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Response variability is a fundamental issue in neural coding because it limits all information processing. The reliability of
neuronal coding is quantified by various approaches in different studies. In most cases it is largely unclear to what extent the
conclusions depend on the applied reliability measure, making a comparison across studies almost impossible. We
demonstrate that different reliability measures can lead to very different conclusions even if applied to the same set of data: in
particular, we applied information theoretical measures (Shannon information capacity and Kullback-Leibler divergence) as
well as a discrimination measure derived from signal-detection theory to the responses of blowfly photoreceptors which
represent a well established model system for sensory information processing. We stimulated the photoreceptors with white
noise modulated light intensity fluctuations of different contrasts. Surprisingly, the signal-detection approach leads to a safe
discrimination of the photoreceptor response even when the response signal-to-noise ratio (SNR) is well below unity whereas
Shannon information capacity and also Kullback-Leibler divergence indicate a very low performance. Applying different
measures, can, therefore, lead to very different interpretations concerning the system’s coding performance. As a consequence
of the lower sensitivity compared to the signal-detection approach, the information theoretical measures overestimate internal
noise sources and underestimate the importance of photon shot noise. We stress that none of the used measures and, most
likely no other measure alone, allows for an unbiased estimation of a neuron’s coding properties. Therefore the applied
measure needs to be selected with respect to the scientific question and the analyzed neuron’s functional context.
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INTRODUCTION
Some of the most fundamental questions in neuroscience address

the stimulus features encoded by a sensory system, the amount of

information that can be transmitted given the neuronal response

variability, the timescale on which relevant information is

encoded, and the nature of the neural code. Widely applied

measures have been derived from information theory [1] and

signal-detection theory [2]. Information theory has been applied to

quantify the amount of information conveyed by neuronal

responses [3–6] or to characterize the reliability of synaptic

transmission [7,8]. Measures of the discriminability of neuronal

responses have been applied, for instance, to estimate the relevant

timescale of neuronal coding [9,10] or to quantify the response

reliability [11,12]. Both types of reliability measures, i.e. the

information theoretical and the signal-detection ones, shed light on

the accuracy with which a sensory system encodes stimuli.

However, it is still not clear how these measures are related and

whether their application leads to equivalent conclusions.

In the present account we compared estimates of system

performance obtained from information theory (Shannon informa-

tion capacity, Kullback-Leibler divergence) and a discrimination

method derived from signal-detection theory. All measures are

applied to the same set of neuronal responses. Our study was done

on an intensively investigated model system for sensory information

processing, the photoreceptors in the blowfly (Calliphora vicina) retina

[7,13,14]. Single photoreceptors were stimulated with Gaussian

distributed random light intensity fluctuations of different contrasts

(figure 1A, B) superimposed on a background luminance. The

photoreceptor responses were analyzed with the different measures

and the corresponding results were compared.

We find that responses to very weak stimuli can be safely

discriminated with the signal-detection analysis, whereas the

information theoretical approaches indicate that much stronger

stimuli are needed to markedly increase the Shannon information

capacity or Kullback-Leibler divergence of the responses. Thus, the

use of different measures leads to very different conclusions about the

ability of photoreceptors to encode luminance changes. This becomes

particularly obvious when assessing the impact of photon shot noise

on the reliability of the photoreceptor responses. Photon shot noise

reflects the physical limitation on accuracy of a visual system resulting

from the random emission of photons from a light source. Its

importance has been investigated in various accounts based on

analyses of the signal-to-noise ratio and was concluded to be a major,

but not the only, source of photoreceptor response variability [7,15].

Our discrimination analysis supports these results but suggests a much

stronger impact of photon noise than estimated before or suggested

by the presented information theoretical approaches.

RESULTS

Information theoretical analyses
Single photoreceptors were stimulated with Gaussian distributed

random light intensity fluctuations of different contrasts (‘c’,
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defined as the ratio of standard deviation and mean luminance;

figure 1A, B) superimposed on a background luminance. The

applied contrasts ranged from zero (no modulation) to the

average contrast of natural scenes (cnatural = 0.31) [16]. With

increasing contrast the response amplitude increases, but the

standard deviation representing response variability stays about

the same (figure 1C). Accordingly, the noise power spectral

densities (N(f), dashed lines figure 2A) are largely independent of

the respective stimulus contrast indicating the additive nature of

the noise. Both the mean response as well as the membrane

voltage noise are normally distributed and can be fitted well with

a Gaussian function (figure 1D). Since S(f) (solid lines in figure 2A)

increases with increasing contrast while the different N(f) are

largely independent of the contrast, the SNR (figure 2B) increases

with increasing stimulus contrast in accordance with previous

investigations [15]. For all tested contrasts but the largest (0.31)

the SNR is well below unity for the entire frequency range,

indicating that the noise component dominates the individual

photoreceptor responses. The Gaussian distribution of signal and

noise, the additive nature of the noise, and the almost linear light

intensity coding in blowfly photoreceptors [17] allowed us to

calculate the Shannon information capacity [18] as a measure of

coding performance (see Methods). Parallel to the SNR the

amount of transmitted information and the bandwidth in which

information is transmitted increases with contrast (figure 2D).

The total information capacity (equation 3) increases with

increasing contrast, initially very slowly and steeply only beyond

the contrast of 0.035 (figure 2D). At zero contrast the

measurement of an information capacity larger than zero is an

artifact and the consequence of limited data. In case of an

unlimited amount of data information capacity at zero contrast is

zero. The inset in figure 2D illustrates this dependence on the

amount of data and shows the alleged information capacity

estimated at zero contrast as a function of the number of trials

evaluated. As can be seen, the information capacity is high for a

small number of trials and declines with an increasing amount of

data. The 25 trials (rightmost data point in the inset) used for our

analyses appear appropriate for a good SNR estimation. The

analysis of the data on the basis of the information capacity

indicates that information about stimuli with a contrast below

0.035 is hardly transmitted at all, because signals appear to be

buried in noise.
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Figure 1. Stimulus and response properties. A Stimulus traces of different contrasts. The contrast, c, is defined as the ratio of standard deviation of
the light intensity modulation and the mean light intensity (3.04*104 effective photons per second and receptor). The light intensity values were
drawn from a normal distribution and the sequences were lowpass filtered with a 2nd order Butterworth filter with 256 Hz cut-off. B Probability
density of the 0.31 contrast stimulus with a Gaussian fit. C Typical responses of a photoreceptor to the contrast modulation illustrated in A [averages
over 25 trials (dark colors)6the standard deviation (light colors)]. D Probability density functions of photoreceptor response (black dots and black
labels on x-axis) and the response noise (red dots and red labels on x-axis) fitted with Gaussian functions.
doi:10.1371/journal.pone.0001328.g001
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An information theoretical approach to the question of whether

two signals are distinguishable or not is the Kullback-Leibler

divergence which is related to the mutual information [3,19]. We

apply the Kullback-Leibler divergence to assess the discriminability

between the responses used above (which we will call in the following

the reference stimuli) and the responses to random luminance sequences

with statistically the same contrast and cut-off frequency but with

different time course at each presentation (subsequently called test

stimuli, see methods). The Kullback-Leibler divergence compares two

distributions and is zero only for exactly matching distributions and

differs from zero for diverging distributions. Hence, a larger

divergence indicates better discriminability of the responses.

Figure 3 shows the Kullback-Leibler divergence as a function of

stimulus contrast. Like the Shannon information capacity it increases

only very slightly at first and its largest increment is beyond a contrast

of 0.035. Thus, with this information theoretical measure of

discriminability similar conclusions about the system’s response

reliability could be drawn as with the information capacity.

Signal-detection analysis
In a discrimination approach derived from signal-detection theory

we ask how well the fly’s photoreceptor responses to a certain

sequence of light intensities could be discriminated from those to

different sequences. This approach is similar to the one used to
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Figure 2. Information theoretical analysis. A S(f), the power spectral density of the signal (mean response, solid lines), and N(f), the power spectral
density of noise (dashed lines), normalized to the signal or noise mean square amplitude. The inset assigns different colors to the different stimulus
contrasts. B Signal-to-noise ratios at the six different contrasts used (same color code as in A). Dashed line indicates SNR of 1. C Shannon information
as function of frequency at different contrasts (same color code as in A). Information estimated from signal-to-noise ratio as: log2[1+S(f)/N(f)]. All
spectra were smoothed using a 4 point running average. D Shannon information capacity as a function of contrast; average 695% confidence
interval (N = 12). At the 0.31 contrast 14 additional cells were analyzed. Abscissa is interrupted to display zero contrast on the logarithmic scale. Arrow
marks the contrast induced by photon shot noise at the mean light intensity. Inset shows the dependence of the information capacity on the amount
of data analyzed. The information capacities shown were calculated at zero contrast by using different numbers of trials to estimate the SNR.
doi:10.1371/journal.pone.0001328.g002
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Figure 3. Kullback-Leibler divergence as a function of the contrast.
Average Kullback-Leibler divergence 695% confidence interval at the
different contrast (N = 12). For each recorded cell the Kullback-Leibler
divergence was estimated at each instance of time and was
subsequently averaged across time giving a single divergence value
for each cell at each contrast level (see methods). The plotted values are
averages of these divergences across the 12 cells.
doi:10.1371/journal.pone.0001328.g003
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evaluate the impact of photon noise on the reliability of the spike

responses of the motion sensitive H1-cell downstream in the fly’s

visual system [11]. Here we compare the responses to 25 repetitions

of a reference stimulus to those evoked by the test stimuli, i.e. 25 different

white noise sequences with the same statistical properties like cutoff

frequency and contrast (figure 4A). For this analysis we used the

same data as for the application of the Kullback-Leibler divergence

while the information capacity was estimated on the basis of the

reference responses only. The discrimination measure calculates the

response discriminability and its rationale will be briefly sketched in

the following (for details see methods).

In the case of a noise free encoding system even slightly different

stimuli lead to different responses. In other words: the reference responses

should be identical and each test response should be clearly different

from the reference responses as well as from the other test responses.

Analogously, the difference (estimated as the distance, equation 5)

between a certain reference response and the other reference responses

should be zero while it should be larger than zero when comparing to

the test responses. In a real system with noise, these assumptions do not

hold and the distances of a certain reference response to the other reference

responses and also to the different test responses are larger than zero.

Since the reference responses were evoked by repetitions of the same

stimulus the distances between the reference responses should still be

smaller than those to the test responses once the stimulus induced

response is strong enough. The discrimination performance was

defined as the proportion of reference responses for which this

assumption holds. One major advantage of this discrimination

method is its independence of assumptions about the statistics of the

underlying data. Thus, also responses evoked by natural contrast

modulations which are clearly different from white noise [14] can be

analyzed in this way; an approximation of the Shannon information

capacity for such stimuli would require much more data since the

simplifying assumptions of Gaussian distribution and coding linearity

do not hold for natural stimuli.

As expected from the increasing response amplitude and power

(figure 1C and 2A, respectively), the discriminability increases with

increasing contrast. Indeed the discrimination performance increases

with contrast and has its strongest increment at contrasts exceeding

only 0.009 and a performance of 75% correct decisions is achieved at

a contrast of only about 0.014 (figure 4C yellow curve; estimated

from the sigmoid fit, equation 6). An almost perfect discrimination

performance could be observed already at a contrast as low as 0.035.

Therefore, discrimination performance was not determined for

larger contrasts. Anyway, this signal-detection analysis appears more

sensitive to detect stimulus induced changes in the responses than the

applied information theoretical measures.
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Figure 4. Signal-detection approach. A Experimental design for the discrimination task at one contrast level. Left hand column: the reference
stimulus is repeated 25 times; right hand column: different test stimuli, all statistically equivalent to the reference stimulus. Reference and test stimuli
of all five contrasts were presented in a pseudorandom order. B At each contrast level the two distances <Dr> and <Dt> were estimated according to
equation 5 for each reference response (e.g. the highlighted one in the left box). C Response discriminability as a function of contrast. Dots mark the
average discrimination performance (N = 12) 6SEM. Discrimination performances were calculated using data segments of different lengths (see
legend). Data were fitted with a sigmoid function ranging from 50 to 100% (equation 6). The arrow marks the contrast which results from photon
shot noise at the background light intensity. D Uncertainty of discriminability estimation for different segment lengths. For each cell, the
discrimination performance was estimated for all possible data segments. The standard deviation of these discrimination performances was
estimated. The box plots describe the distribution of these standard deviations in the cell population. Boxes indicate median (black line) and the
upper, respectively lower quartile the whiskers represent the rest of the data. The plus-sign denotes an outlier. The two largest segment lengths used
in C subdivided response traces only into one or two segments, thus no S.D. could be calculated.
doi:10.1371/journal.pone.0001328.g004
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Dependence of coding performance on available

time
In normal behavioral situations, animals have only limited time to

distinguish meaningful stimuli on the basis of neuronal responses

contaminated with noise. Therefore, the dependence of the

performance on the duration of the evaluated data segments has

to be considered. The different measures of coding performance

depend differently on the length of the data segments. In case of

the information capacity and the Kullback-Leibler divergence it is

not the performance per se that degrades with decreasing segment

length but mainly the accuracy of the estimation. The signal-

detection approach also suffers from a reduced segment length as

shown in figure 4C, however in a different way: with short

segments, the discrimination performance is reduced and this

reduction is accompanied by increased uncertainty of discrimina-

tion performance (figure 4D). This less reliable estimation of the

response distances with short segments is partly responsible for the

reduction in discrimination performance. Due to the asymmetry of

the discrimination measure the discriminability may well drop

below 50% but cannot exceed 100% and therefore introduces a

bias to lower performances. In any case, our discrimination

approach shows insignificant differences in discrimination perfor-

mance once the segment length is sufficient to reliably estimate the

distance between responses traces (i.e. at segment lengths

exceeding 125 ms) indicating the validity of the estimation of

discrimination performance with the available amount of data.

Impact of photon noise
Photon shot noise is an unavoidable noise source in visual systems

and the question about its importance for visual performance has

been discussed for a long time [11,20–22]. Owing to the random

emission of photons the light intensity of a light source varies about

the mean light intensity. The amplitude of these photon noise

induced fluctuations can be quantified by their standard deviation

and, if related to the mean, their contrast.

cpht~
spht

�xx
ð1Þ

with spht being the standard deviation and �xx the mean number of

effective photons per second. Accordingly the dependencies of the

different measures of coding performance on the contrast of the

added brightness fluctuations can be related to this contrast induced

by photon shot noise (cpht). The stimulus used in our experiments

had a mean brightness of about 30,000 effective photons per

receptor and second. This estimate is based on counting distinct

depolarizations of the photoreceptor membrane potential evoked by

single photons at very low stimulus intensities and linear extrapo-

lation to higher intensities. Photon emission is a random process

characterized as a Poisson process with a variance equal to the mean.

Hence, spht can be directly estimated from the mean brightness:

spht~
ffiffiffiffiffiffiffiffi
s2

pht

q
~

ffiffiffi
�xx
p

: ð2Þ

Thus, by inserting equation 2 into equation 1 the contrast

induced by photon shot noise can be, roughly, approximated at

the mean brightness of 30,000 effective photons per second to be:

cpht = 0.006 (arrows in figure 2D, 3, 4C).

Contrasts just exceeding cpht can already be discriminated on

the basis of the photoreceptor responses by employing our signal-

detection approach. This finding suggests that photon noise is a

major source of variability limiting the precision of photoreceptor

responses (figure 4C). The Shannon information capacity and the

Kullback-Leibler divergence, on the other hand, have their

strongest increments at much larger contrasts (figure 2D). The

information theoretical approaches thus suggest a much smaller

impact of photon noise under the light levels of the experiment

and underestimate its importance dramatically.

DISCUSSION
In the present study we have applied different measures of

neuronal response reliability to evaluate the coding performance of

blowfly photoreceptors. Our results show that the application of

information theoretical measures like the Shannon information

capacity and the Kullback-Leibler divergence on the one hand,

and the signal-detection theory based discriminability measure on

the other, leads to very different conclusions about the

photoreceptor response reliability. All measures indicate increasing

performance with increasing stimulus contrast but with different

sensitivity. Already small contrasts lead to major increases in

response discriminability in the signal-detection approach but

increase the Shannon information capacity and the Kullback-

Leibler divergence only little. This sensitivity difference results in

dramatically different conclusions about the importance of photon

shot noise for photoreceptor coding performance.

Comparing results gained from the Shannon-information

capacity and our signal-detection approach might look like the

comparison of apples and oranges. In particular, the information

capacity is usually applied to evaluate a system’s encoding

capabilities while signal-detection measures are commonly used

to assess the decoder’s side of neuronal information processing.

Increased response reliability, however, increases the SNR, leads

to an increased information capacity and, in parallel, increases

response discriminability in the signal-detection task. We believe

that these measures, although addressing seemingly different

aspects of neuronal information processing, can be employed to

tackle the problem of coding performance since they depend

similarly on response quality.

It would be a different matter if our discrimination approach

would look for certain features in the responses and thereby

implement a detection task. In our discrimination approach, the

‘‘decoder’’ is the distance estimation (equation 5), a standard root-

mean-square distance, which does not assume a certain response

distribution or the presence of features that are to be recognized.

One implication of equation 5 is that it gives larger deviations a

stronger weight than smaller ones. However, removing this

imbalance by estimating the average absolute of point-to-point

differences does not change the results (not shown). Hence, even

though other distance measures could have been applied, it is

implausible that the exact realization of the distance estimation

strongly affects the estimated response discriminability. Moreover,

even if there were a clearly superior distance measure to the one

we have chosen, we already find with our distance measure a

much higher sensitivity than with the information theoretical

approaches tested.

The high discrimination performance, exceeding 75% correct,

in the signal-detection approach indicates that the responses to

stimuli of a contrast as low as 0.017 can be faithfully discriminated

(figure 4D). This finding leads us to the somewhat astonishing

conclusion that the temporal structure of the responses can safely

be discriminated already at contrasts where the SNR is much

smaller than unity. In accordance with the very poor SNR at this

contrast the Shannon information capacity suggests that the

responses contain hardly any information (figure 2D). Also the

Kullback-Leibler divergence as an information theoretical dis-

crimination measure indicates a very poor discriminability at the

Sensory Coding Performance
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contrast of 0.017 (figure 3). Both information theoretical measures

depend similarly on the contrast and show major increments at

much larger contrasts than the signal-detection analysis (compare

figs. 2D, 3 and 4D, respectively). We decided to base our

interpretations on the increments of measured performance rather

than on significances since significances depend on the sample size.

With the signal-detection approach we obtain a value of

discriminability of the individual trials.

In the signal-detection analysis the performance is related to the

highest possible performance, i.e. 100% correct. For the

information capacity and also the Kullback-Leibler divergence

we do not know what the right reference might be. We chose to

refer the measured values to the performance measured at the

average contrast of natural scenes. Compared to the performance at

this contrast the gain of information capacity at a contrast of 0.017,

for example appears negligible (information capacities of 4.761.79

and 432.2657,79 bit/s above the zero contrast measures for

contrasts of 0.017 and 0.31, respectively). Selecting the natural

contrast as reference might appear arbitrary, but this contrast is

widely used to characterize photoreceptor responses and the

information capacity obtained for c = 0.31 is still not the highest

possible. Higher capacities have been found at larger contrasts and

higher light levels [7]. Since using a higher contrast as reference

would lead to an even smaller relative increment of the information

capacity at low contrast, the impact of photon noise on the coding

performance of photoreceptors as assessed on the basis of the

Shannon information and thus the discrepancy to the conclusions

based on the signal-detection approach are not overestimated.

In both information theoretical approaches we observe an

information capacity, or, respectively, divergence that is larger than

zero also at zero contrast. This is due to the unreliable estimations of

either the SNR [14] in case of the Shannon information capacity or

the response distributions of reference and test responses in case of the

Kullback-Leibler divergence. Controls in which we manipulate the

SNR reliability by varying the amount of analyzed data show that

this zero-contrast performance can be treated as a baseline (not

shown) justifying to analyze the performances at larger-than-zero

contrasts relative to the zero-contrast performance.

The contrasts levels at which the applied measures show

increasing performance suggest a different importance of photon

shot noise for the photoreceptor response reliability. All measures

indicate that photon noise plays a role, but from the information

capacity and the Kullback-Leibler divergence one would have

underestimated its importance and accordingly overestimated the

amount of noise originating within the photoreceptor itself. The role

of photon shot noise depends on the light level. Our analysis

indicates that it is very prominent under our experimental conditions

(about 30,000 effective photons per second). At dimmer light levels

photon noise can be expected to be even more prominent since its

relative contribution increases with decreasing number of photons.

At higher light levels when the signal-to-noise ratio of the visual input

signal is higher, photon noise was shown to be negligible [15].

Here we found considerable differences between the different

measures of coding performance on the very first stage of visual

information processing, i.e. the photoreceptor level. Similar

differences have been found in the electrosensory organ of the

weakly electric fish [23]. There, signal-detection and information

theoretical approaches gave seemingly contradicting results after a

sensory signal underwent dendritic filtering. The choice of the

appropriate measure, out of the variety of possible measures [19]

depends very much on the scientific question. If, for instance, the

question were how many different stimulus levels could be coded

given the observed neuronal noise, the information capacity may

be well suited. On the other hand, if we assume any decoding

mechanism that takes temporal characteristics into account,

information capacity would not be the measure of choice, since

it considers only the frequency content of the responses assuming

their independence and not their phase relations. Instead, the

signal-detection approach appears appropriate to quantify the

system’s performance in representing the time course of a stimulus.

It should be noted that contrasts exceeding 0.035 lead to saturated

discrimination performance whereas information capacity and

Kullback-Leibler divergence appear to increase significantly only

above this saturating contrast level. Hence for stimuli of larger

contrasts the signal-detection analysis gives no additional clues

about the system’s capabilities to discriminate the time course of

the responses.

Although all applied methods are artificial measures of system

performance, the distance estimation (equation 5) could well be

neuronally implemented. All essential parts of the distance measure,

i.e. the subtraction and the correlation of two inputs signals are

implemented for example in circuits involved in motion detection

[24]. Additionally, with a data segment of 125 ms, approximating a

behaviorally relevant time for a fly to evaluate optic flow [25], i.e. the

interval between subsequent saccadic turns characterizing fly

orientation behavior, two signals can be discriminated faithfully at

a contrast of only 0.025 (75% correct discrimination performance).

In this range the Shannon information capacity and the Kullback-

Leibler divergence indicate hardly any increase.

The results presented here demonstrate that different measures

applied to the same data can yield different answers to the same

question. This further demonstrates the difficulty in combining

knowledge obtained with different measures. Neither of the used

methods, however, gives a complete description of the systems

performance.

METHODS

Electrophysiology
Experiments were carried out on female blowflies (Calliphora vicina).

The retina was accessed through a small hole cut into the fly’s eye

on the equatorial line close to the lateral rim which was sealed with

silicon grease to prevent drying up. Sharp electrodes (Clark GC-

150) were pulled on a Brown-Flaming P-97 Puller (Sutter

Instruments) to have resistances of 80 to 90 MV when filled with

2 M KCl. Recordings were done in bridge mode using a SEC-10L

amplifier (npi electronics, Tamm, Germany). We accepted

recordings with a dark adapted membrane potential lower than

250 mV, a saturating light response of at least 50 mV and an

input resistance of at least 25 MV. Responses were sampled at

4096 Hz (DAQBoard 2000, IOtech, Cleveland, OH) and stored

on hard disk for offline analysis.

Light stimulation
Photoreceptors were stimulated using LEDs (3 mm diameter,

525 nm light emission, type: WU-14-730GC, Vossloh-Schwabe

Optoelectronic GmbH, Germany, covering approximately 1.15u
of visual space). Since the data were collected as part of a study on

motion vision two LEDs were used separated by 3u. One of them

was positioned in the optical axis of the recorded cell. The off-axis

LED had only little impact on the responses of the recorded cell

(control experiments with only a single LED revealed no different

results). LEDs were driven by a voltage-to-current converter

controlled by the analogue outputs of the data acquisition board

and they were used in the linear range of the current-light

characteristic. Light intensities were calibrated by counting single

photon responses at very low light intensities obtained with neutral

density filters (Lee Filters, UK) in front of the LED. The average
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light intensity was estimated to 3.04*104 effective photons per

receptor and second. Receptors were stimulated with band limited

(256 Hz cut-off) white noise light intensity modulations of different

contrasts (figure 1).

Data analysis
Data analysis was done in MATLAB (The Mathworks, Natick,

MA). For the analysis the responses were converted to deflections

relative to the membrane potential at constant background

illumination. To estimate the Shannon information capacity the

responses were segregated into the stimulus-induced response

component (referred to as signal) and the stimulus-independent

response component (referred to as noise). The across trial average

of the 25 stimulus presentations was regarded as the signal while the

difference between each individual response trace and the across

trial average was assumed to represent the noise. The inset in

figure 2D shows that 25 trials deliver an appropriate approximation

of signal and noise. Signal and noise power spectral densities [S(f)

and N(f)] for all but the largest contrast were calculated from 4000

data point segments (963,379 ms) zero padded to 4096 data points

(1s) windowed with a 4096 point Hanning window. Power spectra

were normalized to the mean square amplitude of the data. At the

largest contrast three such segments with 50% overlap were used,

again a 4096 point Hanning window was applied. A similar method

was used with the smaller data segments.

Estimation of the Shannon information capacity
Since signal and noise response components are Gaussian

distributed and independent and the response amplitude linearly

depends on the light level the Shannon information capacity [1],

R, could be easily calculated from the ratio of the average signal

power spectral density and noise power spectral density [S(f) and

N(f), respectively]:

R~

ð?

0

df log2 1z
S fð Þ
N fð Þ

� �
: ð3Þ

Kullback-Leibler divergence
For the Kullback-Leibler divergence [3,19] and the signal-

detection analysis (see below) two types of responses were

recorded: 1st, the reference responses which are 25 repetitions of the

same stimulus at each contrast level. Those responses were used to

calculate the Shannon information capacity (above). 2nd the test

responses which were 25 responses to 25 different random light

sequences with statistically the same contrast and cutoff frequency

as the reference stimuli recorded at each contrast level. The

Kullback-Leibler divergence was estimated according to:

DKL P,Qð Þ~
X

r

P r½ �:log2

P r½ �
Q r½ �

� �
, ð4Þ

with r the response amplitude given as the deviation from the

average membrane potential at background light intensity; P and

Q are the probability distributions of the response amplitudes for

the reference and test responses, respectively approximated at each

data/time point by fitting Gaussians to the response level

distributions found across trials. The individual divergences were

averaged across time at each contrast level.

Signal-detection analysis
The discriminability of reference and test responses was calculated by

assessing the response dissimilarity with a simple root-mean-square

distance estimation:

Dx,y~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

xi{yið Þ2
vuut , ð5Þ

with x and y being the two responses (either two different reference

responses or a reference and a test response), i the actual time bin and N the

length of the data segment, i.e. the number of data points included in

the analysis. We chose this distance measure for it is a standard way

to collapse the differences between two time-dependent signals into a

single value. Basically the same results were obtained when the

response similarity was determined on the basis of the absolute value

of the difference between reference and test responses.

Distances were calculated from the same data as used for the

Kullback-Leibler divergence (above) according to equation 5. The

responses were low-pass filtered with a 500 Hz cut-off which is far

beyond the high frequency cut-off of the photoreceptor transfer

function. Reference and test responses were discriminated according to the

two average distances <Dr> and <Dt>. For each single reference

response <Dr> denotes the average distance to all other reference

responses and <Dt> the average distance to all test responses. In a

deterministic system the average distance between an individual

reference response and all other reference responses <Dr> is zero while the

average distance between this reference response and the test responses <Dt>
is larger than zero. This would be the same for each reference response

and hence, the reference responses would be assumed discriminable

from the test responses with 100% correct performance. In a real

system, however, noise originating from different sources corrupts the

neuronal response reliability and as a consequence a separation of

responses might not be so easy. If the noise in the system is very large

compared to the stimulus-induced responses also the reference responses

appear to be different at each presentation, though evoked by the

same stimulus sequence. In this case <Dr> is not necessarily smaller

than <Dt>. In the extreme case, 50% of the reference responses can be

expected to have a <Dr> that is smaller than the corresponding <Dt>.

The response discriminability then drops to chance level, i.e. 50%. In

intermediate cases, with not such a strong noise, the discrimination

performance is defined as the percentage of reference responses for

which <Dr> is smaller than <Dt>. When the difference between

<Dr> and <Dt> was smaller than could be expected from electrical

noise (originating form the recording setup) the according response

were classified indistinguishable.

The data points for the discrimination performance were fitted

with a sigmoid function of the form:

Pc~
1

2
: 100

1ze{a xi{bð Þz50, ð6Þ

with Pc the discrimination performance, xi the contrast, a the

slope, and b the position of the infection point. The function is

scaled to range from 50 to 100% correct.
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