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Abstract: Most of the protein–protein docking methods treat proteins as almost rigid objects. Only
the side-chains flexibility is usually taken into account. The few approaches enabling docking with a
flexible backbone typically work in two steps, in which the search for protein–protein orientations
and structure flexibility are simulated separately. In this work, we propose a new straightforward
approach for docking sampling. It consists of a single simulation step during which a protein
undergoes large-scale backbone rearrangements, rotations, and translations. Simultaneously, the
other protein exhibits small backbone fluctuations. Such extensive sampling was possible using the
CABS coarse-grained protein model and Replica Exchange Monte Carlo dynamics at a reasonable
computational cost. In our proof-of-concept simulations of 62 protein–protein complexes, we obtained
acceptable quality models for a significant number of cases.

Keywords: protein–protein interactions; protein–protein binding; protein–protein complex; coarse-
grained modeling; multiscale modeling

1. Introduction

Protein–protein interactions are fundamental in many biological processes. Their
structural characterization is one of the biggest challenges of computational biology. A
variety of docking methods are currently available for structure prediction of protein–
protein complexes [1,2]. They can be divided into free (global) and template-based docking.
Free (global) docking methods are designed to generate many distinct binding configura-
tions. Template-based methods restrict docking to a binding mode found in a structural
template. As demonstrated in the blind docking challenge, Critical Assessment of Pre-
diction of Interactions (CAPRI), template-based methods generate more accurate results
but only if a good quality template exists [1–5]. In some cases lacking useful templates,
free global docking can yield acceptable results. According to recent estimates, the best
free docking methods find adequate models among the top 10 predictions for around 40%
of the targets [1]. The CAPRI analysis also indicates that protein backbone flexibility is a
big challenge; protein complexes that undergo substantial conformational changes upon
docking get no successful predictions from any method [3–5].

Presently, most of the free docking methods treat the backbone of input protein struc-
tures as rigid. This approximation reduces the protein–protein docking problem to a 6D
(three rotational and three translational degrees of freedom) search space. Rigid-body
search for the binding site most often rely on the Fast Fourier Transform [6–8]. Other
successful approaches include 3D Zernike descriptor-based docking [9,10] or geometric
hashing [11]. These rigid-body methods are often used as a first docking step, followed
by scoring [12–16], using experimental data [17] and/or structural refinement to capture
backbone flexibility [5,18]. Molecular Dynamics is perhaps the most common refinement
strategy, either in classic or enhanced sampling versions [17,19–22]. Other tools use ro-
tamer libraries to address side-chain flexibility [23] and Elastic Network Models (ENMs)
for modeling backbone rearrangements [24–28]. Accounting for backbone flexibility in
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the search for the binding site significantly increases the docking complexity and makes it
practically intractable using conventional all-atom modeling approaches. This enormous
computational complexity of flexible docking can be reduced using coarse-grained protein
models [29–32]. The best-performing methods that can now include backbone flexibility
during the docking calculations use coarse-grained models and/or ENM-driven simu-
lations. These include RosettaDock combining coarse-grained generation of backbone
ensembles and all-atom refinement [33–35]; ATTRACT combining coarse-grained docking
with ENM and all-atom refinement [36,37]; and SwarmDock using all-atom ENM [25,38].
All these approaches show some advantages in modeling protein flexibility compared
to rigid-body docking followed by structure refinements. However, effective modeling
flexibility in protein–protein docking remains an unsolved problem, as demonstrated in
the recent CAPRI round [25,35,37,39].

In this work, we use a well-established CABS coarse-grained protein model [29] for
protein–protein docking. During the CABS docking simulation, one of the docking partners
undergoes a long random process of rotations, translations, and extensive backbone confor-
mational rearrangements that significantly modify its fold. Simultaneously, the backbone
of the second protein undergoes small fluctuations.

2. Results

The most accurate models (out of the sets of 10,000 generated models and 10 top-
scored) are characterized in Table 1. The table presents different metrics of similarity to
the experimental structures for the set of 62 protein–peptide complexes (divided into three
categories: low, medium and high flexibility cases). To assess the sampling performance,
below we will use the iRMSD values for the best models out of all models. According to
the iRMSD values the CABS-based docking algorithm produced a significant number of
near-native protein–protein arrangements of acceptable quality (iRMSD < 4 Å, according
to CAPRI criteria) for most protein–protein cases in the categories of low and medium
flexibility cases. However, in the high-flexibility category, the best iRMSD values were
noticeably higher (in the range of 4–12 Angstroms). This resulted from the adopted distance
restraint scheme (see the Methods section), which was uniform for whole proteins and
introduced a penalty for deviations of more than 1 Å from the input structures (unbound
experimental structures). This penalty was very small for the protein ligands. Thus, the
distance-restraints scheme allowed for the large-scale conformational changes, however,
they might have prevented binding-induced conformational changes in the high-flexibility
category. Therefore, there is the need to modify such a scheme for the most challenging targets.

Table 1. Summary of the docking simulations. The table characterizes X-ray data used in the docking, average ligand
flexibility, and docking results. The table reports the best accuracy models out from all (10,000) and 10 top-scored models.
The metrics definitions are provided in the Methods section. The table divides the presented cases on the three categories:
low-flexibility, medium-flexibility and highly flexible cases.

X-ray Data
(Number of Residues) Ligand Flexibility Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

Low-flexibility cases

5CHA
(238)

2OVO
(53) 1CHO 0.62 4.84 2.65 6.95 0.48 2.96 10.93 0.18

2PKA
(232)

6PTI
(56) 2KAI 0.91 4.64 3.32 11.34 0.19 4.75 15.76 0.12

1CHG
(245)

1HPT
(56) 1CGI 1.53 5.24 2.76 4.13 0.37 6.18 14.15 0.09

2PTN
(223)

6PTI
(58) 2PTC 0.31 5.23 2.97 11.86 0.29 4.39 15.93 0.15
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Table 1. Cont.

X-ray Data
(Number of Residues) Ligand Flexibility Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

1SUP
(275)

2CI2
(64) 2SNI 0.37 3.89 1.09 3.86 0.69 2.81 9.09 0.46

2ACE
(532)

1FSC
(61) 1FSS 0.76 4.48 3.41 7.20 0.25 15.03 32.56 0.03

1MAA
(533)

1FSC
(61) 1MAH 0.60 4.58 2.49 3.89 0.45 11.25 24.43 0.06

1A2P
(108)

1A19
(89) 1BRS 0.47 3.33 1.94 4.19 0.64 4.01 8.74 0.14

1CCP
(294)

1YCC
(103) 2PCC 0.39 4.18 3.13 10.19 0.25 11.89 26.68 0.08

1SUP
(275)

3SSI
(107) 2SIC 0.39 4.01 4.03 18.96 0.23 4.77 19.40 0.12

1VFA
(223)

1LZA
(129) 1VFB 0.59 3.72 4.61 15.07 0.11 17.45 37.15 0.00

1MLB
(432)

1LZA
(129) 1MLC 0.85 3.74 2.82 10.47 0.36 8.04 33.09 0.04

Medium-flexibility cases

1CHG
(226)

1HPT
(56) 1CGI 2.02 5.80 2.46 3.21 0.44 5.86 10.72 0.12

5C2B
(241)

4ZAI
(80) 5CBA 1.49 4.51 2.48 7.64 0.42 9.34 16.01 0.10

5P2
(166)

1LXD
(87) 1LFD 1.79 4.12 2.87 6.76 0.27 12.47 24.24 0.00

1R6C
(142)

2W9R
(97) 1R6Q 1.67 9.27 7.95 11.97 0.14 13.71 35.71 0.00

1JXQ
(242)

2OPY
(106) 1NW9 1.97 4.09 7.05 8.69 0.23 9.33 17.55 0.00

1IAS
(330)

1D6O
(107) 1B6C 1.96 4.65 4.72 10.74 0.14 12.24 23.99 0.00

5E56
(116)

5E03
(113) 5E5M 1.56 4.16 3.83 9.09 0.23 10.96 20.00 0.00

2HRA
(180)

2HQT
(115) 2HRK 2.03 7.27 3.55 10.17 0.26 10.81 32.54 0.00

4BLM
(256)

4M3J
(116) 4M3K 1.77 4.41 4.96 7.41 0.10 13.75 27.11 0.03

1E78
(578)

5VNV
(120) 5VNW 1.49 3.81 5.93 22.23 0.10 23.89 70.83 0.00

3BX8
(167)

3OSK
(121) 3BX7 1.63 4.63 4.94 17.46 0.28 6.22 20.32 0.12

6ETL
(124)

4POY
(121) 4POU 1.83 4.01 2.91 10.16 0.50 6.55 19.65 0.25

4FUD
(246)

5HDO
(126) 5HGG 0.84 4.22 3.59 12.52 0.19 13.00 29.3 0.00

3TGR
(346)

3R0M
(127) 3RJQ 0.79 4.00 5.32 16.98 0.13 12.77 33.94 0.00

6EY5
(585)

5FWO
(129) 6EY6 1.90 3.86 3.83 6.03 0.14 12.89 27.61 0.00

1SZ7
(159)

2BJN
(141) 2CFH 1.55 5.13 1.98 4.01 0.71 2.82 5.50 0.63

3V6F
(437)

3KXS
(142) 3V6Z 1.83 7.11 6.12 16.68 0.15 6.66 20.06 0.06
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Table 1. Cont.

X-ray Data
(Number of Residues) Ligand Flexibility Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

3CPI
(437)

1G16
(156) 3CPH 2.12 4.34 4.87 15.64 0.09 15.02 27.88 0.00

1QJB
(460)

1KUY
(166) 1IB1 2.09 4.22 6.56 14.83 0.13 16.10 46.26 0.00

1IAM
(185)

1MQ9
(173) 1MQ8 1.76 4.22 4.93 14.99 0.21 26.17 70.50 0.00

3HI5
(430)

1MJN
(179) 3HI6 1.65 3.77 5.79 23.30 0.21 19.38 49.77 0.00

2G75
(429)

2GHV
(183) 2DD8 2.19 5.37 5.73 13.78 0.09 17.20 34.33 0.00

1A12
(401)

1QG4
(202) 1I2M 2.12 4.19 2.84 6.43 0.51 3.58 6.97 0.47

1N0V
(825)

1XK9
(204) 1ZM4 2.11 3.54 8.82 28.17 0.04 11.05 48.14 0.00

4EBQ
(429)

4E9O
(230) 4ETQ 0.47 3.72 7.12 14.74 0.20 8.68 19.61 0.07

1S3X
(380)

1XQR
(259) 1XQS 1.77 5.44 5.63 26.14 0.11 15.88 30.51 0.00

3HEC
(329)

3FYK
(282) 2OZA 1.89 4.29 4.35 9.32 0.33 11.24 18.8 0.03

6A0X
(437)

2FK0
(322) 6A0Z 1.28 5.75 5.75 25.59 0.16 11.43 31.39 0.00

Highly flexible cases

1CL0
(316)

2TIR
(108) 1F6M 4.9 3.83 7.02 11.34 0.10 11.92 18.06 0.00

1 × 9Y
(346)

1NYC
(110) 1PXV 2.63 4.86 5.74 14.10 0.07 7.46 16.31 0.02

1JZO
(431)

1JPE
(116) 1JZD 2.71 4.65 4.98 8.13 0.28 13.38 34.05 0.00

5D7S
(423)

2GMF
(121) 5C7X 2.26 4.17 4.12 13.61 0.34 4.69 16.74 0.20

1FCH
(302)

1C44
(123) 2C0L 2.62 5.51 5.02 5.54 0.21 10.24 24.74 0.00

1YWH
(268)

2I9A
(123) 2I9B 3.79 7.14 5.79 17.59 0.14 6.92 33.23 0.05

3L88
(550)

1CKL
(126) 3L89 2.51 9.86 4.83 10.90 0.17 17.84 31.87 0.00

1ZM8
(239)

1J57
(143) 2O3B 3.13 6.20 4.76 16.43 0.18 15.34 31.95 0.00

1G0Y
(310)

1ILR
(145) 1IRA 8.38 4.07 12.97 22.24 0.08 15.86 25.46 0.05

1QUP
(219)

2JCW
(153) 1JK9 2.51 9.40 8.07 13.85 0.10 17.41 30.74 0.00

1SYQ
(259)

3MYI
(163) 1RKE 4.25 4.15 5.26 6.43 0.38 16.11 34.67 0.00

2II0
(463)

1CTQ
(166) 1BKD 2.86 4.51 4.80 7.33 0.14 19.96 39.32 0.00

1ERN
(416)

1BUY
(166) 1EER 2.44 5.22 12.97 13.18 0.02 17.12 30.73 0.00

3AVE
(419)

1FNL
(173) 1E4K 2.60 5.32 3.44 10.07 0.43 7.59 24.33 0.13
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Table 1. Cont.

X-ray Data
(Number of Residues) Ligand Flexibility Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

1R8M
(195)

1HUR
(180) 1R8S 3.73 5.50 6.67 13.41 0.09 15.15 25.10 0.00

1QFK
(348)

1TFH
(182) 1FAK 6.18 5.64 8.97 15.57 0.16 15.59 34.46 0.00

1F59
(440)

1QG4
(202) 1IBR 2.54 5.01 6.65 14.36 0.14 16.41 33.07 0.00

4DVB
(427)

4DVA
(246) 4DW2 2.27 3.85 6.61 21.91 0.14 9.94 29.27 0.00

1NG1
(294)

2IYL
(271) 2J7P 2.67 4.51 8.87 18.77 0.11 18.46 48.05 0.00

1UX5
(411)

2FXU
(360) 1Y64 4.69 4.15 6.42 13.50 0.27 15.50 36.42 0.00

1D0N
(729)

1IJJ
(371) 1H1V 6.62 3.44 7.92 31.14 0.36 29.12 65.07 0.03

* 4-letter PDB code for the crystal structures used in this study. ** The RMSD (in Å) of the interface Cα atoms for input receptor and ligand
after superposition onto the co-crystallized complex system.

The results analysis below focuses on the sampling performance for the selected
low-flexibility barnase/barstar case. Figure 1 characterizes iRMSD versus CABS model
energy values for the barnase/barstar (1BRS) and another low-flexibility case with clearly
the lowest iRMSD value 1.09 Angstroms (2SNI).
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Figure 1. Characterization of docking results using RMSD to the X-ray structure and system energy. The left panels show
the interface-RMSD versus CABS energy values. Point color represents the temperature—from yellow (high) to pink (low).
The molecular visualizations show X-ray structures and ensembles of predicted models corresponding to selected energy
minima (numbered in the picture from 1 to 3). As presented in the picture, the minima numbered as 1st corresponds to
near-native protein–protein arrangements, others to non-native ensembles, as presented in the picture. The presented
ensembles are the sets of similar models found in the structural clustering of contact maps (see Methods). The figure shows
two modeling cases: 1BRS and 2SNI.
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Figure 2 shows example ensembles of barnase/barstar models and the most accurate
model (iRMSD 1.9 Å). A single system replica could explore an ample conformational space
that involved significantly different binding configurations and protein-ligand conforma-
tions, as demonstrated in Figure 2c and Movie S1. Figure 3a further characterizes this single
replica’s using iRMSD and LoRMSD (RMSD for ligand only) values. As presented in the
figure, the ligand structure fluctuated around 5 Å (the same fluctuations in the context of all
replicas are shown in Figure 3b). The ligand became significantly more closer to the X-ray
structure after binding to the native binding site as reflected by iRMSD values. Namely,
after correct binding, LoRMSD values got noticeably lower to around 2 Å (see Figure 3a).
In the following sections, we do not discuss this aspect of our method; however, it is worth
mentioning that the proposed method enabled a detailed analysis of plausible docking
trajectories. The described docking procedure uses REMC protocol enhanced by simulated
annealing of all 20 replicas. Figure 3c shows their evolution through different temperatures.
Figure 4 provide more detailed pictures of structural flexibility for protein “receptor” and
“ligand”. Protein–protein contacts defining the complex assembly are characterized in
Figure 5. In the presented example, the most persistent protein–protein contacts occurred
in about 15% of snapshots. Therefore, they were significantly less stable compared to
intramolecular protein contacts (Figure 4).
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each replica of the system; (b) 10,000 models combined from 20 replicas (500 models per replica) in which the highly 
flexible ligand is covering the entire surface of the flexible receptor; (c) 500 models from one replica only, (d) the best 
model obtained for barnase/barstar system (the X-ray structure of the ligand is shown in thick ribbon, the modeled in thin 
ribbon). 

Figure 2. Protein–protein docking stages illustrated by barstar/barnase docking case. The figure shows the barnase receptor
in magenta and the barstar ligand in rainbow colors. The respective panels show: (a) 20 starting structures for each replica
of the system; (b) 10,000 models combined from 20 replicas (500 models per replica) in which the highly flexible ligand is
covering the entire surface of the flexible receptor; (c) 500 models from one replica only, (d) the best model obtained for
barnase/barstar system (the X-ray structure of the ligand is shown in thick ribbon, the modeled in thin ribbon).

An essential and unique feature of the presented docking simulations is the level of
backbone flexibility during docking. In the example above, the ligand backbone fluctua-
tions (LoRMSD) were in the range of 2–7 Å (Figure 3b), with the average LoRMSD value of
3.3 Å from the entire docking simulations. In other cases, the ligand fluctuations were at a
similar level or higher (see LoRMSD values in Table 1).

Finally, using structural clustering of contact maps (see Methods), we attempted to
select the set of 10 top-scored models for each case. Table 1 reports the most accurate
models out of the 10 top-scored.
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ligand is presented in rainbow colors, the receptor in magenta. The lowest iRMSD model (1.9 A 
from X-ray structure) is presented on the right lower corner superimposed on the X-ray structure 
(the X-ray structure is shown in thick lines, the predicted model in thin lines). (b) Ligand only 
RMSD (LoRMSD) values for all replicas. The thick red line presents selected replica. (c) Exchange of 
system replicas between different temperatures driven by Replica Exchange Monte Carlo (REMC) 
system. The thick red line presents selected replica. The replica trajectory is also presented in the 
Video S1. 

Figure 3. Docking trajectory for the selected replica of barnase/barstar system. The presented replica
reached the most accurate barnase/barstar complex structure. (a) iRMSD (interface RMSD) and
LoRMSD (ligand only RMSD) values. Example simulation snapshots illustrate the plot. The ligand is
presented in rainbow colors, the receptor in magenta. The lowest iRMSD model (1.9 A from X-ray
structure) is presented on the right lower corner superimposed on the X-ray structure (the X-ray
structure is shown in thick lines, the predicted model in thin lines). (b) Ligand only RMSD (LoRMSD)
values for all replicas. The thick red line presents selected replica. (c) Exchange of system replicas
between different temperatures driven by Replica Exchange Monte Carlo (REMC) system. The thick
red line presents selected replica. The replica trajectory is also presented in the Video S1.
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3. Discussion

This work demonstrates a significant improvement in the sampling of large-scale
conformational transitions during global protein–protein docking compared to other state-
of-the-art approaches. We show that modeling the large conformational changes is possible
at a relatively low computational cost. The presented simulations took between 10 and
80 h (depending on the system size) using a single standard CPU. The proposed modeling
protocol can be used as the docking engine in template-based and integrative docking
protocols using experimental structural data and additional information from various
sources [2,40]. We focused on the free docking of protein ligands with a highly flexible
backbone in the present test simulations. Using unbound structures as the input, we
produced acceptable accuracy models (iRMSD around 4 Å or lower) in low-flexibility and
medium-flexibility cases. However, the selection procedure of the most accurate models
needs further improvement. Namely, selecting the best-ranked models led to acceptable
models in about half of the tested cases.

Presently, the most common approach to account for conformational changes in pro-
tein docking is using ENM [24–28,36–38]. The applicability of ENM to modeling protein
flexibility is limited to specific systems and depends on how collective the protein mo-
tions are. Our method presents a conceptually different approach that seems to be more
realistic (see review discussing coarse-grained CABS dynamics in the context of ENM
approaches [24]). We demonstrated that it is possible to simulate effectively free dock-
ing of highly flexible protein ligands to quite elastic protein receptor structures. Such a
significant degree of flexibility was achieved using a highly efficient simulation engine
based on the coarse-grained representation of protein structures, Monte Carlo dynamics,
and knowledge-based force field. CABS coarse-graining, enhanced by the discretized
protein model and interaction patterns, significantly reduces the search space. Monte Carlo
dynamics, enhanced by Replica Exchange annealing, leads to huge speed-up of the search
procedures. Additionally, a significant (although acceptable for many problems) flattening
of energy surfaces by statistical potentials of CABS model simplifies simulations. As a
result the flexible docking using CABS-dock is orders of magnitude faster than equivalent
simulations based on classical modeling methods. Obviously, the new method also has
several limitations that have to be considered when designing new computational experi-
ments. First, since the “ligand” protein is treated as a very elastic object (what is necessary
to guarantee efficient search of the binding sites and poses) the cost of computations rapidly
grows with the protein size. Thus, completely free global docking of protein ligands larger
than 150 residues (see Table 1) may be impractical. Second, the coarse-graining of the
sampling space and simplifying interaction patterns (so important for the huge acceleration
of the simulations) makes the docking energetics less sensitive. For these reasons, the
clustering procedures, refinement of the resulting structures, and final model selection
become challenging and need further development. Additionally, speeding-up the entire
protocol can be useful. We estimate that the simulations could be easily speeded-up at least
10 times or more through algorithm parallelization. The speed-up would enable making
the protocol available as the publicly accessible and automated web service.

4. Methods
4.1. Docking Simulation Protocol

In this work, we present the protein–protein docking simulation protocol that relies
on the CABS coarse-grained model. The CABS design and applications have been recently
described in the reviews on protein coarse-grained [29] and protein flexibility [24,41]
modeling. Here we outline only its main features. The CABS model uses a coarse-grained
representation of protein chains (see Figure 6), Replica Exchange Monte Carlo (REMC)
dynamics, and knowledge-based statistical potentials. Representation of protein chains
is based on C-alpha traces, restricted to an underlying high-resolution lattice. The lattice
spacing allows slight fluctuations of the C-alpha–C-alpha distances and many pseudo-
bonds orientations. Virtual pseudo-atoms are placed in the centers of these C-alpha–C-
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alpha bonds and are used to locate the main-chain hydrogen bonds. Additionally, the
positions of the two pseudo-atoms representing side chains are defined by the geometry of
C-alpha traces and amino-acid identities. Such fixed positions of side chains (taken from
the statistics of protein databases) reduce the model’s resolution. However, this limitation
is less serious than it may appear since even small movements of the main chain (allowed
due to the soft nature of the assumed geometrical restrictions) leads to large moves of the
side chains. This way, the packing of side chains can be quite accurate. The interaction
scheme of CABS consists of statistical potentials mimicking effects of main chain rotational
preferences, main-chain hydrogen bonds, and side-chain contacts. All statistical potentials,
derived from structural regularities observed in PDB structures, have relatively broad
minima compensating the low-resolution effects and allowing a fast search for global
energy minima. The solvent is treated implicitly, and its averaged effects are encoded
within the above-mentioned contact potentials. Energy computation for protein chain
models is very fast since many interactions could be pre-computed (and coded in large
tables) due to the discretized patterns of main chains geometry. The Monte Carlo sampling
of CABS uses a set of local movers. The resulting model dynamics is quite realistic for
large-scale distances, allowing coarse-grained modeling of protein structures, dynamics,
and protein–protein interactions.
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Figure 6. Comparison of the all-atom (left) and the CABS coarse-grained model representation
(right) for an example tripeptide. In the CABS model, protein residues are represented using C-alpha,
C-beta, united side-chain atom, and the peptide bond center [29].

The modeling protocol consists of the following steps:

1. Preparing input structures of a protein-ligand and a protein-receptor. The protocol
requires the input of two protein structures (single- or multi-chain) in the PDB format.
One of them has to be indicated as a ligand and the second as a receptor. The ligand
undergoes large conformational fluctuations, translations, and rotations around the
receptor within the proposed protocol. The “ligand” should be a smaller protein
because the computational cost of searching its conformational space rapidly grows
with the chain length. That is because the motion of the entire structure (including
fold relaxation, rotation, and translation of the entire molecule) is simulated by a
random sequence of local moves. The accuracy of such sampling is acceptable for not
too-large proteins. On the other hand, treating the “ligand” as a fully flexible object
allows approximate studies of entire docking trajectories. In some cases, it would
be perhaps worth treating a larger protein (but not too large) as a flexible “ligand”,
although this was out of range of the present studies.

2. Generating starting structures. Starting conformations are built using C-alpha coor-
dinates only (in the CABS model C-alpha traces define the position of other united
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pseudo-atoms, see details [29]). The algorithm places the protein-ligand center at
20 random positions around the protein receptor at the approximate distance of 20 Å
from the protein receptor’s surface. Next, these protein-ligand systems are used as
starting conformations for the 20 replicas in the REMC CABS sampling scheme (each
replica starts from a different ligand-receptor arrangement).

3. Docking simulations using CABS coarse-grained model and REMC dynamics. Dur-
ing simulations, the protein receptor structure is kept close to the starting structure
using distance restraints. Distance restraints are generated using the input coordinates
of the C-alpha atoms. Two residues are automatically restrained if two conditions are
met. First, their separation along the sequence has to be at least five residues. Second,
the distance between their C-alpha atoms must be within the range of 5–15 Å. During
simulations, the receptor restraints imply small-scale fluctuations of the protein re-
ceptor backbone in the range of 1 Å and, accordingly, more significant fluctuations
of the side-chain atoms. A similar restraints scheme is applied to the protein-ligand
but with tenfold weaker weights. During simulations, the ligand moves freely within
the vicinity of the receptor and internal restraint allows for large-scale fluctuations of
its structure. Usually, the ligand fluctuations are within the range of 2 and 12 Å to
the input structure although folding-unfolding events are possible at highest temper-
atures. The docking simulation is conducted using CABS REMC pseudo-dynamics
with simulated annealing. In this work, 20 replicas and 20 annealing steps have
been used. All the REMC scheme parameters have been adjusted to allow for large-
scale conformational transitions, rotations, and translations of the protein-ligand in a
reasonable computational time. The modeling protocol collects trajectories from all
20 replicas. The protocol saves only a small fraction (2%) of the generated models for
further analysis i.e., 500 models from each replica, thus 10,000 models in total.

4. Reconstructing to CABS coarse-grained representation. The set of 10,000 models in
C-alpha traces are reconstructed to complete CABS model representation using CABS
algorithm [29]. In CABS, positions of C-beta and Side-Chain united atoms are defined
by the positions of the three consecutive C-alpha atoms and the amino acid identity
(the most probable positions from the PDB database are used).

5. Clustering of contact maps. First, for all of the 10,000 models the contact maps
between the receptor and the ligand proteins are calculated. Two residues are con-
sidered to form a contact if their Side Chain pseudoatoms are at most 6 Å apart (for
Alanines the C-beta atoms are considered as the Side Chain; for Glycines—it’s the
C-alpha atoms). Next, the algorithm sorts the models according to the number of the
receptor-ligand contacts, and the set of top 1000 is kept for further processing. This
way the transient and weakly bound complexes are removed from the solutions pool.
In the next step, the 1000 contact maps are clustered together to identify the most
frequently occurring contact patterns. The complete link hierarchical clustering was
used with the Jaccard index as the distance metric between contact maps. Finally, the
identified clusters are ranked according to their density, defined as the number of the
cluster members divided by the average metric between them.

6. Reconstructing to all-atom representation. Representative models from the ten most
dense clusters are reconstructed to all-atom representation using Modeller-based
rebuilding procedure [42] (or can be reconstructed using other rebuilding strategies,
see review [43]).

In recent years, the CABS model has been used for modeling the flexibility of globular
proteins [44–47] and various processes leading to large-scale conformational transitions.
These included: ab initio simulations of protein folding mechanisms [48,49], folding and
binding mechanisms [49,50], and free protein–peptide docking within the CABS-dock
tool [51–57]. The CABS-dock is a well-established peptide docking tool that has been
made available as a web server [51,52] and, most recently, as a standalone application [54].
Its distinctive feature among other tools is the possibility of fast simulation of the large
backbone rearrangements of both peptide and protein receptors during binding (see the
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review on protein–peptide docking tools [58]). In addition, the CABS-dock has been used
in multiple applications (recently reviewed [56]), including docking to receptors with
disordered fragments [41,59], GPCRs [60], and modeling proteolysis mechanisms [61].

The presented protocol for protein–protein docking utilizes the CABS-dock standalone
package [54] developed primarily for protein–peptide docking. In order to tackle the
protein–protein docking problem, key changes have been made to the docking algorithm
that aimed mainly at the improvement of the conformational sampling. First of all, the
temperature distribution between replicas in the REMC scheme was adjusted. Instead of
constant temperature increment between consecutive replicas, as in the original CABS-
dock, here we’ve implemented progressive geometric raise of the temperature increment.
Furthermore, the number of simulation replicas was increased to twenty versus ten in the
original CABS-dock. Besides the sampling improvement, a new clustering protocol was
introduced. The original CABS-dock used RMSD-based clustering, which worked well
for peptides. For the protein–protein complexes, however, purely geometrical similarity
condition such as the RMSD is too severe. Namely, for two binding poses, where the mobile
protein was docked in the exact same pocket but is slightly tilted in one of them, the RMSD
difference would be considerable. Despite representing similar binding poses, the two
structures would end up in different clusters. To overcome this, the current protocol uses
clustering based on the similarity between receptor-ligand contact maps.

4.2. Results Analysis and Quality Metrics

The docking simulation analysis was performed using Python and NumPy (Python
library). Structural differences between experimentally determined structures and gen-
erated models were evaluated using Root Mean Square Deviations (RMSDs). Interface
RMSD (iRMSD) is an RMSD calculated for interface residues of the receptor and the ligand
separated by no more than 6 Angstroms. Ligand RMSD (LRMSD) is an RMSD computed
for the ligands after the superimposition of the receptors. Ligand only RMSD (LoRMSD) is
an RMSD computed for the ligand structure only. Root Mean Square Fluctuation (RMSF)
is a measure of the amino acid’s flexibility. It is calculated for every residue as the square
root of this residue’s variance around the reference residue position. The fraction of native
contacts (fNAT) was calculated as a number of experimental structure contacts found in
the generated structure divided by the total number of contacts found in the experimental
structure. Rather restrictive contact criterion, distance up to 6 Å between side-chain centers,
was used. All figures presented in this work were generated using PyMOL, UCSF Chimera,
and Matplotlib (Python library).

4.3. Dataset

In this docking study, we used protein–protein cases from the ZDOCK benchmark
set [62] (cases in which a smaller size protein—a protein-ligand—contained more than one
protein chain, or chain gaps, were discarded from our set). The set comprises the three
flexibility-based subsets: low-flexible (almost rigid), medium-flexible, and highly flexible
with available unbound X-ray structures of both the protein-receptor and the protein-ligand.
The unbound structures were used as the docking input. As the reference for calculating
various similarity measures, we used the X-ray structures of the protein-ligand complexes.
Table 1 lists all the PDB IDs of X-ray structures used in the study.

5. Conclusions

In summary, the described docking procedure accounts for large-scale protein struc-
ture fluctuations during unrestrained protein–protein docking search for the binding site.
The exploration of such vast conformational space has not been demonstrated before to
the best of our knowledge. The approach shows unprecedented sampling possibilities;
however, the accuracy of the obtained complexes is still lower than observed for state-of-
the-art docking tools. Definitely, the balancing of the structural restraints scheme needs
further developments and tests. Therefore, this work is the first step towards a mature
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protein–protein docking tool. The next development steps would involve modifications of
the distance restraints scheme, which allow for different degrees of flexibility for appropri-
ate protein fragments (now the presented algorithm treats the entire protein-ligand as very
flexible) and force-field improvements. The proposed approach is also very promising in
the refinement applications when searching for the binding site is not needed, and only the
protein–protein interface needs to be optimized.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22147341/s1, Video S1. The trajectory of a single replica from the protein-protein
docking simulation of barnase/barstar system. The movie shows the barnase receptor in surface
representation and the barstar ligand in ribbon. The presented replica reached the model with
interface RMSD value 1.9 Angstrom from the complex X-ray structure, shown as transparent ribbon.
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