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The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its
role in locomotion. However, the last several decades were focussed on its intriguing
function in theta rhythm generation. Early studies relied on electrical stimulation, lesions
and pharmacological manipulation, and reported an inconclusive picture regarding the
role of the MSDB circuits. Recent studies using more specific methodologies have
started to elucidate the differential role of the MSDB’s specific cell populations in
controlling both theta rhythm and behaviour. In particular, a novel theory is emerging
showing that different MSDB’s cell populations project to different brain regions and
control distinct aspects of behaviour. While the majority of these behaviours involve
movement, increasing evidence suggests that MSDB-related networks govern the
motivational aspect of actions, rather than locomotion per se. Here, we review the
literature that links MSDB, theta activity, and locomotion and propose open questions,
future directions, and methods that could be employed to elucidate the diverse roles of
the MSDB-associated networks.
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INTRODUCTION

Movement, and above all locomotion, is essential for most species’ survival: we move to reach
a specific place, receive a reward, flee from a predator or attack prey. However, while extensive
research has been conducted on brain circuits underlying locomotion (Sinnamon et al., 1987;
Fuhrmann et al., 2015; Howe and Dombeck, 2016; Capelli et al., 2017; Justus et al., 2017; Caggiano
et al., 2018), surprisingly less attention has been paid to the influence that the internal state of
a subject may have on specific motor performances (Mogenson et al., 1980; Ferreira-Pinto et al.,
2018). For example, the intensity at which a movement is performed may arise from a cumulative
integration of individual sensory modalities (Bland and Oddie, 2001) or it may be based on
experience and thus be retrieved from memory. Likewise, the decision to act or not is shaped
by both the external and the internal environment, a combination of external inputs, intrinsic
drive, and visceral homeostasis. This implies that similar motor outputs could result from different
motivations and intentions guided by different brain regions and/or circuits.
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The brain networks underlying the execution and planning
of locomotion are widely spread throughout the central nervous
system: spinal cord, hindbrain, midbrain, basal ganglia, and
cortex (Garcia-Rill, 1986; Jordan et al., 2008; Okada and Okaichi,
2010; Kiehn, 2016). Certain structures are proven to be essential
for locomotion, for example the central pattern generator
in the spinal cord (Sherrington, 1910; Brown, 1914) or the
mesencephalic locomotor region in the brainstem (Douglas et al.,
1993), as their lesions lead to severe impairment in movement
or even immobility. Other regions are actively involved prior
and during locomotion: the motor cortex performs motor
planning (Li et al., 2015), the striatum facilitates voluntary
movement execution (Tang et al., 2007; Cui et al., 2013), and
the cerebellum adjusts the action based on the environmental
changes (Robinson, 1995). Despite the significant amount of
work already conducted to understand the neural basis of
movement and how the signal is transmitted from the neurons
in the central nervous system to the muscles, we still do not
understand “where” the decision to start moving is formed in
the brain. Seminal studies performed in the 70s demonstrated
that electrical stimulation of a great variety of brain regions
can ultimately lead to movement: the Medial Septum and
diagonal Band of Broca (MSDB), the basal forebrain bundle,
the hypothalamic nuclei and the ventral tegmental area (VTA)
are among the most studied circuits (Mogenson et al., 1979,
1980; Parker and Sinnamon, 1983; Sinnamon et al., 1984, 1987;
Lee et al., 1988; Decker et al., 1995). However, as previously
mentioned, an animal can move for different reasons and we
know that the activity of different areas drives specific motivation
to move. The preoptic area is involved in movement linked to
parental, sexual, and maternal behaviour (Noonan and Kristal,
1979; Gorski, 1984; Hull and Dominguez, 2007; Kuroda and
Numan, 2014), the lateral septum (LS) mediates rage and attack
towards conspecifics (Wong et al., 2016), the hypothalamus
plays a role in food seeking behaviour (Qualls-Creekmore et al.,
2017) and the MSDB is mostly linked to navigation (Brandon
et al., 2011; Koenig et al., 2011; Wang et al., 2015), but
also other movement-related behaviours including exploration,
anxiogenic and anxiolytic locomotion (Figure 1). While the
advances in techniques and methods to manipulate and study
neurons have tremendously developed in the last two decades, the
unsupervised sub-second analysis of the behavioural readout has
just recently started to attract the neuroscience field’s attention
(Hausmann et al., 2021).

The MSDB is one of the most interconnected regions of
the brain given its key position in the middle of the basal
forebrain. Among others, it receives inputs from thalamus,
supramammillary nuclei (SUM), VTA, nucleus incertus (NI),
and cerebellum (Ang et al., 2017; Müller and Remy, 2018;
Watson et al., 2019), and projects back to both dorsal and
ventral hippocampus (HPC), cingulate and insular cortex,
hypothalamus, habenula, and VTA (Swanson and Cowan, 1979;
Fuhrmann et al., 2015; Ang et al., 2017). The MSDB has been
considered a central subcortical hub for information processing,
and it has been intensively studied for its high number of
cholinergic neurons. In fact, for several years, MSDB was thought
to comprise only two different kinds of cells: the cholinergic ones,

positive for the choline acetyltransferase (ChAT) enzyme, and
the inhibitory interneurons. Only at the beginning of the 21st
century, a third subpopulation was described: the glutamatergic
neurons that express transcripts for the vesicular glutamate
transporter 2 (VGluT2; Sotty et al., 2003) and do not overlap
with the cholinergic nor the GABAergic populations. MSDB has
been implicated in numerous behaviours related to movement
including cognitive tasks (Colom et al., 2005; Mamad et al.,
2015; Wang et al., 2015; Jacob et al., 2017), locomotor (Bland
and Oddie, 2001; Bland et al., 2007; Fuhrmann et al., 2015;
Justus et al., 2017; Jin et al., 2019), and emotional responses
(Highfield et al., 2000; Khakpai et al., 2013; Knox and Keller,
2016; Jiang et al., 2018). It has also been historically related to
theta rhythm (4–12 Hz), a distinctive oscillatory activity that can
be either recorded in the HPC of anesthetised and immobile
animals (so called type 2 theta), or during locomotor behaviour
(so called type 1 theta) (Kramis et al., 1975). Interestingly,
lesions or pharmacological silencing of MSDB abolish theta
oscillations in the HPC (Lee et al., 1994). A large body of
studies in awake animals proved a link between theta activity and
locomotion and revealed that MSDB silencing not only impacts
the hippocampal theta rhythm, but also reduces the overall
locomotor activity (Lee et al., 1988; Decker et al., 1995; Fraser
et al., 1991). However, the development of more sophisticated
approaches like chemo- and optogenetic manipulations reported
little effect on locomotion following MSDB inhibition (Sweeney
et al., 2017). These conflicting results can be partially explained
by the indistinct and generalised silencing of a brain area in
pharmacological or lesion studies, versus the more accurate and
precise inhibition achieved with modern techniques. Indeed,
optogenetic experiments carried in rodent Cre lines and targeting
specific MSDB’s subpopulations (Fuhrmann et al., 2015; Zhang
et al., 2018) have shown that the observed locomotor output
depends on the activation of the septal glutamatergic neurons.
We here review the literature that links MSDB, theta activity, and
locomotion, with a focus on the overlooked fact that an animal
moves for different reasons and with different motivations. We
list open questions and future directions, as well as methods that
could be employed to elucidate the diverse behavioural roles of
the MSDB-related networks.

EARLY BEHAVIOURAL STUDIES WITH
SEPTAL ELECTRICAL STIMULATION OR
ELECTROLYTIC LESIONS

For decades, electrical stimulation or lesions of the septal area
were the only ways experimenters possessed to understand
the physiological role of this basal forebrain region. Electrical
stimulation of the septal area showed, from the very beginning,
a broad range of effects: in awake animals it produced positive
reinforcement (Olds and Milner, 1954), no reduction of
food intake (Mabry and Peeler, 1968), but reduction of
saline preference (Gentil et al., 1971) and of water intake
(Wishart and Mogenson, 1970). An increase in shaking,
grooming and feeding was observed after stimulation
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FIGURE 1 | Subcortical structures involved in locomotion and in different motivations to move. Key areas in the basal forebrain, hypothalamic, and midbrain
structures have been classically linked to locomotion (for example, POA, LH, VTA, and MSDB) (Mogenson et al., 1979; Sinnamon et al., 1984; Lee et al., 1988;
Sinnamon, 1992; Decker et al., 1995). With the rise of new tools, it was possible to specify the contribution of specific areas on distinct reasons to move: fear
responses are controlled by BLA, LHb, and LH (Tye et al., 2011; Zhang et al., 2018; Barbano et al., 2020); food seeking centres have been found in the LH and ARC
(Krashes et al., 2011; Qualls-Creekmore and Münzberg, 2018); exploration and novelty are mediated by LPO, NAc, and IPN (Hooks and Kalivas, 1995; Molas et al.,
2017; Subramanian et al., 2018); sexual and parental behaviour are mostly related to POA and BNST (Hull and Dominguez, 2007; Kuroda and Numan, 2014;
Klampfl et al., 2016); rage and aggression nuclei include LS, VMHvl, and MeA (Lin et al., 2011; Hong et al., 2014; Wong et al., 2016). POA, Preoptic Area; LH,
Lateral Hypothalamus; VTA, Ventral Tegmental Area; MSDB, Medial Septum and Diagonal Band of Broca; BLA, Basolateral Amygdala; LHb, Lateral Habenula; ARC,
Arcuate Nucleus; LPO, Lateral Preoptic Area; NAc, Nucleus Accumbens; IPN, Interpeduncolar Nucleus; BNST, Bed Nucleus of the Stria Terminalis; LS, Lateral
Septum; VMHvl, Ventromedial Nucleus of the Hypothalamus; MeA, Medial Amygdala. Source icons were used from @biorender.com.

(Altman and Wishart, 1971), as well as an increase in self-
stimulation (Gordon and Johnson, 1981; Cazala et al., 1988),
hyperactivity, and yawning (Wishart et al., 1973). However,
when applying electrical stimulation, it is cumbersome to define
the volume of the affected area and it remains unknown which
brain regions are sending the input or receiving the electrical
output. Furthermore, it remains unclear whether the targeted
area is necessary or just involved in the observed behavioural
process (Vaidya et al., 2019). For these reasons, using lesions
that permanently destroy the area of interest may offer more
relevant information in relation to the studied behaviour than
the electrical activation of the circuit.

The first seminal work describing the behavioural effects
following septal lesions dates back to 1953 (Brady and Nauta,

1953). Building on few previous studies performed in cats
(Spiegel et al., 1940), this rodent based study hypothesised
a role for the septum in emotional and affective behaviour.
Animals with septal lesions showed increased rage and startle
responses when handled by the experimenter or presented with
auditory stimuli (Caplan, 1973). Even innocuous stimuli leading
to exploration in non-lesioned animals were eliciting freezing
or attacks in the lesioned ones. However, while apparently any
stimulus would lead to exaggerated responses, it was reported that
the same animals were less anxious and fearful than the controls
when placed back in the chambers where they were conditioned
with a foot shock prior to the surgery (Caplan, 1973). These
seemingly contradictory results showing both hyperreactivity and
anxiolytic effects after septal lesions promoted a series of other
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studies trying to elucidate the role of the septal area and the
contribution of its subregions to these behavioural paradigms.
In the meantime, an increasing amount of data accumulated
and raised the idea of the so called “septal syndrome,” septal
hyperreactivity or septal hyperemotionality not only in mice
and rats, but also in hamsters, cats, and monkeys (Brady and
Nauta, 1955; King, 1958; Votaw, 1960; Lubar, 1964; McCleary
et al., 1965; Buddington et al., 1967; Sodetz et al., 1967). The
core results appointed the septal circuits as inhibitory networks
suppressing responses to stimuli with a predominant role in
negatively reinforced behaviours. Thus, septal lesions disinhibit
and enhance the animal responsivity to negative events, while
also leading to a lack of response suppression in avoidance
tasks (Caplan, 1973). It is, however, important to note that the
results obtained in the abovementioned experiments resulted
from a general lesion of the basal forebrain with no specificity
for the MSDB or LS, and included also the bed nucleus of
the stria terminalis. When lesions were targeted to the MSDB
only, it became evident that the major role in the septal
syndrome was played by the LS, with a minor contribution
of the MSDB in enhancing the aggressive behaviour and the
animal’s emotionality (Poplawsky and Johnson, 1973; Albert and
Richmond, 1975; Albert and Chew, 1980; Lee et al., 1988). These
data were confirmed in a more recent study showing that LS
GABAergic projections to the ventromedial hypothalamus are
necessary to suppress male aggression in mice. When the same
projections are inhibited, the number of attacks to both males
and females increased and a “septal rage” behaviour was reported
(Wong et al., 2016).

A different picture arose when focussing on lesions of the
MSDB specifically: MSDB disruption resulted in submissive
behaviour with conspecifics (Poplawsky and Johnson, 1973),
decreased horizontal and vertical movements when measuring
exploratory and locomotor behaviour (Lee et al., 1988) slower rate
of habituation (Decker et al., 1992), deficits in spatial tasks (Fraser
et al., 1991), decreased spatial discrimination and increased time
in the open arm of the elevated plus maze (Decker et al., 1995).
If some of these effects (deficits in exploration, locomotion, and
habituation) were expected in light of the strong projections
of the MSDB to the HPC formation and their involvement in
navigation and memory (Pang et al., 2011; Mamad et al., 2015;
Hinman et al., 2018); other results like the submissive behaviour
and the anxiolytic effect are less easy to interpret. Moreover,
several studies report impaired exploratory and locomotor skills
of MSDB-lesioned animals only in the first post-operative trial,
showing a slower but constant increase in performances over
days until the point of being not significantly different from
controls (for example in Myhrer, 1989). Possible explanations
behind these phenomena can be identified in increased anxiety
of MSDB-lesioned animals when exposed to novel environments
(neophobia), deficits in sensory information processing and/or
in short- and long-term memory (thus inability to recognise
a novel environment and explore it), fastest stimulus satiation
or increased inertia. Overall, early investigations of the MSDB
highlighted a very close relationship between this brain area
and locomotion. Nevertheless, it remained unclear what was the
exact contribution of the MSDB in driving and/or modulating

movement-related responses. Relevant to the interpretation of
these findings is the fact that all reported studies were performed
in rats and not in mice. Compared to mice, rats are predator
and not prays, they show more prominent social interactions
and more advanced cognitive processing allowing them to
solve complex tasks (Scott, 1966). They also differ in terms of
genetic background, gene expression, and ion channels, making
it cumbersome to compare the behavioural effects of MSDB
manipulation between the two species (Bonthuis et al., 2010;
Hok et al., 2016). In addition, these studies used electrolytic
lesions of the septal area, meaning that not only the somata,
but also the axonal fibres crossing the region, were affected.
Moreover, permanent lesions of a brain area may lead to
reorganisation of the system and changes in the homeostatic
activity of the network, thus the timing (immediate vs weeks or
months after the lesions) at which the studies were conducted are
relevant to properly interpret the lesions’ effect on the underlying
behavioural output.

PHARMACOLOGICAL MANIPULATION
OF THE MSDB

From the beginning of the 80s pharmacology emerged as a new
tool to silence specific brain areas. Agonists and antagonists
of ion channels and receptors became a widely used means to
investigate the effects of blocking specific neurotransmitters and
allowed the silencing of areas with only small effects on the
en passant fibre tracts. Indeed, muscimol infusion only blocks
cell bodies, while local anaesthetics and tetrodotoxin can also
block the passing fibres (Martin and Ghez, 1999). The latter can
affect projecting axons originating from cortical and forebrain
structures. Those projections take part in the information
flow from the MSDB through three different pathways: to the
hippocampus via the dorsal fornix fimbria; to the habenular
nuclei through the stria medullaris; and via the medial forebrain
bundle running ventral into the thalamic and hypothalamic
regions, crossing the midbrain and reaching the brainstem
(Meibach and Siegel, 1977).

Muscimol (GABA A agonist) and lidocaine (Na+ channels
blocker) were used to temporarily silence or reduce the activity
in the targeted brain region through two opposite mechanisms:
increasing inhibitory interneuron activity through disinhibition
and reducing action potential firing probability, respectively.
When applied in the MSDB, the most striking effect on the
animal’s behaviour was the impairment in tasks requiring
memory and navigation (Chrobak et al., 1989; Nagahara and
McGaugh, 1992; Walsh et al., 1998), confirming the crucial
importance of septal projections to the HPC formation. MSDB
inhibition via lidocaine seemed not to affect the running
speed (Koenig et al., 2011), but to reduce anxiety and
increase open arm exploration in a plus maze (Lamprea et al.,
2010). Muscimol infusions resulted in more diversified and
sometimes contradictory behaviours. Upon muscimol infusion,
mice displayed both increased arousal and locomotor activity
(Osborne, 1994), or slightly decreased running speed (Wang
et al., 2015) or even no effect on locomotion (Brandon et al., 2011)
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depending on the experimental conditions. Indeed, muscimol
leads to the specific excitation of GABAergic neurons in the
MSDB; this, in turn, could lead to the activation of different
pathways related to either arousal (Wu et al., 2002), nociception
(Ang et al., 2015), anxiety (Vickstrom et al., 2020), or reward-
seeking behaviour, as demonstrated by an increase of lever presses
for muscimol self-administration (Gavello-Baudy et al., 2008).
Thus, it is not surprising that the use of this drug leads to a diverse
repertoire of behavioural outcomes.

Alongside muscimol and lidocaine, a wide variety of other
manipulation approaches have also been studied in relation
to MSDB and locomotion. For example, infusion of histamine
or pyrilamine increased locomotion (Zarrindast et al., 2006),
depletion of the relaxin-family peptide-3 receptor (RXFP3)
impaired spatial strategy search (Haidar et al., 2019), the
neurokinin 1 receptor (NK1R) facilitated exploratory behaviour
(Ng et al., 2020), while CaV3.1 (T-type voltage gated calcium
channel) knock down increased exploration of an object
(Jung et al., 2019). Moreover, MK 801 and ketamine lead to
hyperlocomotion (Ma and Leung, 2007), while a somatostatin-
sensitive mechanism facilitated inactivity periods in open field
(Ng et al., 2020). A recent study applied the cooling of MSDB
as an alternative and complementary tool to pharmacology
in order to investigate the overall effect of the MSDB circuit
inhibition. The authors showed a reduction of theta rhythm
upon cooling as well as an increase in number of choice
errors in a spatial navigation task (Petersen and Buzsáki, 2020).
While these results are valuable to investigate the general
aspects of MSDB circuit function and neuromodulation, the
specific contribution of the distinct cell types within the MSDB
was not investigated until the development of Cre-dependent
manipulation in transgenic mouse lines.

CELL TYPE SPECIFIC MANIPULATIONS
OF THE MSDB

The first studies using Cre lines focussed on the impact
of cholinergic (ACh) and GABAergic septal neurons on
animal behaviour.

Choline acetyltransferase (ChAT)-Cre transgenic mice have
been considered the gold standard for ACh neurons targeting.
Chemogenetic silencing of these neurons in the MSDB alleviates
pain induced anxiety (Jiang et al., 2018) and produces a general
anxiolytic effect corroborated by an increase in distance travelled
in the open field test and higher open arms entrances in
the elevated plus maze test (Zhang et al., 2017). Thus, ACh
MSDB transmission seems to promote anxiety possibly through
its projections to the ventral HPC and the prefrontal cortex
(Adhikari et al., 2010; Mikulovic et al., 2018). This finding
could partially reconcile the reduced locomotor activity and
anxiety-like behaviour described by some early lesions studies
(Caplan, 1973), while reproducing the increased time in the
open arm and exploratory behaviour shown in others (Decker
et al., 1992). We could speculate that non-specific lesions could
differentially affect ACh transmission and projections outside the
MSDB, thus eliciting opposite kinds of behaviours. Chemogenetic

activation of ChAT positive cells in MSDB reduces frequency
of theta oscillations in the entorhinal cortex and gives rise to
the sense of novelty and anxiety by increasing the time of
immobility and avoidance of the centre (Carpenter et al., 2017).
In line with these observations, several studies (Adhikari et al.,
2010, 2011; Mikulovic et al., 2018) have shown that anxiety-
related behaviour induces slower theta rhythm, resembling the
cholinergic-dependent type 2 theta, particularly in the ventral
HPC. Interestingly, depending on the context, type 2 theta may
underlie anxiogenic or anxiolytic behaviour. For example, in
open field or elevated plus maze anxiety-related tests (Adhikari
et al., 2010, 2011) cholinergic-dependent type 2 theta relates to
the increased anxiety and reduction in locomotion. Differentially,
in a predator odour test (Mikulovic et al., 2018), type 2 theta
underlies increased risk-taking behaviour and locomotion. These
results indicate that the behavioural effect of the type 2 theta
might depend on the arousal level, commonly related to the
acetylcholine levels (Pepeu and Giovannini, 2004).

GABAergic neurons comprise a wide variety of cell types
expressing different proteins such as parvalbumin (PV),
somatostatin (SST), or calretinin. Specific modulation of
GABAergic neurons through Gad65-Cre, Gad67-Cre, PV-Cre, or
SST-Cre lines elucidated the role of interneurons in the MSDB
network showing how different projection targets give rise to
different behaviours. GABAergic MSDB neurons densely project
to the HPC formation and are strictly linked to theta generation
not only during movement, but also during rest and sleep.
Manipulation of the GABAergic septal-hippocampal network
has an impact on memory discrimination (Salib et al., 2019) and
sequential learning (Dwyer et al., 2007) most probably due to the
disruption of internally generated theta oscillations. Activation
of these neurons during rapid-eye-movement (REM) phases also
affects spatial and contextual memory consolidation in mice
(Boyce et al., 2016). On the other hand, activation of MSDB
interneurons was reported to increase object exploration in
awake animals and type 2 theta rhythm in anaesthetised animals,
without affecting open field exploration (Gangadharan et al.,
2016). PV+ cells in the MSDB overlap with the population of
the hyperpolarization-activated cyclic nucleotide-gated (HCN)
channel expressing neurons and present pacemaker activity
responsible for theta entrainment in the MSDB (Varga et al.,
2008). SST neurons instead comprise a small population of basal
forebrain neurons, which in the MSDB appear to be responsible
for spatial working memory. When photo-inhibited, they do
not affect the animal speed but instead disrupt the alternation
index in a Y maze test (Espinosa et al., 2019). Finally, little is
known about MSDB interneurons’ input and output connectivity
outside the MSDB and HPC formation, but it has been shown
that GABAergic transmission to the MHb is sufficient to entrain
the local circuit firing (Choi et al., 2016) and seems to mediate an
anxiogenic and depressive state of the animal modulated by the
endocannabinoid signalling (Vickstrom et al., 2020).

Glutamatergic (VGluT2+) neurons were only recently
described as part of the MSDB circuit. They are mostly located
in the septum midline and in the diagonal band of Broca,
and they are highly interconnected (Manseau et al., 2005).
While the majority of the early studies (Manns et al., 2001;
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Hajszan et al., 2004; Colom et al., 2005) had focussed on their
electrophysiological and molecular characteristics, several recent
studies tried to elucidate the involvement of this cell type in
behaviour. Optogenetic stimulation of these neurons leads to
entraining of theta oscillations in the HPC (Robinson et al.,
2016), locomotor activity (Fuhrmann et al., 2015), and appetite
suppression (Sweeney et al., 2017). In particular, this is the only
cell type in MSDB whose activation leads to nearly instantaneous
locomotion that lasts for several seconds following the stimulus
offset (Fuhrmann et al., 2015). It has been recently shown
(Korvasová et al., 2021) that the locomotor effect that ensues
upon MSDB VGluT2+ cell stimulation does not require theta
oscillations, nor relies upon local MSDB connectivity, given that
locomotion effect persists even when the synaptic connectivity
in MSDB is completely blocked. Furthermore, the persistent
locomotion is linked to intrinsically generated persistent firing of
the MSDB VGluT2+ neurons.

Tracing studies (Fuhrmann et al., 2015; Agostinelli et al.,
2017; Zhang et al., 2018) have shown that MSDB VGluT2+

neurons project to different brain areas: the HPC, the LHb,
POA, the paraventricular (PVH), lateral (LH), and posterior (PH)
hypothalamic nuclei, the SUM, the VTA, the NI, and the raphe
nucleus. Interestingly, manipulation of glutamatergic projections
in each of these target areas exerted a different effect. In the
LHb it caused place aversion without affecting the locomotor
activity (Zhang et al., 2018) that seemed to be mediated by
POA projections (Zhang et al., 2018). MSDB inputs to LH have
been involved in arousal: their optogenetic activation promotes
wakefulness and theta power, while their silencing increased
NREM sleep (Manseau et al., 2005). This network seems to be
also related to reinforcement and motivation through MSDB
inputs to the VTA. When self-stimulating these projections,
the animals will increase lever pressing and this action in turn
increases nucleus accumbens (NAc) DA release (Kesner et al.,
2020), classically associated to rewarding mechanisms.

Overall, it seems clear that MSDB cell types and their faceted
projections exert a quite broad effect on animal behaviour. ChAT
neurons are strongly projecting to the vHPC and are involved
in anxiogenic and anxiolytic responses. They may play a role
in guiding an animal’s action based on its internal state, thus
modifying locomotor responses based on possible threatening
stimuli present in the environment (Mikulovic et al., 2018).
GABAergic septal interneurons, on the other side, are highly
interconnected inside the MSDB and with the HPC formation
(Freund and Antal, 1988; Gonzalez-Sulser et al., 2014; Salib
et al., 2019; Schlesiger et al., 2021), for this reason they play
a major role in pace making activity and theta generation. To
our knowledge, they do not send dense projections to other
cortical or subcortical regions apart from the HPC formation
and some related structures like the retrosplenial cortex (Unal
et al., 2015) and their role in behaviour has not been deeply
investigated so far. These interneurons appear to be active in
aversive conditions as for example nociception, anxiety and
depressive states, or in promoting arousal, that can be linked to
an increase in alert and awareness for the animal to be ready to
react. Finally, VGluT2+ neurons are the group of MSDB cells
more strongly related to movement. Their optogenetic activation

induces locomotion and reinforcement effects. Depending on
their output region they may mediate place aversion (as for
example when activating the LHb), purely locomotion (as for
POA projections) or wakefulness (through their inputs to LH).
Their role in behaviour is still under investigation but the data
collected so far allow speculating for a key involvement of these
neurons in action initiation. The fact that their stimulation on
the somata or on the projections increase the overall arousal of
the animals and leads them to move, shows the VGluT2+ MSDB
neurons as possible candidates to mediate “fast” responses to the
context the animal is in, as opposed to the LS mediated responses
that appear to require more time as they must integrate more
diversified inputs (Wirtshafter and Wilson, 2021).

How these three cell populations interact, and how their
cross-talk can influence an animals’ behaviour is still an open
question. However, several studies have focussed on their
interplay associated with the generation and modulation of theta
rhythm, locally and in target structures of the MSDB.

MSDB, THETA ACTIVITY, AND
LOCOMOTION PLANNING

While initially studied in relation to locomotion, MSDB has been
in the last five decades mostly investigated in relation to theta
oscillations in the HPC, as MSDB lesions or pharmacological
inactivation abolished theta rhythm (Petsche and Stumpf, 1960;
Petsche et al., 1962; Donovick, 1968; Gray, 1971; Kramis et al.,
1975; Andersen et al., 1979; Buzsáki et al., 1986; Kocsis et al., 1999;
Brandon et al., 2011; Koenig et al., 2011; Müller and Remy, 2018;
Zutshi et al., 2018). However, a long-standing question is how
these functions are associated and act together in the generation
of behavior. Early studies (Yoshii et al., 1966; Vanderwolf, 1968)
have shown that theta oscillations can be recorded in the HPC
during voluntary motor behaviour such as walking, running,
jumping, rearing, swimming, and digging, the so called type
1 behaviours (Pickenhain and Klingberg, 1967; Vanderwolf,
1968; Whishaw and Schallert, 1977). In contrast, during motor
behaviours such as chewing, licking, grooming, and shivering,
theta rhythm is absent and a large-amplitude irregular field
activity (LIA) is recorded in the HPC. These behaviours are called
type 2 or automatic behaviours (Vanderwolf, 1968; Sainsbury,
1970). Theta frequency was reported to increase as a function
of speed (Bland and Vanderwolf, 1972; Hinman et al., 2011,
2016; Gupta et al., 2012; Winter et al., 2015), while more recent
observation in rats reported mostly correlation with acceleration
(Kropff et al., 2021). Theta amplitude correlates with the vigour
(e.g., theta amplitude during a run or jump is higher than during
a walk) (Whishaw and Vanderwolf, 1973). Significant body of
evidence suggests that different types of theta rhythms in the
HPC, driven by different MSDB inputs (cholinergic, GABAergic
or glutamatergic), accompany different types of movement-
related behaviours. The so-called type 1 theta, characterised
by a higher oscillatory frequency (8–12 Hz), accompanies
type 1 behaviours and it is controlled by the glutamatergic
MSDB neurons (Fuhrmann et al., 2015). MSDB VGluT2+

neurons fire mostly tonically during theta oscillations and their
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optogenetic stimulation drives theta activity and locomotion
speed in a frequency dependent manner (Fuhrmann et al.,
2015). Differently, a small subset of MSDB GABAergic neurons
expressing PV display highly rhythmical discharge, phase locked
to the ongoing theta oscillations (Kocsis et al., 2021) and their
optogenetic activation controls the oscillatory frequency outside
the endogenous theta range and does not affect locomotion
(Zutshi et al., 2018). Those neurons are thus commonly referred
to be the pacemakers of theta activity (Zutshi et al., 2018; Kocsis
et al., 2021). The less explored type of theta oscillations is
type 2 theta, proven to be dependent on the cholinergic MSDB
system. This rhythm has been mostly observed in immobile
animals that are in a sensory processing mode (Kramis et al.,
1975; Kramis and Routtenberg, 1977; Bland et al., 1984). Several
stimuli were reported to induce type 2 theta, including olfactory,
visual, auditory, and tactile stimulation. Type 2 theta appearance
habituates following the repeated representation of the stimulus
(Sainsbury and Montoya, 1984) and it has been proposed
to code for the movement that follows. Brian Bland, one of
the pioneers on the studies of type 2 theta activity, has put
forward the theoretical framework that this rhythm plays a
major role in “sensorimotor integration” (Bland et al., 1984;
Bland, 1986). This hypothesis is centred around the idea that the
circuitry underlying theta rhythmogenesis continuously provides
the updated information about the changing environmental
conditions to the voluntary motor system. In other words,
animals are permanently exposed to a number of sensory stimuli
in the environment of which some are relevant for the survival,
while others can be ignored. This implies that neural systems that
process the sensory information must recruit appropriate motor
responses in order to make the appropriate final decision.

One study (Oddie et al., 1997) has tested this hypothesis in
a very interesting way. In their paradigm, Oddie et al. (1997)
investigated a pair of hungry rats fighting for a piece of food.
The eating rat was called “victim,” while the rat attempting to
steal the food was named “robber.” Robber’s action was regarded
as the eliciting stimulus, while dodging—the lateral evasive
movement by the victim rat, was the measured behavioural
response. The authors hypothesised that the decision to dodge
requires considerable sensory integration and planning—robber’s
location and approach, the size of the food, and the eating time.
Thus, if the type 2 theta underlies the selection of an upcoming
motor response, this rhythm should occur prior to the dodge
initiation and infusion of atropine, a cholinergic antagonist,
should disturb the dodging behaviour. Motor abnormalities—
a “collapsed” eating posture and the inability to hold the food
between the forelimbs—was reported in the first 5–10 min after
atropine application. Prior to the animals’ dodging, the frequency
of the recorded theta rhythm increased, while the infusion of
atropine in the victim’s MSDB completely abolished theta activity
during the robber’s s attempts to steal the food and affected
its success in protecting it. Interestingly, once the robber had
stolen the food from the victim, the victim was capable to
engage as a robber in an attempt to retrieve his food back.
The authors conclude that, as the effect seems to be specific to
dodging, it is rather not motivational. However, if the motor
planning was affected in general, it is not intuitive to expect that

the victims would take the role of a robber without displaying
locomotion impairments. In our opinion, type 2 theta, and thus
the cholinergic system of MSDB relate to locomotion planning
only of specific valence, allowing the victim to act once the robber
steals its food, but not to protect it from the theft. In this view,
it seems that atropine reduce the victim’s capability to predict
the robber’s action, but did not impair its ability to act after the
robbery occurred. Thus, it appears that this system is not linked
with locomotion in general but with the specific motivation of
an animal to move.

Furthermore, if type 2 theta codes the future movement
planning, one would expect its presence also during locomotion,
not solely during immobility. While Brian Bland has been
postulating for years that type 1 and type 2 theta appear
coincidentally (Bland and Oddie, 2001), the experimental
evidence for it was lacking for a considerable amount of time.
One recent study (Mikulovic et al., 2018) has shown that type
2 theta can originate in the ventral HPC. Indeed, ventral HPC
receives strong cholinergic input from MSDB and is involved
in emotional information processing, in contrast to its dorsal
counterpart, known for its role in navigation and cognition
(Strange et al., 2014). When animals are taking risks in an anxiety
predator-odour test, type 2 theta co-exists with type 1-theta in
the ventral HPC. These results additionally support our views
that type 2 theta code for locomotion of specific valence. Several
other studies support this hypothesis. In an early study (Whishaw
and Vanderwolf, 1973), the authors have shown that in a jump
avoidance test, where a rat learns to jump to avoid an electrical
shock, the recorded theta activity, supposed to correspond to
the type 2 theta rhythm, predicts the height of the jump. This
study was replicated by Bland et al. (2006) while another study
(Balleine and Curthoys, 1991) (discussed in Bland et al., 2007)
added an interesting twist to this paradigm. They investigated
three different conditions: escapable shock, non-escapable shock
and no shock. The rats were trained to each of the condition on
the first day and 24 h later tested, while the oscillatory activity
was recorded prior to the shock. Interestingly, while escapable
and no shock rats generated theta oscillations during immobility,
LIA was recorded in the HPC of the inescapable rats. All this
indicates that theta rhythm and the underlying MSDB circuit
function as a readout for different movements and internal state
of the subject. This information is subsequently transferred to
the specific region that receives MSDB inputs, leading to a
specific motivation to move (Figure 2). One brain region that
is anatomically and functionally close and thus acts in synergy
with MSDB is the LS.

SYNERGY BETWEEN MSDB AND LS

As discussed above, for a long time the septal area was studied
as a whole, without paying attention to the different roles played
by its medial and lateral part. Over the years, several evidences
pointed to the separate, but synergistic effects mediated by these
two brain regions. The MSDB, placed in the middle of the basal
forebrain, receives inputs from other subcortical nuclei involved
in oscillatory activity such as the SUM, LH, NI, and Raphe
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FIGURE 2 | Cell-type specific connectivity of the MSDB. MSDB ChAT, VGluT2, and GABA neurons project to different brain regions and differently contribute to
specific behaviours. Green arrows: VGluT2 projections; Blue arrows: GABAergic projections; Orange arrows: ChAT projections; Gray arrow: polysynaptic input; Black
arrows: unspecified neurotransmitter; Dashed arrow: unknown physiological role of the projection. ChAT, Choline acetyltransferase; VGluT2, Vesicular Glutamate
Transporter 2; GABA, Gamma aminobutyric acid; EC, Entorhinal Cortex; OB, Olfactory Bulb; ACC, Anterior Cingulate Cortex; MHb, Medial Habenula; LHb, Lateral
Habenula; PVH, Posterior Ventral Hypothalamic nucleus; POA, Preoptic Area; LH, Lateral Hypothalamus; VTA, Ventral Tegmental Area; NI, Nucleus Incertus; SUM,
Supramammillary Nucleus; LS, Lateral Septum; Hippocampus, HPC.

nucleus (Raisman, 1966; Swanson and Cowan, 1979; Ang et al.,
2017). They modulate MSDB activity and play a role in the
generation or suppression of theta oscillations in the HPC. The
LS is also displaying neuronal firing coupled to the theta rhythm
(Korotkova et al., 2018). While the MSDB is the major input
source to the HPC, LS is one of its most relevant subcortical
outputs. Speed-dependent activity has been related to all of these
areas with a major difference: MSDB possess pacemaker cells that
drive HPC theta even prior to movement initiation (Fuhrmann
et al., 2015), while LS theta-locked firing depends on HPC activity
(Bender et al., 2015), raising the possibility of a tripartite circuit.
In this view, MSDB activation drives HPC oscillations that, in
turn, sends the information to the LS about the ongoing motor
activity. A recent review on the LS places this structure as a
nexus for mood, motivation and movement, postulating its key
role in evaluating changes in valence as the result of an animal

action (Wirtshafter and Wilson, 2021). This will allow the animal
to update its decision whether to act or not depending on
the external, context-dependent inputs coming from the HPC
and on its internal motivation computed in the LS, based on
information flowing from the VTA and other limbic structures.
However, also the MSDB has been described as a key element
responsible for movement related activity [as MSDB VGluT2+

neurons are sufficient to initiate locomotion (Fuhrmann et al.,
2015)], motivation [given the increase in self-stimulation of the
animals when activating the MSDB (Cazala et al., 1998; Gavello-
Baudy et al., 2008)], and mood [see the anxiolytic and anxiogenic
effects described after MSDB manipulation (Adhikari et al., 2011;
Jiang et al., 2018; Mikulovic et al., 2018)]. It is not surprising
that these two regions, given the close anatomical connection
and the similar physiological role, also share common effects.
The major difference can be found in their connectivity and
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their cell population. The MSDB intensively projects to the HPC
driving theta and sending speed-related information to the whole
HPC formation [and possibly sending collaterals to the LS too
(Tsanov, 2018)]. It is also highly connected with key structures
involved in the animal’s survival (hypothalamic, midbrain, and
brainstem regions) and, given its position on the path of
the medial forebrain bundle, is closely linked to locomotion
(Sinnamon et al., 1984). Moreover, MSDB contains excitatory
and modulatory cell types (ChAT and VGluT2) while the LS is
mostly comprised of GABAergic interneurons. Undoubtedly, LS
has historically been more connected to mood, being involved in
the so called septal rage and given the dense projections to the
VTA and other areas linked to reward and motivation. Taken
together, these observations allow to speculate about a highly
interconnected circuit linking MSDB, HPC, and LS involved
in movement, speed regulation, and motivation. However, to
fully understand this circuit, future studies should explore the
directions of the interconnectivity between MSDB and LS, as well
as its physiological role.

FUTURE DIRECTIONS AND OPEN
QUESTIONS

We here reviewed the work that has been done so far to
disentangle the role of the MSDB cell populations and their
projections in relation to locomotion. The rather recent discovery
of the VGluT2+ population in the MSDB and the yet little work
that has been conducted in studying MSDB inputs outside the
HPC formation, opens up a large number of questions. What
is the role of the GABAergic projections outside the septum?
How do VGluT2+ neurons drive locomotion? What is the
intra-septal connectivity and how do the different population
interact with each other? Do more specific cell-types exist among
the previously genetically-defined MSDB neurons? What is the
relationship between MSDB and LS during behaviour? And what
is the physiological role of the MSDB during locomotion in light
of the recent findings?

To answer these questions novel tools and techniques have
been developed. On one hand, the study of behavioural correlates
linked to neural activity is giving previously unimaginable
insights. The possibility to look with sub-second resolution at
communities and transitions between different behavioral states
allows to correlate single cell firing and oscillations to the animals’
action with an unprecedented time resolution (Hong et al., 2015;
Wei and Kording, 2018; Luxem et al., 2020; Dunn et al., 2021;
Hausmann et al., 2021). Moreover, unsupervised approaches
based on machine learning algorithms to score behaviour
are replacing manual scoring, which is intrinsically prone to
subjective biases and therefore produces results that are hard
to compare between studies. On the other hand, development
of new genetic tools like faster calcium indicators [jGCaMP8
(Zhang et al., 2020)], more specific opsins to control excitation
and inhibition [Opn3 (Mahn et al., 2021), BiPOLES (Vierock
et al., 2020)], and novel proteins to detect neuromodulator
activity [dLight (Patriarchi et al., 2018), iAChSnFR (Borden et al.,
2020), GRABNE (Feng et al., 2019)], allow to study neuronal

dynamics and manipulate cell-type specific neurons with a higher
temporal and spatial resolution. Finally, further developments in
technologies like freely moving and wireless miniscopes (Aharoni
et al., 2019), GRIN lenses and post hoc recovery of imaged
neurons (Xu et al., 2020), are now giving access to studies that
were a technological challenge some decades ago.

Employing all these newly available tools to answer the
questions above will shed a novel light on the role of MSDB in
a behaviour-specific manner.

CONCLUSION

Medial Septum and diagonal Band of Broca has received
substantial attention from the field, mainly due to the fact
that its lesion or inhibition leads to the abolishment of theta
rhythm in the HPC. While early studies emphasised the role
of MSDB in locomotion, this aspect of its function has been
somewhat neglected in the last years or solely indirectly studied
in relation to the theta rhythm. In this review, we have
discussed the role of MSDB circuit manipulation, focussing on
locomotion as a behavioural readout. We argue that, although
the vast manipulation of MSDB circuits leads to an effect
on locomotion-related behaviour, the motivation for this type
of movements can be very diverse (Figure 1). For example,
cholinergic neurons in MSDB are mainly involved in anxiety-
related locomotion and action valence, GABAergic neurons seem
to regulate aversive behaviours, while glutamatergic neurons are
the only ones whose activation leads to an immediate motor
response. As these three different cell populations project to
different brain regions with very diverse functions (Figure 2),
we suggest that future studies should rely on novel technologies
as well as computational tools to disentangle specific MSDB
cell types role in relation to their projection patterns and their
behavioural relevance.
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