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Abstract Thrombospondin-2 (TSP2) and osteonectin/BM-
40/SPARC are matricellular proteins that are highly expressed
by bone cells. Mice deficient in either of these proteins show
phenotypic alterations in the skeleton, and these phenotypes
are most pronounced under conditions of altered bone
remodeling. For example, TSP2-null mice have higher
cortical bone volume and are resistant to bone loss associated
with ovariectomy, whereas SPARC-null mice have decreased
trabecular bone volume and fail to demonstrate an increase in
bone mineral density in response to a bone-anabolic parathy-
roid hormone treatment regimen. In vitro, marrow stromal cell
(MSC) osteoprogenitors from TSP2-null mice have increased
proliferation but delayed formation of mineralized matrix.
Similarly, in cultures of SPARC-null MSCs, osteoblastic
differentiation and mineralized matrix formation are de-
creased. Overall, both TSP2 and SPARC positively influence
osteoblastic differentiation. Intriguingly, both of these matri-
cellular proteins appear to impact MSC fate through mecha-
nisms that could involve the Notch signaling system. This
review provides an overview of the role of TSP2 and SPARC
in regulating bone structure, function, and remodeling, as
determined by both in vitro and in vivo studies.
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Abbreviations

CFU-F Colony forming unit-fibroblast
ECM Extracellular matrix

FTIR Fourier-transform infrared
micoCT  Microcomputed tomography

MSC Marrow stromal cell

Ol Osteogenesis imperfecta

OPG Osteoprotegerin

PTH Parathyroid hormone

RANKL  Receptor activator of NFkB ligand
SHG Second harmonic generation

SNP Single nucleotide polymorphisms
SPARC Secreted protein acidic and rich in cystine
TSP2 Thrombospondin-2

UTR Untranslated region

A2AFosB  Doubly truncated AFosB

Introduction
Bone structure and formation

Bone is highly-ordered, complex, and composed of multi-
ple tissue types, including mineralized matrix, hematopoi-
etic marrow, and marrow adipocytes. There are two primary
types of cells responsible for maintaining bone homeosta-
sis. Osteoblasts are bone-forming cells, and osteoclasts are
multi-nucleated bone resorbing cells. Osteoblasts differen-
tiate from progenitors of the mesenchymal lineage, and
osteoclasts differentiate from progenitors of the monocyte/
macrophage lineage. Fully mature osteoblasts have one of
three fates; they may undergo apoptosis, become quiescent
bone-lining cells, or entomb themselves within bone matrix
to become osteocytes, which are the cells responsible for
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sensing mechanical strain in the skeleton. After resorbing
bone, osteoclasts undergo apoptosis. (Seeman and Delmas
20006).

Developmentally, bone can form by two distinct mech-
anisms. In endochondral bone formation (ossification),
osteoblasts form bone on a cartilaginous template that had
previously been synthesized by chondrocytes (growth plate
cartilage). For example, most long bones arise from
endochondral bone formation, and this mechanism is
responsible for longitudinal bone growth. In intramembra-
nous ossification, bone is formed directly by osteoblasts,
without a cartilaginous template. During osteoblastic
differentiation, mesenchymal progenitors undergo a fairly
well-defined differentiation program, characterized by the
sequential expression of marker genes such as ol(I)
collagen, bone sialoprotein, and osteocalcin. During this
process, cells progress from committed osteoprogentors to
fully mature osteoblasts. Early in the differentiation
process, osteoblasts begin making osteoid, an extracellular
matrix (ECM) rich in collagen and non-collagenous
proteins. This ECM is subsequently mineralized by the
deposition of a carbonate rich calcium-phosphate apatite
within a type I collagen lattice (reviewed by Stein and Lian
1993).

Structurally, bone is composed of compact cortical bone,
which surrounds the endocortical compartment. The outer
aspect of cortical bone is covered in a cell-rich layer called
the periosteum. Located within the endocortical compart-
ment is trabecular bone, also called cancellous bone, which
is a network of interconnected bone plates and bars,
surrounded by marrow and, in some cases, marrow
adipocytes. Trabecular bone tends to be the most metabol-
ically active compartment of the skeleton, undergoing more
rapid bone remodeling. In contrast, cortical bone appears
more dense and solid, and is remodeled more slowly
(Seeman and Delmas 2006).

Bone remodeling

Bone remodeling, also called bone turnover, is the
coupled cycle of bone resorption and bone formation,
and it is the only means by which vertebrates can renew
bone as adults. Bone is continuously remodeled in
response to mechanical and physiological stress. When
the rates of bone resorption and formation are balanced,
bone mass is maintained. In contrast, when bone
resorption out-paces formation, in conditions such as
sex steroid deprivation or skeletal unloading, bone loss
occurs. It is the number and activity of the bone-forming
osteoblasts and the bone-resorbing osteoclasts that deter-
mines whether bone remodeling is balanced, or whether
bone mass is increased or decreased (Canalis et al. 2007;
Seeman and Delmas 2006).
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Bone matrix

Bone matrix is a composite of mineral, collagen, non-
collagenous proteins, and a small amount of lipid (Robey et
al. 2006). The bone matrix provides mechanical support,
serves as a calcium and phosphate reservoir, and acts as a
local storage depot for cytokines and growth factors. It is
also an environment that supports the differentiation and
survival of osteoblasts, osteoclasts, marrow stromal cells
(MSCs), and cells of the hematopoictic niche. Thus, the
composition and organization of the bone matrix can regulate
cell behavior. Although non-collagenous proteins comprise
only 10-15% of the total bone protein content, they perform
essential functions, such as collagen fibril organization,
growth factor binding, regulation of cell-matrix interactions,
and regulation of mineralization.

Among the non-collagen bone proteins, the matricellular
class of glycoproteins plays a prominent role in bone
physiology. Matricellular proteins critical for bone include
periostin, tenascin C, SPARC/osteonectin/BM-40, osteo-
pontin, bone sialoprotein, thrombospondin-1 and
thrombospondin-2 (reviewed in (Alford and Hankenson
2006). Thrombospondin-2 (TSP2) and SPARC are two well
characterized matricellular proteins, and this review will
focus on their function in the skeleton, as it relates to bone
cell differentiation, control of remodeling, and maintenance
of bone mass.

Null mouse skeletal phenotype
The thrombospondin 2-null mouse

All five thrombospondin (TSP) proteins are expressed in
the developing skeleton and by bone cells in vitro (Carron
et al. 1999); however, the skeletal phenotypes of mice
carrying loss-of-function alleles of the TSP genes are
somewhat modest in the absence of remodeling challenges.
While this review will focus on TSP2 primarily, skeletal
phenotypes have been reported in mice with a global
knockout of thrombospondins-1, -3, and -5. TSP1-null mice
show a subtle spinal kyphosis (Crawford et al. 1998), and
craniofacial dysmorphism (Nishiwaki et al. 2006). TSP3-
null mice have minor changes in cortical bone and subtle
abnormalities in growth-cartilage geometry (Hankenson et
al. 2005b). The secondary center of ossification of the
femoral head shows accelerated ossification in the TSP3-
null animals. As expected, more severe skeletal phenotypes
are revealed when compound thrombospondin knockout
mice are analyzed. For example, craniofacial dysmorphism
is more severe in TSP1/TSP2-null mice (Nishiwaki et al.
2006). Further, although single knockouts of TSP1, TSP3,
and TSP5 have subtle growth plate abnormalities, com-
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pound knockout of these genes produces severe chondro-
genic dysplasia (Posey et al. 2008). These results suggest
that a thrombospondin gene ‘dosage’ may influence
skeletal cell phenotype, or that there may be some partial
compensation by TSP genes.

The skeletal phenotype in TSP2-null mice was first
described in 1998 (Kyriakides et al. 1998a). While TSP2-
null mice do not display gross abnormalities in skeletal
development, 4-month-old TSP2-null mice show an in-
crease in femoral cortical bone thickness by histology, and
by peripheral quantitative computed tomography (pqCT).
This phenotype is present in both genders, persists at 6-
months of age, and microcomputed tomography (microCT)
high-resolution imaging shows decreases in both periosteal
and endocortical perimeters, in addition to an increase in
cortical thickness (Fig. 1; (Hankenson et al. 2000). Despite
these alterations in cortical bone phenotype, femoral bones
from TSP2-null mice have mechanical and functional
parameters that are equivalent to those of wild-type
animals. Surprisingly, at the ages examined, there were no
apparent abnormalities in trabecular bone. Although TSP2-
null mice show defects in collagen fibrilogenesis (Kyriakides
et al. 1998a), bone collagen fibril organization and size

TSP2-null WT

TSP2-null WT

Marrow

Periosteum

Endosteum

Fig. 1 TSP2-null bones show increased cortical thickness and
decreased periosteal and endocortical circumference. MicroCT images
adapted from Fig. 1 Hankenson et al. (2000) representing midcortical
three-dimensional reconstructions of representative TSP2-null and
wild-type femurs. Cartoon diagrams represent the outer fiber length
(periosteal radii) and inner fiber length (endocortical radii) in 10°
increments around the centroid plotted as a radar plot (from Fig. 3
Hankenson et al. (2000). Note the increase in cortical thickness and
reduction in endocortical and periosteal circumferences in the cortical
overlays. Reproduced with permission from Hankenson et al. 2000

appear to be within normal limits. The quality of mineral
present in TSP2-null bones has not been thoroughly
analyzed; but it is possible that an absence of TSP2 could
alter mineral content, a phenomenon observed in bone of
other ECM knockout mice, including SPARC (Boskey et al.
2002; Boskey et al. 2003; Ling et al. 2005).

As described previously, alterations in bone mass may
arise as a result of alterations in bone formation by
osteoblasts, or bone resorption by osteoclasts. TSP2-null
mice show an increase in endocortical osteoblast number,
and therefore an increase in mineralizing surface and bone
formation rate, as determined by calcein double labeling of
newly mineralized matrix. This increase in osteoblast
number arises secondary to the presence of an increase in
osteoblast progenitors, as determined by a colony forming
unit-fibroblast (CFU-F) assay. It is interesting to note that in
addition to an increase in CFU-Fs, TSP2-null mice also
display a subtle increase in total marrow cell number, as
determined by counting cell suspensions from entire bone
marrow, and by an alteration in megakaryocyte platelet
function (Kyriakides et al. 2003). These findings suggest
that TSP2 might play an important role in the regulation of
the osteoblast lineage, as well as hematopoiesis.

The SPARC-null mouse

SPARC, also commonly called osteonectin, was first
described in skeletal tissue, and it is the most abundant
non-collagenous extracellular matrix protein in bone
(Kuwata et al. 1985; Termine et al. 1984; Robey et al.
2006). Analysis of the skeletal phenotype of SPARC-null
mice has provided excellent information on the function of
this protein in bone. SPARC-null mice develop profound
low-turnover osteopenia (bone loss) that becomes progres-
sively worse with age (Fig. 2). SPARC-null mice also have
decreased numbers of osteoblasts and osteoclasts, and a
markedly decreased bone-formation rate. Although bone
formation rate is decreased nearly 50% in both trabecular
and cortical compartments, it is interesting to note that
osteopenia is observed primarily in trabecular bone of
SPARC-null mice (Boskey et al. 2003; Delany et al. 2000).
SPARC-null mice have decreased trabecular bone volume
due to decreased trabecular number. Thus, in the trabecular
compartment, bone resorption out paces bone formation,
leading to decreased bone mass in these mice. Others have
described an increase in extra-skeletal adipose deposits in
SPARC-null mice, and increased marrow adiposity in these
animals was also reported recently (Mansergh et al. 2007).
It is possible that multi-potent stromal cells pursue
adipocytic differentiation at the expense of the osteoblasto-
genesis in these mutant mice (Arthur et al. 2009).

In regard to biomechanical properties, a 3-point bending
test shows that cortical bone stiffness peaks in wild-type mice
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Fig. 2 Loss of osteonectin (ON)/
SPARC results in decreased tra-
becular bone. MicroCT analysis
of trabecular bone in vertebrae
from 14 week-old SPARC wild-
type; (+/+), haploinsufficient
(Het:+/-) and null (=/—) mice.
Note differences in bone volume
and microarchitecture in mice
carrying the osteonectin/SPARC-
null allele. Reproduced with
permission from Machado do
Reis et al. 2008

at 17 weeks of age. In contrast, cortical stiffness remains
relatively constant in SPARC-null mice, such that stiffness of
femurs from SPARC-null mice is similar at 11, 17, and
36 weeks of age (Delany et al. 2000). Further, analysis of
bone from SPARC-null mice, using Fourier-transform
infrared (FTIR) microscopy, shows decreased mineral to
matrix ratio, decreased crystalinity, and increased collagen
maturity compared with wild-type bone (Boskey et al. 2003)
(Fig. 3). These data confirm decreased bone formation and
decreased bone remodeling in the mutant mice.

Second harmonic generation (SHG) imaging allows
visualization of collagen matrix secondary structure
(Nadiarnykh et al. 2007). Application of this technique to
bone sections from wild-type and SPARC-null mice demon-
strated appreciable differences in the structure of both cortical

Fig. 3 Fourier-transform infra-
red imaging of cortical bone
from tibia of 11 week old wild-
type and SPARC-null mice.
Mineral to matrix ratio, mineral

crystallinity (1030/1020 ratios), mineral:matrix

and collagen maturity are ratio

shown. The numerical scales

represent the range of intensity

ratios for each parameter. Back-

ground (PMMA embedding

medium) was assigned a value

of zero. Reproduced with per-

mission from Boskey et al. 2003
crystallinity
collagen
maturity
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and trabecular bone (Fig. 4). Brighter SHG signal is associated
with increased amounts of collagen and/or a greater amount
of collagen organization. Bone from SPARC-null mice
generated a more diffuse SHG signal and appeared less
structured. Significant differences in the expression of type I
collagen alpha 1 mRNA were not detected in RNA isolated
from whole bone or from cultured osteoblasts, and the
collagen content of matrix synthesized by wild-type and
SPARC-null osteoblasts in vitro was fairly similar. Together,
these data suggest that wild-type and SPARC-null cells may
have equivalent levels of collagen synthesis, and that
collagen fibrils are less organized in SPARC-null bone.
Finally, in vivo studies demonstrate that SPARC gene
dosage has a dramatic effect on trabecular bone volume
(Fig. 2). MicroCT analysis shows that SPARC haplo-
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Null

e,

7.0
6.0
5.0
4.0

3.0
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Fig. 4 Second harmonic gener-
ation (SHG) imaging of cortical
(top) and trabecular (bottom)
bone from tibia of 11 week old
wild type and SPARC-null mice.
Note brighter SHG signal, asso-
ciated with increased amounts of
collagen and/or a greater amount
of collagen organization, in
wild-type compared with

SPARC-null bone Cortical

Trabecular

insufficient mice (+/—) have significantly decreased trabecu-
lar bone volume, with profound effects on microarchitecture
(Machado do Reis et al. 2008). This finding is important
because haplotypes, consisting of 3 single nucleotide poly-
morphisms (SNPs) in the 3’ untranslated region (UTR) of the
SPARC gene, were associated with bone density in a cohort
of Caucasian men with idiopathic osteoporosis (Delany et al.
2008). The 3° UTR has the potential to regulate gene
expression through modulation of mRNA stability, targeting
and translation. These SNPs within the SPARC 3° UTR
could regulate SPARC synthesis, suggesting that SPARC
levels may vary among individuals.

Indeed, there is decreased synthesis of SPARC in
osteoblasts from patients with osteogenesis imperfecta
(OI) and in several animal models of OI (Fedarko et al.
1992; Fisher et al. 1987; Muriel et al. 1991). It is not known
whether decreased levels of SPARC are a result of the
abnormal bone matrix associated with OI or whether the
decreased SPARC levels contribute to the disease pheno-
type. The association of SPARC 3° UTR haplotypes with
bone mass in a subset of men with idiopathic osteoporosis,
in addition to the phenotype of SPARC-null and haploin-
sufficient mice, supports the idea that appropriate levels of
SPARC play a critical role in regulating bone remodeling
and maintaining bone mass.

WT Null

In vitro mechanistic studies
Thrombospondin-2

Thrombospondin proteins are well-recognized regulators of
both apoptosis and proliferation (Armstrong et al. 1998;
Lawler 2000; Streit et al. 1999). In addition to TSP2-null
mice having more CFU-Fs, the size of the colonies formed
by the CFU-Fs is increased (Hankenson et al. 2000). In
part, CFU-F size reflects post-plating proliferation and
survival of clonally derived cells. TSP2-null MSC, grown
at st passage, show increased proliferation, without any
apparent changes in apoptosis (Hankenson and Bornstein
2002). Indeed, cultures of TSP2-null MSCs have an
increase in the number of cells in S phase of the cell cycle,
as determined by propidium iodide staining and flow
cytometry. Add-back of purified recombinant TSP2
decreases proliferation in a dose-dependent manner, with-
out induction of apoptosis, and temporarily arrests cells in
the GO/G1 phase of the cell cycle. Upon removal of TSP2
from cultures of TSP2-null cells, the cells were able to re-
enter normal cycling. Importantly, the phenotypic profiling
of MSC populations from wild-type and TSP2-null mice by
flow cytometry is similar. Although murine marrow-derived
MSC are frequently contaminated with monocyte lineage
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cells, TSP2-null and wild-type MSC preparations show a
similar percentage of cells expressing Macl surface
antigen, as well as the MSC markers Thyl, CD105, Scal,
and CD44 (Hankenson and Bornstein 2002).

Growth of murine osteoblasts or MSC in medium contain-
ing ascorbic acid and [3-glycerol phosphate induces a well-
characterized osteoblastic differentiation program, ultimately
resulting in the formation of mineralized nodules with
characteristics of woven bone (Malaval et al. 1999). Passaged
cultures of TSP2-null MSCs show a delay in mineralization;
however, they ultimately achieve an end state of mineraliza-
tion similar to that of wild-type cells. This delay in
mineralization is accompanied by a delay in the expression
of osteoblast-associated genes, such as osteocalcin and
collagen type I (Hankenson and Bornstein 2002). It appears
that this delay in mineralization is the result of the absence of
TSP2 in culture, because the knockdown of TSP2, using
siRNA in the osteoblastic cell line MC3T3El, results in
reduced mineralization (Alford et al. 2009). Interestingly, in
this highly proliferative pre-osteoblast cell-line, TSP2 knock-
down does not affect proliferation, thus suggesting that
effects of TSP2 on precursor proliferation and differentiation
are mechanistically independent.

One possible molecular mechanism that could link the
effects of TSP2 on both proliferation and osteoblasto-
genesis is the recently reported regulation of Notch
signaling by TSP2. Meng et al. demonstrated that TSP2
could bind the receptor Notch3 and its ligand Jaggedl
(Meng et al. 2009). Notch signaling is believed to maintain
cells in an undifferentiated state, increasing progenitor
number, and inhibiting osteoblastic differentiation (Hilton
et al. 2008). It is interesting to speculate that TSP2 could
affect MSC dynamics, including osteoblastogenesis, at least
in part, by inhibiting Notch signaling.

SPARC

In vitro study of osteoblasts and MSCs from SPARC-null
mice has also provided data helpful for understanding their
skeletal phenotype. For example, in vitro studies show that
MSC preparations from SPARC-null mice have 10-20%
fewer osteoblastic precursors compared with marrow from
wild type mice. Wild type and SPARC-null cells do not
display significant differences in DNA synthesis, however
our studies were the first to demonstrate that SPARC-null
cells are more sensitive to cell death induced by serum
deprivation. This cell-survival defect could be rescued in
osteoblasts by retroviral gene transfer of a construct
constitutively expressing SPARC, but not by the addition
of recombinant SPARC to the culture medium (Delany et
al. 2003). These data suggest that one mechanism by which
SPARC supports normal bone remodeling is by enhancing
the survival of osteoblasts and stromal cells.
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When SPARC-null osteoblasts are subjected to an in
vitro differentiation protocol similar to that described
previously (Malaval et al. 1999), their expression of early
and mid-differentiation markers, such as osteopontin and
bone sialoprotein, is similar to that of wild type cells.
However, the SPARC-null cells express significantly less
osteocalcin mRNA, a marker of fully mature osteoblasts,
and display decreased formation of mineralized nodules
(Delany et al. 2003). These data suggest that SPARC-null
osteoblasts do not fully mature.

Osteoblasts and adipocytes differentiate from a common
mesenchymal precursor (Arthur et al. 2009). When SPARC-
null osteoblastic cells were grown under conditions favoring
osteoblastogenesis, we consistently observed a higher pro-
portion of cells displaying adipocytic differentiation, as
evidenced by the presence of Oil Red-O-positive lipid
droplets inside the cells. Compared with wild type cells,
SPARC-null osteoblast cultures also have a higher expres-
sion of adipsin mRNA, a marker for mature adipocytes. In
addition, SPARC-null osteoblasts have decreased expression
of A2AFosB (doubly truncated AFosB), an N-terminally
truncated version of the C-terminally truncated splice variant
of FosB (Delany et al. 2003). Increased levels of A2AFosB
enhance osteoblastic differentiation and repress adipogenesis
(Kveiborg et al. 2004; Sabatakos et al. 2008). Further,
SPARC-null osteoblasts have increased expression of the
cell fate regulator, Notchl, and increased Notch signaling
(Kessler and Delany 2007). Notch signaling retains cells
in a less differentiated state and suppresses osteoblast
differentiation (Hilton et al. 2008). Our data suggest that
SPARC-null osteoblasts are less committed to osteoblastic
differentiation and are able to pursue adipogenic differen-
tiation, given the appropriate signals.

In vivo remodeling challenges
Thrombospondin-2

Considering the relatively subtle bone phenotype of TSP2-
null mice and the necessity of challenging mice to unmask
physiologically relevant phenotypes, a variety of approaches
have been used to manipulate the phenotype of TSP2-null
mice, including ovariectomy, skeletal loading and fracture
(Hankenson et al. 2005a, 2006; Taylor et al. 2009). In wild-
type mice, ovariectomy results in a loss of endocortical bone
and an expansion of the periosteal perimeter, due to increases
in endocortical osteoclastogenesis and periosteal osteoblasto-
genesis. However, ovariectomized TSP2-null mice maintain
their normal bone geometry, relative to wild-type mice
(Hankenson et al. 2005a). This alteration in remodeling in
TSP2-null mice occurs for several reasons. First, ovariecto-
mized TSP2-null mice experience an amplified activation of
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the stromal compartment, and a four-fold increase in MSC
number. Second, whereas ovariectomy-induced osteoclast
resorption does occur at the endocortical surface, overall
resorption, as measured by release of the collagen degrada-
tion product NTX, is reduced in mutant mice compared with
the wild-type. Finally, there is a reduction in periosteal
expansion. Whether this reduction is a direct effect of the
TSP2 deficiency in periosteal osteoblasts, or reflects a lack of
a biomechanical need for enhanced periosteum, has not been
established.

The concept of altered periosteal bone formation in TSP2-
null mice is further supported by experiments evaluating the
effects of mechanical loading on bone formation. Mechanical
loading of the tibia has a well-recognized anabolic effect on
periosteal bone formation (Gross et al. 2002). When TSP2-
null mice were challenged daily with tibial loading,
osteoblast activation, demonstrated by the incorporation of
calcein into single labeled-surfaces, was observed. However,
there was an absence of significant periosteal double labeled-
surface, indicating a lack of osteoblast mineral apposition.
Interestingly, there was an increase in endocortical double-
labeled surface, indicating increased bone formation rate on
this surface in the TSP2-null, and this was not observed with
wild-type mice. This reversal in surface responsiveness is
unexpected and supports the concept that there is an increase
in MSC osteoblast progenitors in the endocortical compart-
ment, and that perhaps, similar to observations with
ovariectomy, periosteal osteoblast function might be altered
in TSP2-null mice.

Since TSP2 plays a key role in cutaneous wound healing
(Kyriakides et al. 1998b), TSP2-null mice were challenged
using a tibial fracture bone regeneration model. Bone heals
by both endochondral and intramembranous mechanisms,
and TSP2 is highly expressed in the early mesenchymal
phase of fracture healing (Taylor et al. 2009). TSP2-null
mice showed an altered pattern of healing, with a reduction
in endochondral bone formation and an increase in intra-
membranous bone formation (Taylor et al. 2009) (Fig. 5).
Further investigation demonstrated that relatively early

Fig. 5 TSP2-null mice have a
reduction in cartilage formation

post-fracture, at day 5, TSP2-null MSC have increased
expression of osteoblast-associated genes, but a decrease in
expression of chondrogenic genes. These findings suggest
that the presence of TSP2 may influence the course of
mesenchymal callus progenitors, away from chondrogenic
pathways and toward osteogenesis. Associated with this
phenotype, the fracture callus in TSP2-null mice displayed
an increase in vascularization and a reduction in hypoxia
markers. Thus, the influence of TSP2 on bone regeneration
may occur, in part, through its well-recognized role in
regulating angiogenesis.

SPARC

Parathyroid hormone (PTH) is a potent stimulator of bone
remodeling. When administered in an intermittent manner,
bone formation outpaces bone resorption, resulting in a net
increase in bone mass. Currently, intermittent administra-
tion of PTH peptide 1-34 is the only anabolic therapy
available for patients with severe osteoporosis (Canalis et
al. 2007). When wild-type and SPARC-null mice are
treated with a bone anabolic PTH regimen, the wild-type
mice display a significant increase in whole body bone
mineral density, whereas the SPARC-null mice do not.
Although wild-type and SPARC-null mice demonstrate a
similar osteoblastic response to PTH, bone resorption
parameters are accentuated in PTH-treated SPARC-null
mice. Compared with wild-type mice, the fold increase in
eroded surface in response to PTH treatment is higher in
SPARC-null animals, as is the fold increase in osteoclast
number (Machado do Reis et al. 2008).

PTH treatment of bone marrow cells in vitro results in
the formation of multinucleated osteoclasts, due primarily
to the up-regulation of RANKL (receptor activator of NFkB
ligand) and the down-regulation of the RANKL decoy
receptor, OPG (osteoprotegerin) (Lee and Lorenzo 1999).
Culture of SPARC-null bone marrow cells with PTH
(10 nM) results in the formation of 10-fold more osteoclasts
compared with wild-type marrow cultures. Thus, PTH has a

during fracture healing. Whole
tibias, 10 days post-fracture,
were sectioned in paraffin and
stained with Safranin—-O to
detect cartilage (red color).

a TSP2-null fractures contain
much less cartilage at day 10
than b wild-type fractures.
Reproduced with permission
from Taylor et al. 2009

TSP2-null
MU A
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greater effect on osteoclastogenesis in SPARC-null cells in
vivo and in vitro. Although SPARC-null marrow cells are
not more sensitive to RANKL, PTH-treated SPARC-null
marrow cells did express more RANKL mRNA than PTH
treated wild type cells. However, the overall ratio of
RANKL to OPG mRNA in PTH-treated SPARC-null
cultures is actually lower than that found in corresponding
wild-types, owing to an attenuated decrease in OPG mRNA
in the mutant cells (Machado do Reis et al. 2008). Thus,
whereas increased expression of RANKL in response to
PTH treatment may contribute to the increased osteoclast
formation and activity in SPARC-null mice, it is also likely
that other mechanisms are involved.

SPARC is expressed by some myelo-macrophage cell lines
and by lymphoma cells (Oritani and Kincade 1996). However,
expression of SPARC by osteoclasts has not been reported.
Therefore, the mechanisms by which SPARC limits osteo-
clast formation may involve the direct interaction of
extracellular SPARC with osteoclasts or osteoclast precur-
sors, and/or the effect of SPARC on the phenotype of the
immune cells, marrow stromal cells, and osteoblasts support-
ing osteoclast development (Machado do Reis et al. 2008).

Regulation of thrombospondin-2 and SPARC in skeletal
cells

TSP2

The TSP2 promoter has been well-characterized at the
genomic level (Adolph et al. 1997), but relatively little is
known about mechanisms regulating TSP2 expression.
TSP2 is up-regulated in quiescent cells by growth factor
stimulation (Bornstein et al. 1991; Laherty et al. 1992) and
TSP2 transcript stability is down-regulated by myb (Bein et
al. 1998). TSP2 is highly expressed in the developing
skeleton in both intramembranous and endochondral bone
formation sites (Iruela-Arispe et al. 1993; Kyriakides et al.
1998c). TSP2 is not expressed by hematpoietic lineage
cells, rather it is produced by osteoblast lineage cells
(Hankenson and Bornstein 2002). Nishiwaka et al showed
that TSP2 expression is regulated by the AP1 transcription
factor Fral in bone cells (Nishiwaki et al. 2006). In adult
bone, TSP2 expression levels are relatively low, but
increase remarkably with bone injury (Taylor et al. 2009).
This is consistent with other studies demonstrating an
increase in TSP2 during tissue injury in skin (Kyriakides et
al. 1999), muscle (Krady et al. 2008), and heart (Schroen et
al. 2004). These findings may reflect a role for TSP2 in
regulation of progenitor pool populations.

In vitro, TSP2 gene expression and protein secretion are
up-regulated during osteoblast differentiation (Alford et al.
2009) and TSP2 decreases with adipogenesis (Shitaye et al.
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2005). TSP2 is down-regulated during adipogenesis via a
cAMP-mediated signaling mechanism. However, minimal
promoters that reflect endogenous gene regulation have not
been identified.

SPARC

It is well established that a purine-rich element in the
proximal SPARC promoter, highly conserved among the
mouse, human and bovine genes, is necessary for maximal
promoter activity in osteoblasts (Hafner et al. 1994;
Dominguez et al. 1991). This proximal GGA-rich region
binds SP1/3 in chick embryo fibroblasts and mediates the
down-regulation of SPARC by v-Jun transformation
(Chamboredon et al. 2003). There is evidence for transcrip-
tional induction of the SPARC gene by transforming
growth factor beta-1, glucocorticoids, and retinoic acid,
although specific regulatory motifs have not been identified
(Ng et al. 1989; Wrana et al. 1988). Most recently,
regulation of SPARC transcription by an element in the
third intron, and by promoter hypermethylation have been
described in cancer cells (Li et al. 2007; Yang et al. 2007).
In contrast to data on transcription, fibroblast growth factor
(FGF) 2 is the only growth factor or hormone currently
known to regulate SPARC RNA stability in osteoblasts
(Delany and Canalis 1998).

In the course of examining the regulation of SPARC
expression during the differentiation of osteoblastic cells in
vitro, we and others observed that SPARC mRNA levels
remain relatively constant in both mouse and human cells
(Fig. 6) (Dieudonn et al. 1999; Frank et al. 2002; Kapinas
et al. 2009). Western blot analysis of the cell layer from
cultured mouse calvarial osteoblasts shows accumulation of
SPARC during osteoblastic differentiation, likely in associ-
ation with collagen matrix. However, analysis of 24 hour-
conditioned medium shows that secreted SPARC levels are
highest early in differentiation, but decrease as the cells
acquire more osteoblastic characteristics. This expression
pattern seems appropriate because SPARC regulates colla-
gen fibril assembly, and matrix is abundantly deposited in
the earlier stages of differentiating cultures (Barker et al.
2005; Lian and Stein 1992; Stein and Lian 1993). The
discrepancy between levels of SPARC mRNA and protein
later in osteoblast differentiation suggest regulation at the
level of translation. Importantly, the expression of a set of
microRNAs (miRNAs) known to inhibit SPARC RNA
translation, miR-29a and -29c, are coordinately increased as
SPARC protein levels are decreased (Fig. 6, Kapinas et al.
2009).

Generally, miRNAs are negative regulators of gene
expression that function by interacting with the 3 UTR of
target mRNAs and directing suppression of translation and/
or transcript destabilization (Bartel and Chen 2004; Jing et
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Fig. 6 Reciprocal regulation of miR-29 and SPARC during osteoblast
differentiation in vitro. Fold change in expression of osteonectin (ON)/
SPARC mRNA (green), relative quantity of miR-29a (blue) and -29c
(red), osteonectin (ON)/SPARC protein in the cell layer (black) and 24 h
conditioned medium (pink) in primary mouse calvarial osteoblasts
cultured for up to 3 weeks post-confluence under osteoblast differenti-
ation conditions. Expression levels at confluence (week 0) were used as a
base line. Note that curves for miR-29a and -29¢ are super-imposable.
mean + SEM * = significantly different from week 0, p<0.01. A general
model illustrating the phases of osteoblastic phenotype development
(cell proliferation, extracellular matrix maturation, and mineralization)
was modified from Stein and Lian 1993). Reproduced with permission
from Kapinas et al. 2009

al. 2005; Lewis et al. 2003). Importantly, miRNAs provide
an additional level of regulation that can be rapidly and
reversibly deployed. Such post-transcriptional regulation
may also be more efficient, as RNAs of genes targeted by
miRNAs could be more stable (Bartel and Chen 2004).
This scenario fits well with what is known about SPARC.
The SPARC transcript has a long half-life, >24 h under
conditions of transcription arrest (Delany and Canalis
1998). This finding implies that it would be difficult to
silence SPARC expression rapidly through transcriptional
mechanisms.

The 3 potential binding sites for the miR-29 family of
miRNAs are clustered within the highly conserved proxi-
mal portion of the SPARC 3* UTR, and clustered miRNA
binding sites mediate the most efficient repression of gene
expression (Bartel 2004). Our data suggest that the
miR-29 binding sites play a dominant role in the post-
transcriptional regulation of SPARC in osteoblasts. It is
interesting to note that the region containing the miR-29
binding sites does not contain any SNPs in humans or mice.
It is possible that the regulation mediated by the miR-29
binding sites is critical for appropriate gene expression in

multiple tissues, and alterations in these elements could be
evolutionarily disadvantageous.

Conclusions and future directions

In skeletal progenitors, TSP2 and SPARC may regulate
osteoblastic lineage progression at multiple levels (Fig. 7);
however, their effects seem to be highly contextual. TSP2
appears to play a role in decreasing proliferation, while
SPARC may have a positive role in progenitor cell
expansion. On the other hand, both TSP2 and SPARC
positively influence osteoblast differentiation, while limit-
ing adipogenesis.

While the effects of TSP2 on proliferation and differen-
tiation of MSC appear to be uncoupled, the molecular
mechanisms by which TSP2 regulates the osteoblast
lineage are still not entirely clear. Recent work focused on
Notch signaling has shown that TSP2-null MSC have an
increase in Notch signaling (Shitaye et al. 2009), which
could, in part, account for the increased cell number and
reduced osteoblast differentiation of TSP2-null MSC. It is
also possible that TSP2 could have a direct role in the
process of mineralization. TSP2 is enriched in matrix
vesicles involved in mineralization (Xiao et al. 2007), and

)
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Fig. 7 Model representing the effects of TSP2 and SPARC on marrow
mesenchymal progenitors. In this model it is assumed that TSP2 and
SPARC are present in the marrow environment produced by mesenchy-
mal lineage cells. While SPARC has positive effect on maintaining the
mesenchymal progenitor pool and expansion of the progenitor pool,
TSP2 limits this expansion. Both TSP2 and SPARC promote osteoblasto-
genesis/osteoblast function and decrease adipogenesis
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it is interesting to note that knockdown of TSP2 in murine
osteoblasts results in the altered distribution of other ECM
proteins such as osteocalcin and collagen (Alford et al. 2009).
SPARC is critical for normal bone remodeling, and it
appears to modulate both osteoblasts and osteoclasts. Clearly,
there is still much to be discovered about the function of
SPARC in the skeleton and its mechanisms of action.
Although we know that SPARC gene dosage affects the
bone-anabolic response to PTH, the effect of SPARC on
fracture repair and bone loss due to estrogen deprivation
remains to be determined. Different SPARC expression levels
in humans, mediated by genetic mechanisms, could play a role
in determining the rate of fracture repair or bone loss in post-
menopausal women. Furthermore, SPARC-null mice have
increased osteoclast formation in response to PTH, but the
molecular mechanisms underlying this effect remain largely
undefined (Delany et al. 2000; Machado do Reis et al. 2008).
Osteogenic cells have been implicated as critical
regulators of the hematopoietic stem cell niche, and the
bone marrow from SPARC-null mice has increased T
lymphocytes and decreased B lymphocytes (Lorenzo et al.
2008; Rempel et al. 2007). Since osteoblasts express
abundant amounts of SPARC, it will be important to
determine whether bone-derived SPARC affects T and B
cell lineage progression or hematopoietic stem cell renewal.
The bone matrix, which includes type I collagen, non-
collagen extracellular matrix components and hydroxyapa-
tite, provides a multidimensional environment that supports
the mechanical and metabolic needs of the skeleton. In
addition, bone matrix serves developmental needs of cells
in the bone/marrow organ, including osteoblasts, osteo-
cytes, osteoclasts, MSC and hematopoietic cells (Balduino
et al. 2005; Bi et al. 2005; Haylock and Nilsson 2005;
Pizzo et al. 2005). Proteins that modulate the growth,
function and survival of each cellular component have a
potential to modify the balance between bone formation
and bone resorption. Thrombospondins and SPARC repre-
sent primary non-collagenous constituents of bone matrix
that can affect both arms of this remodeling process, thus
playing a role in regulating bone structure and function.
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