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Abstract

The bioprocessing of a fusion protein is characterised by low yields and at a series of

recovery and purification stages that leads to an overall 90% loss. Much of this

apparent loss is due to the denaturation of a protein, missing a vital affinity ligand.

However, there is evidence of the protection of degradation products which occurs in

the presence of shear plus air/liquid interfaces. This study seeks out to characterise

the loss and use ultra‐scale‐down studies to predict its occurrence and hence shows

these may be diminished by the use of protective reagents such as Pluronic F68.
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1 | INTRODUCTION

It has been reported that a variety of proteins and enzymes are

susceptible to conformational changes within a shear field (Biddlecombe

et al., 2007; Charm & Lai, 1971; Charm & Wong, 1970; Charm & Wong,

1978). The production and purification of irregular and complex

biopharmaceuticals exacerbates the problems a process engineer

encounters during scale up (Junker, 2004; Kolade, Jin, Tengroth, Green,

& Bracewell, 2015).

Many publications document that most biological entities are

denatured or deactivated by high shear forces (Charm & Wong, 1970;

Harrison, Gill, & Hoare, 1998; Lencki, Tecante, & Choplin, 1993; Levy

et al., 1999). The recent advances in antibody‐based therapeutics, with

fusion proteins for example (Michael et al., 1996), forces focus on the

characterisation of complex protein structures during there interactions

with harsh bioprocessing environments (Bowski & Ryu, 1974; Charm &

Lai, 1971; Narendranathan & Dunnill, 1982; Virkar, Narendranathan,

Hoare, & Dunnill, 1981; Tait, Hogwood, Smales, & Bracewell, 2012).

One way to achieve a better understanding could be the use of an

ultra‐scale‐down (USD) shear device mimic. This device allows very small

quantities of liquid to be inflicted to harsh hydrodynamic conditions,

similar to what might be encountered during bioprocessing (Biddlecombe

et al., 2007; Boychyn et al., 2001). Ultimately uncovering fundamental

degradation properties of the biopharmaceutical being characterised.

This could allow bioprocessing options to be studied at early stages of the

development pathway in parallel to preclinical and clinical trials, thereby

reducing the need for expensive pilot scale manufacture. The early

prediction of robust and reliable large‐scale bioprocessing will allow

speed to market, resulting in exclusivity and high profitability (Kolade

et al., 2015; Rayat, Chatel, Hoare, & Lye, 2016).

Charm and Wong (1970) first documented that enzymes in a shear

field lose activity. They showed that catalase, rennet and carboxypepti-

dase were all deactivated when subjected to shear stress (where no air

bubble entrapment was occurring in the system), which was subsequently

confirmed by Tirrell and Middleman (1975). However, other groups have

suggested that shear stress does not have a significant effect if air–liquid

interface does not exist (Thomas & Dunnill, 1979).

Work by various authors (Maa & Hsu, 1996; Thomas & Geer,

2011; Virkar et al., 1981) proposed that a shear stress environment

without exposure to air–liquid interfaces has little influence on

protein deactivation. When alcohol dehydrogenase was subjected to

a high shear stress environment, little loss of activity was observed;

however it was shown that secondary shear effects, for example, the

addition of air in the system may lead to protein deactivation and/or
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aggregation (Virkar et al., 1981). Maa and Hsu (1996) created high

shear rates of >105/s, nevertheless it was found that a recombinant

human growth hormone suffered little backbone clipping within a

high shear environment, and no significant changes were found with

recombinant human deoxyribonuclease.

These opposing arguments could be attributed to the presence

of air–liquid interfaces in the shearing systems. It has been shown

that the presences of air–liquid mixtures in large‐scale bioproces-

sing generate higher shear stresses, for example, the nonflooded

and flooded feed zones in a pilot scale industrial centrifuge

(Boychyn et al., 2001). Also, the variation in the opposing findings

could be due to the different susceptibility of proteins with diverse

structures in a high shear environment, further justifying the

reasons for the present line of research. The aliphatic nature of

proteins allows them to adhere to air interfaces (Damodaran.,

2003), hence secondary shear effects like air–liquid interfaces

maybe important in the way proteins aggregate or degraded (Maa

& Hsu, 1997). Detergents like Pluronic® (F68; Sigma-Aldrich,

Gillingham, Dorset, UK) are used in shear sensitive mammalian cell

cultures with air–liquid interfaces to reduce aggressive high shear

bubble detonation that would otherwise cause mammalian cell

breakage (Chattopadhyay, Rathman, & Chalmers, 1994; Michaels,

Petersen, Mclntire, & Papoutsakis, 1990; Tait et al., 2012;

Tharmalingam, Wu, Callahan, & T. Goudar, 2015). Surfactants

have also been used before to show that they have a protective

effect on aggregation (Maa & Hsu, 1997). The additives used to

reduce high shear at air–liquid interface in previous studies could

be used in USD experiments to identify possible stabilising agents.

Irrespective of the mechanism of degradation of different proteins

under shear stress can follow diverse types of degradation kinetics,

theses include, pseudo first order (Pedley, Sharma, Hawkins, & Chester,

2003), and conventional first order (Harrison et al., 1998), second order

(Lencki et al., 1993) and biphasic models (Lencki, Arul, & Neufeld, 1992a,

b). Therefore detailed kinetic work in this field may elucidate important

relationships of how specific proteins interact in a shear environment

and could be used to predict protein degradation during larger scale

bioprocessing (Rayat et al., 2016; Thomas & Geer, 2011).

This investigation focuses on the stability of an antibody‐fusion
protein exposed to controlled levels of high shear typically found during

large‐scale bioprocess operation, using USD shear device. The biophar-

maceutical characterised in this study is a complicated fusion protein

(MFECP1) used to treat colorectal cancer with a novel drug delivery

system called, Antibody Directed Enzyme Prodrug Therapy (Bagshawe,

1989). The therapy works by targeting an enzyme carboxypeptidase

CPG2 (42 kDa) to a tumour by virtue of its conjugation to a tumour

specific‐antibody, MFE (27 kDa). After sufficient time for circulatory

clearance, a nontoxic prodrug is administered. This prodrug is converted

to a highly cytotoxic drug by the action of the enzyme at the tumour site

(Begent et al., 1996; Michael et al., 1996).

By using millilitre quantities of this protein solution in a USD

rotating disk shear device, it was possible to mimic the harsh

conditions inflicted on the protein (Biddlecombe et al., 2007; Kolade

et al., 2015; Levy et al., 1999).

The present research study has identified parameters that cause

protein degradation and therefore the possible critical features that

may elucidate the mechanism of damage that reduces yields. We report

that air–liquid interface exacerbates the rate of fusion protein

degradation. This information was further used to characterise how a

shear protectant reduced breakdown profiles of the protein at large‐
scale production improving the purified protein profile.

2 | MATERIALS AND METHODS

2.1 | Laboratory consumables

All laboratory consumables, plastic and glass were purchased from

Fisher Scientific Ltd., (Leicestershire, UK) unless otherwise stated and

were of the highest analytical grade.

2.2 | Chemicals

All chemicals, unless otherwise stated, were obtained from Sigma

Aldrich (Dorset, UK) and were of analytical grade. The following

reagents were supplied by the Royal Free Hospital, Department of

Oncology (London, UK), carcinoma‐embryonic antigen (CEA), NA1

(which is a functional domain of CEA), polyclonal anti‐CPG2 primary

antibody raised in rabbit and anti‐MFE primary antibody.

2.3 | Water for irrigation (WFI)

Sterile WFI (Baxter, Sigma-Aldrich, Gillingham, Dorset, UK) was used

in the fermentation production of the recombinant antibody‐fusion
protein (MFECP1). Ultrapure deionised water (18.2Ω; Milli‐Q
System, Merck-Millipore-Sigma, Massachusetts, MA) was used for

downstream purification steps and all USD shear experiments.

2.4 | Fermentation of X33 Pichia pastoris with
an expression of MFECP1

Production and purification of the fusion protein were carried out in

the Academic Department of Oncology, Royal Free Hospital (University

College London, London, UK). Fusion protein used in shear experiments

came from Good Manufacturing Practice (GMP) Batch 81.

A fully accredited GMP fermentation protocol (Royal Free Hospital,

London, UK) was used for producing X33 P. pastoris cells expressing the

MFECP1 fusion protein with a C‐terminal hexahistidine tag (His6). The

gene encoding the fusion protein was placed under an AOX1 promoter to

allow methanol‐induced expression at 10‐L scale, described previously in

detail (Tolner, Smith, Begent, & Chester, 2006a). The His‐tagged protein

was captured and purified by expanded‐bed adsorption immobilised‐
metal affinity chromatography (EBA) described in detailed (Tolner, Smith,

Begent, & Chester, 2006b). After EBA capture the fusion protein fraction

was concentrated and dialysed with LabscaleTM tangential flow filtration

unit (Millipore, Merck-Millipore-Sigma, Massachusetts, MA) which was

attached to a Pellicon XL 50 Biomax 30 (Merck-Millipore-Sigma,

Massachusetts, MA) (30 kDa cutoff) ultrafiltration device. The final
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polishing step was purification by fast protein liquid chromatography.

Twenty millilitre of concentrated and dialysed fusion protein was applied

to a Superdex 200 column (GE Healthcare, Hatfield, UK) (GE Healthcare,

Hatfield, UK) equilibrated with filtered phosphate‐buffered saline (PBS)

mobile Phase 0.5 hr before loading at 0.4ml/min. A consistent volume of

protein between 250 and 300ml was collected in 5ml fractions and

pooled giving 30ml of purified protein yield from each fermentation. This

fusion protein was used for shear experiments.

2.5 | Storage of fusion protein

The purified fusion protein was frozen down into 1ml aliquots and

stored at −80°C for shear experiments at a later date.

2.6 | Cell growth

To evaluate if F68 caused an effect on cell growth and/or expression of

fusion protein, shake flasks were grown with different amounts of F68.

A primary culture was prepared in a baffled shake flask, 0.25 L,

containing 0.03 L of buffered glycerol‐complex medium which contained

the following: yeast extract, 10 g/L; peptone, 20 g/L; potassium

phosphate, 13.6 g/L; yeast nitrogen base (13.4%) 100ml/L; biotin,

2ml/L; glycerol 100ml/L. This flask was then inoculated with 1ml of

MFECP1 seed lot from the GMPworking cell bank (Royal Free Hospital)

which was incubated overnight at 30°C and 250 rpm to an optical

density (OD) of 6.0. On reaching an OD of 6.0, 5ml of this primary

culture was used to inoculate five shake flasks containing 0.025 L of

methanol rich media buffered methanol‐complex medium which

contained the following: yeast extract 10 g/L, peptone, 20 g/L;

potassium phosphate, 13.6 g/L; yeast nitrogen base (13.4%) 100ml/L;

biotin 2ml/L; methanol 5ml/L and 0%, 0.01%, 0.1%, 0.5% and 1% F68

(vol/vol) respectively. The five flasks were incubated over a 96 hr period

at 30°C and 250 rpm. The OD was monitored at an absorbance of

600 nm using the spectrophotometer. Hundred microlitre samples were

taken at time points over the 96‐hr period, and their supernatants were

frozen down for analysis at a later date.

2.7 | Small‐scale liquid chromatography analysis

Samples from the higher concentration shear experiment (100 µg/ml)

were analysed by small‐scale liquid chromatography to detect

degradation fragments. 0.5 ml of each sample was loaded on to a

15‐ml small‐scale liquid chromatography column (SuperoseTM 6 10/

300 GL; GE Healthcare, Hatfield, UK) dimensions of the column were

10 x 300mm. The mobile phase was filtered PBS and was pumped at

a flow rate of 0.4ml/min. The total run time was for 1 hr. The protein

concentration was measured by optical absorption at 280 nm.

2.8 | Assay methods

2.8.1 | CPG2 enzyme activity

Enzyme activity as described previously in Pedley et al. (2003),

briefly the activity was defined where 1 U was equal to the amount of

CPG2 enzyme required to hydrolyse 1mmol of methotrexate per

minute at 37°C. All enzyme activities were conducted in triplicates,

Figure 8 show error bars as ± standard deviations.

2.8.2 | Sandwich enzyme‐linked immunosorbent
assay (ELISA)

The ELISA used to analyse the MFECP1 fusion protein under

investigation is described in detail in Pedley et al. (2003). Plates (NUNC

Immunoplates Maxisorp; SLS, Thermo Fisher Scientific, Hvidovre,

Denmark) were coated with NA1 (1 µg/ml) and incubated for 1 hr at

room temperature. NA1 is the known functional domain on the CEA

that interacts with a MFE‐23 antibody. Control wells were coated with

PBS only under the same conditions. All wells were blocked with 5%

milk proteins or PBS (150 µl/well) for 12 hr. Sheared fusion protein

samples (100 µl samples) were applied and incubated for 1 hr. Detection

of the intact fusion protein was carried out by incubating for 1 hr with

polyclonal anti‐CPG2 primary antibody raised in rabbit, diluted 1/25,000

in 1% milk proteins/PBS (100 µl/well), followed by incubation with anti‐
horse radish peroxidase (anti‐HRP) diluted 1/1,000 in 1% milk proteins/

PBS (100 µl/well). Washing steps consist of four washes with 0.1%

Tween 20/PBS (vol/vol), followed by three PBS washes. Plates were

developed with o‐phenylenediamine in phosphate‐citrate buffer with

sodium perborate (100 µl/well), and the reaction was stopped after

3min with 4M HCl, (100 µl/well). OD was measured at 490 nm on an

Opsys MR ELISA plate reader (Dynex Technologies Ltd, Sussex, UK).

To calculate the approximate concentration of intact MFECP1

fusion protein in the sheared samples, a calibration curve was set up.

Absorbances were measured at 490 nm of serial stock solutions from

500 to 31 ng/ml producing a calibration line giving a predictable

relative error of ±10%. Calibration range from 700 to 500 ng/ml gave

a ±20% relative error in calculating concentrations. Control experi-

ments showed that the reagents F68 (0.01%, vol/vol) and antifoam

(0.01%, vol/vol) gave a zero response at 490 nm.

2.8.3 | Sodium dodecyl sulfate‐polyacrylamide gel
electrophoresis (SDS‐PAGE) and western blot analysis

Proteins were separated under reducing conditions by SDS‐PAGE on

12% Tris‐glycine gels (Thermo Fisher Scientific, Hvidovre, Denmark) at

125V for 1.5 hr. Gels were then stained with Coomassie blue overnight,

then de‐stained (21% MeOH; 8%, acetic acid; 71% H2O) and dried with

gel drying solution (EtOH; Thermo Fisher Scientific, Hvidovre, Denmark)

before mounting between plastic membrane. For the western blots

proteins separated on the SDS‐PAGE gels were then transferred to

polyvinylidene fluoride membrane (Bio-Rad Laboratories Ltd, Watford,

UK) at 125mA for 90min. For detection with specific antibodies, the

membrane was blocked with 5% milk proteins (Marvel Milk powder,

Premier Foods, St. Albans, Hertfordshire, UK)/PBS for 2–16hr at 4°C.

Immunoreactive detection of CPG2, fragment of the MFECP1 protein

was performed by incubation with polyclonal anti‐CPG2 primary antibody

raised in rabbit diluted 1/1000 in 1% milk proteins/PBS (wt/vol) for 1 hr

at room temperature, followed by incubation for 1 hr at room
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temperature with anti‐HRP diluted 1/1000 in 1% milk proteins/PBS (wt/

vol). Immunoreactive detection of MFE, fragment of the MFECP1 protein

was preformed by incubation with polyclonal anti‐MFE primary antibody

raised in rabbit diluted 1/1000 in 1% milk proteins/PBS (wt/vol) for 1 hr

at room temperature, followed by incubation for 1 hr at room

temperature with anti‐HRP diluted 1/1000 in 1% milk proteins/PBS

(wt/vol). His6 on the MFECP1 protein was detected with mouse anti‐His4
monoclonal antibody (Qiagen Ltd, Manchester, UK) diluted 1/1000 in 1%

milk proteins/PBS (wt/vol) for 1 hr at room temperature, followed by

incubation for 1 hr at room temperature with sheep anti‐mouse

monoclonal anti‐HRP (GE Healthcare, Hatfield, UK) diluted 1/500 in

1% milk proteins/PBS (wt/vol). Final staining of all western blots was

achieved by incubation with 0.25mg/ml 3,3′‐diaminobenzidine with H2O2

(1/2,000). Washing steps consisted of five washes with 0.1% Tween® 20/

PBS (vol/vol) followed by three with PBS.

2.8.4 | Fusion protein sample preparation

All fusion protein stock solutions used in shear experiments were

prepared in a 0.01M PBS solution at pH 7.4, 0.138M NaCl; 0.0027M

KCl made up with ultrapure deionised water.

2.8.5 | USD experimental design

The MFECP1 fusion protein was subjected to controlled levels of

shear in an USD rotating disk shear device previously described

in Boychyn et al. (2001) and Levy et al. (1999). The device was

fabricated from 316 stainless steel in house (Mechanical Engineering

Workshop, UCL, London, UK), comprising of a rotating disc housed

inside a shear chamber. The dimensions of the rotating disk were as

follows; radius of disk = 0.0400M, thickness of disk = 0.0015M. The

disk was attached to a 7.2V 500BB race VS Motor (Graupner,

Henriettenstr, Germany) by a stainless steel shaft through a

polytetrafluoroethylene (PTFE) seal. The dimension of the internal

shear chamber was: diameter = 0.0500M, height = 0.0100M, holding

a total protein volume of 20ml. During shearing over a 1‐hr period

temperature of the internal chamber was monitored with a 1‐mm

PTFE protected type (T) thermocouple (RS Components, Ltd., UK)

which was attached to a model 2006T, temperature reader (RS

Components, Ltd.). The temperature of the solution was maintained

at 4°C throughout the experiment with an ice cooled water bath. An

internally built tachometer monitored the speed of the rotating disk

maintaining constant revolutions per minute (rpm) typically for all

shear experiments described here this was at 5,000 rpm speed.

Protein stock solutions ~500 ng/ml were sheared for 1 hr at

5,000 rpm at a constant temperature and duplicate 100 µl samples

were taken at 0‐, 300‐, 600‐, 1,200‐, 1,800‐, 2,400‐, 3,000‐, 3,600‐s
intervals and measure on ELISA immediately after shearing.

Samples from the 100 µg/ml, shear experiment were assayed by

ELISA, enzyme activities, SDS‐PAGE gel and western blot later. One

hundred and eighty microlitre of sheared protein sample was taken

from the shear device at time points over a 1‐hr period as previously

described. Sheared samples (180 µl) with 0.01% F68 were diluted

with 20 µl of PBS then frozen down into 4 × 50 µl aliquots for

analysis. Sheared samples (180 µl) without 0.01% F68 were diluted

with 20 µl of 0.1% F68 (vol/vol then frozen down into 4 × 50 µl

aliquots for analysis later. This controlled procedure compensated for

any false positive effects the reagent may have given during analysis.

Figures 6 and 7 show C/C0 the concentration fraction of the intact

MFECP1 fusion protein present, where, C is the concentration of

protein in ng/ml at time t and C0 the initial concentration of protein in

ng/ml at t =0. The errors bars show the range between each duplicate,

100 µl samples. A first‐order kinetic relationship, C/C0 = a + be−kt, was

used to fit the data and generate the degradation rate constants (k1).

Figures 8 shows E/E0 the concentration of active enzyme present,

where, E is the activity of the CPG2 enzyme in U/ml at time t and

E0 = initial activity of the CPG2 enzyme in U/ml at time t =0.

2.8.6 | Air–liquid interface

A 50% and 0% air–liquid interface was applied to MFECP1 fusion

protein stock solution to assess protein robustness. A 50% air–liquid

interface indicated the shear device was filled with 10ml of protein

solution (half full) and 0% air–liquid refers to the device being filled

to 20ml (full capacity).

2.8.7 | Data analysis curve fitting

This study used the nonlinear fit functions found in SigmaPlot 9.0 (SSI,

CA) to fit the experimental data points and generate the degradation

constants. The nonlinear regression method used by SigmaPlot was

based on the Levenberg–Marquardt least square fitting algorithm.

3 | RESULTS

3.1 | Large‐scale activity levels of MFECP1 fusion
protein

Figure 1 shows the process flow sheet of the facility used to produce

and purify the fusion protein (MFECP1) at a large scale. The activity

of the CPG2 enzyme was monitored during bioprocessing, giving an

approximate measure of the levels of MFECP1 fusion protein lost

during production and purification. It was observed that significant

losses were occurring early on during the bioprocessing, from harvest

to EBA capture (Figure 2) and progressive losses further down the

purification train. The activities measured after EBA capture was

primarily intact His‐tagged positive protein, hence the losses from

the harvest step to the EBA capture step could be attributed to shear

related degradation of the His‐tag from the MFECP1 protein,

proteolytic damage and denaturation of the enzyme. However,

protein losses can be expected throughout the bioprocessing due to

harsh bioprocessing. A series of complex events were thought to be

occurring these include aggregation, surface attachment and protein

breakdown.

The addition of F68 to the large‐scale fermentation of MFECP1

was conducted to observe any beneficial effects the surface active
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agent might have had on the protein integrity and therefore yield.

The results in Figure 2 show that no discernable trends in activity

measurements were observed between fermentations. However,

Figure 3 shows the addition of the agent improved the profile of the

protein coming off the last downstream purification stage (liquid

chromatography), breakdown of the fusion protein can be seen in

Figure 3a,b, where it was seen that the fermentation treated with

surfactant produced less breakdown product (peak 350–400ml;

Figure 3b).

Confirmation that the addition of F68 to the fermentations

reduced the breakdown of the fusion protein can be seen in Figure 4.

The band normally found at 50 kDa showing broken fusion was not

observed in the analysis of liquid chromatography profiles from

fermentation treated with F68. Further analysis of the pooled protein

fractions taken after liquid chromatography can be seen in Figure 5.

Here results showed that the fraction of breakdown normally found

at 85–95ml decreased when F68 was present in the fermentation.

Results also show that the addition of the agent reduced the batch to

batch variation of the main fusion protein peak area.

3.2 | Small‐scale processing effects

As a result of these findings, the small‐scale processing effects of the

fusion protein at USD were investigated.

3.2.1 | The effect of air–liquid interfaces
on MFECP1 protein integrity

Air–liquid interface was applied to a fusion protein solutions ~500 ng/ml

to assess protein robustness. It was found that a 50% vol/vol air–liquid

interface with a constant shear condition of 5,000 rpm (rotational disk

speed) was detrimental to the integrity of the MFECP1 fusion protein in

the USD shear device (Figure 6). The results here show that 60% of the

initial MFECP1 protein was lost after 0.5 hr of shearing giving a first‐
order k1 constant of 3.8 (±0.49) and a final equilibrium value of

133 ng/ml. However, 1 hr of shear (5,000 rpm) with no air–liquid

interface resulted in <2% of the protein being lost, giving a final

concentration of 469 ng/ml and a constant of zero.

3.2.2 | The effect of F68 on MFECP1 protein
integrity

It was found that both Pluronic® F68 0.01% vol/vol and antifoam

(organic solution), 0.01% vol/vol reagents reduced the extent of

MFECP1 loss when added to MFECP1 protein solutions before

shearing. Comparison of the first‐order constants (k1) shows how

reagents like F68 and antifoam reduced the rate of MFECP1 loss over

1 hr of shearing. The control experiment showed that fusion protein

without agents decreased at a rate of 8.7 (±0.57). However, when F68

F IGURE 1 Process flow sheet of the full‐scale production and purification of the fusion protein (MFECP1). Samples were taken after the
following stages of the purification chain and analysed for enzyme activities: fermentation harvest (1); EBA capture and release (2); membrane

concentration and diafiltration (3); liquid chromatography (4). EBA: expanded‐bed adsorption

F IGURE 2 Comparison of the enzyme CPG2 activity taken after
different stages of a full‐scale production run (10 L fermenter

working volume): (1) fermentation harvest; (2) EBA capture and
release; (3) membrane concentration and diafiltration; (4) liquid
chromatography. Fermentations were conducted without and with

F68 (see legend). In fermentation (a) a single dose equivalent to
0.01% of the broth was added at the start of fermentation. For (b)
and (c) three doses equivalent to 0.01% of the broth volume were

made during the course of the fermentation. The total activities
given are the mean of three measurements ±SD. EBA: expanded‐bed
adsorption
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was added this rate was reduced to 0.49 (±0.1840). The addition of

antifoam and F68 gave a lower rate of loss, improving the level of the

final equilibrium concentration after 1 hr of shearing. Antifoam was

tested because the literature suggested that F68 protected biological

products by producing foam (Chattopadhyay et al., 1994) or coating air

bubbles (Michaels et al., 1990); however antifoam was present during

the fermentation, so it was important to prove that this did not

compromise the protective effect F68 had on MFECP1 by reducing the

amount of foam present at USD.

Next, we assessed the effect of F68 at higher concentrations of

fusion protein typically 100 µg/ml, approximately the amount of

protein found in the fermenter. The effect of F68 on fusion protein

integrity can be seen in Figures 8-10. The presence of F68 reduced

the rate of enzyme aggregation over a 1‐hr period (Figure 8). The

rate of enzyme loss was reduced from 1.29 (±0.44) to apparently

zero, hence improving the measured CPG2 enzyme activity after

shearing. Small‐scale shear experiments conducted with 100 µg/ml of

fusion protein showed that the addition of F68 reduced the amount

of fusion protein breakdown product (Figure 9). These results

suggested that F68 might have a stabilising or protective effect on

the protein during shear conditions.

Figure 10 demonstrated the stabilising effect the addition of the

F68 detergent had on the total protein stained by coomassie blue on

an SDS‐PAGE gel. Fusion protein samples were analysed after being

sheared for 1 hr with a 50% air–liquid interface with and without

F68. The results here show that when the protein was sheared in the

presence of F68 an intense band around 70 kDa, the approximate

size of the fusion protein was detected. Control experiments showed

that protein sheared for 1 hr, without F68, produced a band of

70 kDa, at 0 hr, however, this faded quickly over the shearing time

resulting in a lighter band intensity after 1 hr. Western blot analysis

of the same sheared samples uncovering the positive immunoreac-

tivity of His6 (Figure 10b). The western shows the same effect as

(a) (b)

F IGURE 3 Eluate of protein purified on liquid chromatography from fermentations treated with and without F68. The protein produced
from fermentation (i), no F68; protein produced from fermentation (ii), plus 0.03% of F68 (vol/vol). Fusion protein yield peak is normally

found from 250 to 300ml, fusion protein breakdown is found between 350 and 400ml. The first peak 150–200ml is methanol induced by
product of the cells. Concentrated and the diafiltered fusion protein was analysed by liquid chromatography. Twenty millilitre of protein was
applied to a Superdex 200 column at 0.4 ml/min, equilibrated with filtered PBS mobile phase 0.5 hr before loading. Profile in Figure 3b
shows the pooling strategy for further detailed protein analysis (see Figure 4). PBS: phosphate‐buffered saline

F IGURE 4 Pooled protein fractions from the liquid chromatography
eluate and effect of F68 in the original fermentation broth. The pooled
fractions are from the eluate volumes from 250 to 300ml (main fusion
protein peak) and 350–400ml (secondary peak), see Figure 3 (b).

Lanes shown are: M, molecular weight markers 250–16 kDa; (i, i)*,
fermentation (i) no F68, main and secondary peaks respectively; (ii, ii)*,
fermentation (ii) no F68, main and secondary peaks respectively; (b, b)*,

fermentation (b) 0.03% F68, main and secondary peaks respectively;
(c, c)*, fermentation (c) 0.01% F68, main and secondary peaks
respectively; (a), fermentation 0.01% F68, main and (a)*, secondary peak

was analysed on a separate gel showing no breakdown peak (data not
shown) [Color figure can be viewed at wileyonlinelibrary.com]
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seen with the SDS gel. Figure 10b showed that when F68 was

present a significantly higher immunoreactive intensity was present

than without over the shearing time.

4 | DISCUSSION

The work presented here demonstrates that detailed characterisa-

tion of small quantities of sometimes very precious protein solution

could be used to characterise protein loss during large‐scale
bioprocessing. The importance of this study centres on using

millilitres of dilute material to quickly generate very useful data,

early on in a bioprocess development stage. This can then be

translated to the large‐scale production, improving yields and saving

time, money and labour (Kolade et al., 2015; Rayat et al., 2016).

The results showed how susceptible a fusion protein MFECP1

was to the harsh large‐scale bioprocess conditions encountered

during production and purification, giving only a 10% enzyme activity

recovery yields from a 10‐L fermentation broth. This is not

uncommon in the bioprocess field as a large number of complex

biopharmaceuticals have been shown to be degraded or deactivated

by high shear effects during processing (Thomas & Geer, 2011). This

investigation focused on the integrity of a biopharmaceutical

antibody‐fusion protein used in a two‐phased drug delivery system

to treat colorectal carcinoma (Bagshawe, 1989; Michael et al., 1996).

Hence it was imperative that the MFECP1 fusion protein was not

degraded or deactivated in anyway which would otherwise result in

loss of therapeutic activity (Kolade et al., 2015). A USD shear device

F IGURE 7 The effect of surface active agents on the loss of
fusion protein in the presence of air–liquid interface. Fixed shear
conditions were: 50% air–liquid interface and 5,000 rpm for all ultra‐
scale‐down experiments. Initial concentrations and reagents added
were: (_._._.▲_._._.), C0 = 554 ng/ml, no added surface active agents;
(– –•– –), C0,= 583 ng/ml, plus 0.01% F68 (vol/vol); (—⎕—),

C0 = 680 ng/ml plus 0.01% antifoam (vol/vol); (‐‐‐◊‐‐‐), C0 = 690 ng/ml
plus 0.01% F68 (vol/vol) and 0.01% antifoam (vol/vol). All shear
experiments were conducted at a constant temperature of 4°C

maintained by a cooled water bath. Data points show the mean value
and range of duplicate samples. Co = initial concentration of intact
MFECP1 fusion protein as measured by ELISA. Points with a

±20% error outside the calibration range were excluded. Curves are
lines of best fit for a first‐order kinetic relationship, to an
equilibrium (nonzero value). ELISA: enzyme‐linked immunosorbent
assay

F IGURE 5 Purified diafiltered protein analysed on liquid
chromatography from fermentations treated with and without F68.
The protein produced from fermentation (i, ii), no F68; a protein

produced from fermentation (a), plus 0.01% of F68; protein produced
from fermentations (b) and (c) plus 0.03% of F68 (wt/vol). Fusion
protein yield peak is normally found from 75 to 85ml, fusion protein
breakdown is found between 85 and 95ml. Concentrated and the

diafiltered fusion protein was analysed by liquid chromatography.
One millilitre of protein was applied to a Superdex 200 column at
0.4 ml/min, equilibrated with filtered PBS mobile phase 0.5 hr before

loading. PBS: phosphate‐buffered saline

F IGURE 6 The effect of air–liquid interface and shear on the
loss of fusion protein. Experimental conditions were: (__•__),
C0 = 476 ng/ml, no air–liquid interface, 5,000 rpm and (…⎕…),

C0 = 450 ng/ml, 50% air–liquid interface, 5,000 rpm; C0 = initial
concentration of intact MFECP1 fusion protein as measured by
ELISA. All shear experiments were conducted at a constant

temperature of 4°C maintained by a cooled water bath. Data
points show the mean value and range of duplicate samples. Curves
are lines of best fit for a first‐order kinetic relationship to an
equilibrium (nonzero value). ELISA: enzyme‐linked immunosorbent

assay
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was used to mimic the harsh bioprocessing conditions interacting

with the protein during production and purification. This device

analysed how robust the MFECP1 antibody‐fusion protein was to a

variety of bioprocessing parameter that exacerbated its rate of

protein loss (Biddlecombe et al., 2007). It was found that the

combination of air–liquid interface and a rotational shear field of

5,000 rpm was particularly detrimental to an MFECP1 protein

solution. Sixty percent of fusion protein solutions (around ~500 ng/

ml) were lost in an air–liquid interface (no air in the system had little

effect on the degradation of the MFECP1 protein). Protein loss in the

presence of an air/liquid interface has been previously observed for

dextransucrase (Lencki et al., 1993), and human/bovine serum

albumins (Oliva, Santoveña, Fariña, & Llabrés, 2003), so our data

here are consistent with other published work (Kolade et al., 2015).

The literature also highlights ways in which high shear

inflicted on bioprocess materials can be reduced. One such way

is by the addition of detergents like Pluronic® F68. The addition

of F68 to mammalian cell cultures can reduce the high shear

effects on the fragile mammalian cells encounter during produc-

tion and purification (Chattopadhyay et al., 1994; Michaels et al.,

1990; Tait et al., 2012). The most common detergent F68 was

added to the large‐scale fermentation media to observe any

potential beneficial trends.

Samples taken throughout the fermentation run and down-

stream processing were analysed for biomass and enzyme activities.

The results showed that the addition of F68 to the fermentation

media had little effect on the biomass yield as predicted from the

small‐scale shaker flask experiments. There was no notable increase

in enzyme activity (Figure 2). However, the addition of F68 did

improve the protein peak profile after liquid chromatography

(Figures 3 and 5), producing less breakdown and a more

homogenous product. It is thought that the F68 may be reducing

the amount of autocatalysis of the product leading to a significantly

higher yield (Figures 3 and 4) showing an increase of intact fusion

protein with little breakdown products formed. SDS gel analysis

(Figure 4) confirmed that less breakdown was present when F68

was added showing that the agent may have a protective effect

upon the fusion protein during bioprocessing. It was thought early

parts of the process benefited from the effect of F68, as this was

due to the very high concentration of the surfactant in the process

solution, resulting in lower surface shearing effects and inhibition of

autocatalysis and/or protease attack in bioreactor process solution.

F IGURE 9 The effect of F68 on fusion protein breakdown during 1 hr of shear at 5,000 rpm with a 50% air–liquid interface. 100 μg/ml of the

fusion protein was analysed by FPLC from USD shear experiment. (a) No detergent added: (⎕), 0 hr; (•), 1 hr. (b), 0.01% F68 (vol/vol) added: (⎕),
0 hr; (•), 1 hr. The traces show that protein normally found between 15 and 20ml, produced a breakdown peak found at 20–25. Sheared
samples were analysed on a 15‐ml small‐scale liquid chromatography column (SuperoseTM 6 10/300 GL; GE Healthcare) with PBS as mobile
phase at 0.4 ml/min flow rate. All shear experiments were conducted at a constant temperature of 4°C maintained by a cooled water bath.

FPLC: fast protein liquid chromatography; PBS: phosphate‐buffered saline; USD: ultra‐scale down

F IGURE 8 The fraction of enzyme activity recovered from

sheared samples (E0 = initial enzyme activity), data points show the
mean of three values; error bars are equal to ±SD, curves are lines of
best fit for a first‐order kinetic relationship to an equilibrium

(nonzero value). All shear experiments were conducted at a constant
temperature of 4°C maintained by a cooled water bath. The MFECP1
protein used in this shear experiment was His‐tag purified
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Also, a high proportion of the F68 should have been removed at

EBA; therefore, downstream process improvements seen could be

due to reducing breakdown of the product before EBA and or

reducing coelution of products that could breakdown the fusion

protein.

The characterisation of the results seen on a large scale were

attempted by using the USD studies. The USD experiments showed

that the presence of a 50% air–liquid interface increased the rate of

fusion protein loss (Figure 6). It was also found that F68 reduced the

rate of protein loss over a 1‐hr period; whereas in the control

experiments the protein had been degrading. It is thought Pluronic

F68 may be reducing the surface adsorption of the protein leading to

possible denaturation and aggregation effects (Emoto, Malmstena, &

Van Alstineabc, 1998). The surface absorption effect of F68 may also

be increasing the amount of protein available in free solution thus

increasing the rate of protease–carboxypeptidase degradation. Other

reagents were also identified that stabilised the fusion protein, for

example, antifoam; these reagent were already involved in the large‐
scale production media so were not investigated further (Figure 7).

Although F68 seemed to be protecting the protein loss at low

concentrations around ~500 ng/ml. The bioreactor handled protein

concentrations 200 times greater around 100 µg/ml. Therefore the

protective effect of F68 on MFECP1 fusion protein had to be verified

at this concentration. The results from Figures 8 and 10 showed that

F68 reduced the loss the fusion protein over a 1‐hr period; however,

the effect was not as prominent as in the lower concentration shear

experiments. Western blot and SDS gel analysis showed that the

detergent hand a beneficial effect on protein loss (Figure 10b).

Results from the same shear experiments showed that the enzyme

activity was not lost when F68 was added to the protein solution

before shearing (Figure 8). The apparent breakdown product of

fusion protein was also reduced at USD (Figure 9). Further analysis

of Figures 9 and 10 shear experiments showed that the addition of

0.01% vol/vol F68 to the process solution reduced the detectable

fusion protein. It is thought that F68 may have stabilised the fusion

protein, resulting in a higher amount being detected during analysis.

In conclusion, the USD data conducted with protein at 100 µg/ml

showed that F68 might reduce fusion protein loss showing that the

small effects seen on a large scale could have been predicted with

small‐scale studies.

5 | CONCLUSION

In conclusion, the addition of F68, a shear protectant to the

fermentation media had little effect on the overall enzyme activity

throughout the process. However, it was observed that the profile

of the final product had changed resulting in lower impurity in the

final product. Autocatalysis may have been one of the primary

causes for fusion protein loss at the early stages and further along

the process train. The results do show a significant improvement in

the bioprocessing of the fusion protein, whether this was due to

shear protection or reduction of autocatalysis breakdown are

aspects to cover in future research. The addition of Pluronic might

reduce mAb denaturation during fermentation and downstream

processing so that co‐elution enzymes (carboxypeptidases) are less

able to destroy the target fusion protein. It has been shown that

USD experiments could have indicated parameters that exacerbate

F IGURE 10 The effect of F68 during fixed shear conditions, 5,000 rpm, 50% air–liquid interface as measured on SDS‐PAGE gel
electrophoresis and western blots. MFECP1 fusion protein solution, Co = 100 μg/ml, was sheared over a 1‐hr period and samples were analysed
on (a) SDS‐PAGE gel (b) anti‐MFE. For gel and all western blots samples: M, molecular weight marker 250 to 16 kDa; C, controls MFE and

CPG2 fragment proteins; +, the addition of 0.01% F68 (vol/vol); −, no reagent. Note all sheared samples without 0.01%, vol/vol F68 were spiked
with appropriate amounts of F68 before analysis to compensate for any false positive effects the reagent may have given during analysis.
SDS‐PAGE: sodium dodecyl sulfate‐polyacrylamide gel electrophoresis [Color figure can be viewed at wileyonlinelibrary.com]
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the rate of fusion protein loss and identify surfactants that protect

this loss. This study shows that detailed characterisation of very

small quantities of protein solution can be used to improve the

bioprocessing, resulting in time saved during large‐scale process

development. If the USD can be harnessed earlier on in the

production of biopharmaceuticals, it could save the potential

biotech industry larger amounts of time, labour, and capital cost.

Hence, resulting in the ability to dominate a patent for a longer

period generating exclusivity in the market place.
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