis-Within-Gibbs (AMWG) adaptive proposal methods. Whiskers show the standard error of the mean computed

over 10 repeats. Results are over 10,000 samples, without burn-in and thinning.
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FIGURE 5 | Estimated accuracy (left plots) and precision (right, shaded, plots), for no adaptive metropolis (None), the Single Component Adaptive Metropolis (SCAM),

the FSL acceptance rate scaling (FSL), and Adaptive Metropolis-Within-Gibbs (AMWG) adaptive proposal methods. The results are averaged over 10,000 voxels and

10 trials, the whiskers show the standard error of the mean computed over the 10 trials. Results are over 10,000 samples, without burn-in and thinning. The reported

offsets need to be added to the y-axis for absolute results.

on the standard deviation estimates than it does on the mean
estimates. After a burn-in of 1,000 samples, the means of the
default starting point maps seem to have converged, while the
many of the standard deviations clearly have not. in contrast,
stable standard deviation estimates are obtained from the MLE
initialized chain even without burn-in.

To illustrate this on a single chain basis, in Figure 7 we plot
the first 1,000 samples of an MCMC run of the Ball&Stick_in1
and NODDI model, for the voxel indicated in Figure 6, using
the MLE starting point and two random volume fractions as a
starting point, with the sampling traces in the top row showing
how the sampler moves through the parameter space before

converging to the stationary distribution. The second row shows
the effect of discarding the first z samples when computing
the posterior mean and standard deviation (with statistics over
1,000 samples, after the burn-in z), and finally in the third
row autocorrelation plots for the chains of each starting point
method. Interestingly, the default initialized points first seem to
move toward an intra-axonal volume fraction of zero, before
moving up again. This is probably caused by a misalignment
of the model orientation with the data’s diffusion orientation,
making the intra-axonal volume less likely. Only after a correct
orientation of the model, the volume fraction can go up again.
The moving mean and moving standard deviation plots in the
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FIGURE 6 | Burn-in demonstration and chain initialization using NODDI Fraction of Restricted (FR). On the left, the posterior mean and standard deviation (std.) maps

when sampling NODDI from the MDT default starting point, on the right the mean and std. maps when sampling NODDI using a Maximum Likelihood Estimator (MLE)

as starting point. The rows show the effect of discarding the first z ∈ {0, 1000, 3000} samples as burn-in before the mean and std. estimation. Statistics are without

thinning and over 10,000 samples after z. The value insets show the mean and standard deviation value from a Gaussian fit to the sampling chain for the indicated

voxel.

second row show the convergence of the mean and standard
deviation with an increased burn-in length. These plots again
show that, when started from the MLE, no burn-in is needed,
while starting from another position some burn-in is required
for the chains to converge. The autocorrelation also confirm that
the MLE initialized chain starts from a converged state, whereas
the default initialized chains are far from convergence. This chain
behavior is very similar for a crossing fiber voxel, as illustrated in
Supplementary Figures 3, 4.

3.3. Thinning
Thinning of sampler chains has theoretically been shown
to reduce the accuracy of posterior analyses (Geyer, 1991;
MacEachern and Berliner, 1994; Link and Eaton, 2012), and
empirical evidence has been provided for the limited usefulness

of thinning (Link and Eaton, 2012) Here we will show some
empirical results of thinning applied to diffusion MRI modeling.
Figure 8 shows the effect of thinning on the variability of
the returned sampling trace, on the estimates of the mean
and standard deviation and in terms of autocorrelation. The
sampling trace shows that the chains produce roughly the same
distribution, while with increased thinning many more samples
are required (k times more samples, for a thinning of k).
Comparing the effect of thinning on the mean and standard
deviation shows that, as predicted by theory, there is less or
equal variance in the estimates when using more samples as
compared to thinning the samples. Results also show that 1,000
samples without thinning may not be enough for a stable
estimates and more samples are required. Yet in accordance
with theory, instead of thinning the chain, results indicate that
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FIGURE 7 | MCMC chains and burn-in results of a single voxel (the voxel indicated in Figure 6) for the BallStick_in1 Fraction of Stick (FS) and the NODDI Fraction

Restricted (FR) model parameters. In the first row, the sampling trace when starting at the MLE or at two default points with (only) a varying volume fraction. In the

second row, moving mean and moving standard deviations computed over 1,000 samples with increasing burn-in. In the bottom row, autocorrelation plots computed

over 1,000 samples, with the 99% confidence interval in dashed gray.

just using more samples (e.g., all 1000 · k samples instead a
thinning of k) is preferred. Therefore, while autocorrelations
are reduced as expected for thinned chains, mean and standard
deviation estimates are robust against autocorrelation and the
larger number of samples without thinning is preferred over
thinned samples with reduced autocorrelation. Again, behavior
is reproduced for a crossing fiber voxel, as illustrated in
Supplementary Figures 3, 5.

3.4. Minimum Number of Samples
Using multivariate ESS theory we determined, a priori, per
model, the number of actual samples needed to generate a
sufficient number of effective samples (the effective sample size
or ESS) to approximate the underlying posterior density within
a 95% confidence region and with a 90% relative precision.
Figure 9 shows an estimate on the number of actual samples
needed to reach this desired ESS, on average for a large number
of voxels. For lower order models (Ball&Stick_in1, Tensor,
NODDI) the sampling requirements do not depend on the
acquisition table, with similar numbers of samples needed for
the HCP MGH and RLS-pilot protocols. For multi-directional
models (Ball&Stick_in2, Ball&Stick_in3) more samples are
needed for the RLS-pilot protocol than for the HCP MGH
protocol where we need 1.5x to 2x the amount of samples for

the RLS-pilot protocol. Since the RLS-pilot dataset is not suitable
for the CHARMED models, no RLS-pilot results are shown
for the CHARMED models. Two and three fiber versions of
the same models (Ball&Stick and CHARMED) require almost
linearly increasing number of samples. Table 5 summarizes the
estimated sample requirements, as the one standard error above
the mean point (upper whisker in Figure 9), together with the
required ESS and the number of estimated parameters in each
model. In general, models with more parameters need more
actual samples to reach the same confidence and precision,
although the Tensor model with seven parameters requires less
samples than the NODDI model with six parameters. This is
probably related to the higher complexity (non-linear parameter
inter-dependencies) of the NODDI model compared to the
Tensor model. As can be seen in Figure 2 (upper left panel), the
required ESS to reach the desired 95% confidence region with
a 90% relative precision is relatively invariant to the number
of parameters (at about 2200), although the numbers of actual
samples needed to realize this are different for every model,
as seen in Figure 9. As an illustration of computation times,
Table 6 shows runtime statistics for sampling the recommended
number of samples for HCP MGH dataset and a RLS-pilot
dataset using an AMD Fury X graphics card and an Intel Xeon
e3 18 core processor. For most models the GPU outperforms
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FIGURE 8 | Thinning results of a single voxel (the voxel indicated in Figure 6) for the CHARMED_in3 Fraction of Restricted (FR) and the NODDI FR model parameters.

In the first row, sample traces for the returned samples after a thinning of 1 (no thinning), 10 and 20, with their corresponding histograms. In the second row, an

autocorrelation plot computed over 200 samples, with the 99% confidence interval in dashed gray. In the bottom row, a comparison of the posterior mean and

standard deviation when thinning the chain or when using more samples. When thinning, 1000 · k samples are generated of which only every kth sample is used (so,

always 1,000 samples are used). When using more samples, all 1000 · k samples are used, without thinning. Results are without burn-in and started from a maximum

likelihood estimator.

the CPU by about 20x, except for the more complex models
(CHARMED_in2, CHARMED_in3) where the GPU is only
about 6x faster. In general, although 4 to 7 h are needed to
sample the single fiber CHARMED_in1 and NODDI models on
the very large HCP MGH dataset (with 552 volumes), GPU-
accelerated implementation can provide full posterior sampling
of diffusion microstructure models over whole brain datasets
in reasonable time on a standard graphics card. On the more
clinically feasible RLS-pilot protocol (134 volumes) whole brain
sampling of Tensor and Ball&Stick models can be performed
within 20 min and NODDI within an hour.

4. DISCUSSION

Using an efficient GPU based implementation, we show that run
times can be removed as a prohibitive constraint for sampling
of diffusion multi-compartment models, achieving whole brain
sampling in under an hour for typical datasets andmost common
dMRI models. Newer generations of graphics cards are likely
to reduce these times even further. Using this implementation,

we investigated the use of adaptive MCMC algorithms, burn-
in, initialization, and thinning. We finally applied the theory of
Effective Sample Size to diffusion multi-compartment models as
a way of determining a sufficient number of samples for a given
model and dataset.

4.1. Adaptive MCMC
The use of adaptiveMCMC algorithms increases the effectiveness
of the sampling process by generating more effective samples
for the same amount of MCMC samples. Adaptative methods
generally have higher multivariate Effective Sample Size (ESS)
than MCMC without adaptation. Although adaptative methods
generally score close to each other in generated ESS, the
FSL, and AMWG methods have better sampling efficiency
for complex crossing fiber models, such as CHARMED_in3
and low #volumes/#parameters situations, with AWMG slightly
outperforming FSL. In accuracy and precision, AMWG and
FSL perform well overall, whereas performance for the fixed
proposal method (None) and SCAM is more inconsistent
over all models. The ESS performance of the fixed proposal
method could, in theory, be increased to the same levels
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FIGURE 9 | Estimates on the number of samples needed per model, to reach,

when averaged over the white matter, a 95% confidence region with a 90%

relative precision. Results are shown for both an HCP MGH and RLS-pilot

acquisition table. Whiskers show the standard error of the mean over 10

subjects.

as the adaptive methods by manual calibration, but since
this is model and data (voxel) dependent, manual tuning
could be very burdensome and unpractical. This work covers
only variations of the Metropolis-Within-Gibbs method, which
has the advantage of high efficiency sampling with relatively
general model-unspecific proposals. Future work could focus on
MCMC algorithms which allow for block-updates of correlated
parameters, or could investigate different proposal schemes
altogether such as Component-wise Hit-And-Run Metropolis
(Turchin, 1971; Smith, 1984), Multiple-Try Metropolis (Liu
et al., 2000) and/or No-U-Turn sampler (Hoffman and Gelman,
2011).

4.2. Burn-in
When starting from an arbitrary position, burn-in is advisable
to reduce possible bias due to (possibly) low probability starting
positions. Burn-in should ideally be considered post-sampling,
since it is difficult to know a priori the time needed for the
chain to converge and, due to randomness, past convergence
rates provide no guarantee for the future. This is why common
practice dictates a relatively large number of burn-in samples
which guarantees convergence in most cases.

While not harmful, burn-in is generally unnecessary
and inefficient if the starting point is part of the stationary
distribution of the Markov chain, which can, for example,
be achieved by taking a Maximum Likelihood Estimator
(MLE) as starting point. Even when starting from an
MLE, a small burn-in of about 100 to 200 samples could
be considered to remove correlations with the starting
position. Additionally, when using adaptive proposal
methods, a small burn-in could be considered to let the

TABLE 5 | Estimates on the number of samples needed per model, to reach,

when averaged over the white matter, a 95% confidence region with a 90%

relative precision.

Model Number of

parameters

Required ESS Required nr. of

samples

BallStick_r1 4 2,108 11,000

BallStick_r2 7 2,192 15,000

BallStick_r3 10 2,208 2,5000

NODDI 6 2,177 15,000

Tensor 7 2,192 13,000

CHARMED_r1 11 2,208 17000

CHARMED_r2 15 2,198 25,000

CHARMED_r3 19 2,183 30,000

While the required ESS can be determined a priori (see Figure 9), the inherent model

complexity determines how many samples are needed to reach that ESS.

adaptation algorithm adapt the proposal distribution before
sampling, slightly increasing the effective sample size of the
chain.

4.3. Thinning
Already on theoretical grounds, thinning is not recommended
and considered as often unnecessary, always inefficient and
reducing the precision of posterior estimates (Geyer, 1991;
MacEachern and Berliner, 1994; Jackman, 2009; Christensen
et al., 2010; Link and Eaton, 2012). Illustrations based on
the the Ball&Stick_in1 and NODDI model show that, with or
without thinning, the posterior distribution is approximated
about equally, while thinning needs k times more samples (for
a thinning of k). Results did show a convergence of mean
and standard deviation estimates with an increased thinning,
but these results are easily duplicated by incorporating not
only the thinned samples but also the non-thinned samples
in the statistical estimates (the “more samples” strategy).
Furthermore, using more samples instead of thinning provides
estimates with a higher precision, as illustrated by the higher
variability of the thinned estimates compared to the estimates
with more samples (Figure 8, right). One legitimate reason for
thinning is that, with independent samples, one can approximate
the precision of an MCMC approximation (Link and Eaton,
2012). That is, it allows for more accurate assessment of the
standard error of an MCMC estimate like the posterior mean.
However, even in that case, thinning must be applied post-
hoc, otherwise the precision of the mean itself will be reduced
if computed from only the thinned samples. Furthermore, we
are often more interested in the variability of the posterior
distribution (which can be provided by e.g., the standard
deviation) than in the precision of the posterior mean estimate.
Another legitimate reason for considering thinning is hardware
limitations, such as sampling post-processing time and storage
space. However, barring such limitations, avoiding thinning
of chains is far more efficient in providing high precision in
posterior estimates.
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TABLE 6 | Runtime statistics in hours (h) for MCMC sampling the estimated minimum number of samples (no burn-in, no-thinning) of various models, using a single HCP

MGH (552 volumes) and single RLS-pilot (134 volumes) dataset.

Model Number of samples HCP MGH - GPU HCP MGH - CPU RLS-pilot - GPU RLS-pilot - CPU

Ball&Stick_in1 11,000 1 h 36 h 0.25 h 4.5 h

Ball&Stick_in2 15,000 2 h 48 h 0.5 h 15 h

Ball&Stick_in3 25,000 6 h 72 h 1.5 h 45 h

NODDI 15,000 4 h 80 h 1 h 20 h

Tensor 13,000 1 h 22 h 0.5 h 4 h

CHARMED_in1 17,000 6 h 54 h n/a n/a

CHARMED_in2 25,000 24 h 139 h n/a n/a

CHARMED_in3 25,000 47 h 200 h n/a n/a

Statistics are for a whole brain mask of 410,000 voxels for HCP MGH and 204,993 voxels for RLS-pilot. Results are computed using an AMD Fury X GPU and an Intel Xeon e3 18 core

CPU.

4.4. Number of Samples
The issue of the number of samples needed in a chain is often
somewhat enigmatic and arbitrary. A common perception is
that the number should be “high,” rather too high than too
low. Multivariate Effective Sample Size (ESS) theory provides
a theoretical lower bound on the number of effective samples
needed to approximate the posterior, based on a desired
confidence level and precision. How many MCMC samples
are required to reach that target effective sample size is then
dependent on the data, the model and the MCMC algorithm.
We show that there is some dependency on the data in terms
of sampling requirements for diffusion microstructure models,
considering the increasing discrepancy between required sample
numbers for Ball&Stick_in1, Ball&Stick_in2, and Ball&Stick_in3.
The dependency of sampling requirements on the model
is higher, showing that more complex models seem to
need more actual samples to reach the target ESS. As can
be seen in Figure 2 (upper left panel), the required ESS
to reach the 95% confidence region with a 90% relative
precision is relatively invariant to the number of parameters
(at about 2200), although the numbers of actual samples
needed to realize this are different for every model, as seen
in Figure 9. This sets an informed relatively general target
for the amount of samples required in sampling diffusion
micro-structural models, which scales the number of actual
samples with the complexity of the model, data, and the
performance of the MCMC algorithm. This also means that
MCMC algorithms which can generate effective samples more
efficiently (such as the AMWG) can reduce the number of
samples needed to reach the same confidence levels, reducing
run-time.

5. CONCLUSIONS AND
RECOMMENDATIONS

Considering the theoretical soundness and its general robust
performance, we advise to use the Adaptive Metropolis-Within-
Gibbs (AMWG) algorithm for efficient and robust sampling
of diffusion MRI models. We further recommend initializing
the sampler with a maximum likelihood estimator obtained

from, for example, non-linear optimization, in which case
100 to 200 samples are sufficient as a burn-in. Thinning is
unnecessary unless there are memory or hard disk constraints or
a strong reliance on posterior estimates that require uncorrelated
samples. As a relatively general target for the number of
samples, we recommend 2,200 multivariate effective samples,
which reaches 95% confidence and 90% relative precision,
invariant of the number of parameters. The amount of actual
MCMC samples required to achieve this is algorithm and
model dependent and can be investigated in a pre-study,
with numbers for common dMRI models reported here as an
indication.
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