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Abstract: Avian tibial dyschondroplasia affects fast growing broiler chickens accounting for almost
30% of leg ailments in broilers. The present project was designed to assess the efficacy of osthole
against avian tibial dyschondroplasia (TD). Two hundred and forty chickens were equally allocated
into control, TD and osthole groups (n = 80). The TD and osthole group chickens were challenged
with tetramethylthiuram disulfide (thiram) at 50 mg/kg of feed from 4–7 days, followed by osthole
administration at 20 mg/kg orally to the osthole group only from 8–18 days. Thiram feeding
resulted in lameness, increased mortality, and decreased production parameters, alkaline phosphatase
(ALP), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase
(GSH-PX) levels, along with significantly increased aspartate aminotransferase (AST), alanine
aminotransferase (ALT), malondialdehyde (MDA) levels, and growth plate size. Moreover, the
genes and protein expressions of BMP-2 and RUNX-2 were significantly down-regulated in TD
affected chickens (p < 0.05). Osthole administration showed promising results by alleviating lameness;
increased ALP, SOD, T-AOC, and GSH-Px levels; and decreased the AST, ALT, and MDA levels
significantly. It restored the size of the growth plate and significantly up-regulated the BMP-2 and
RUNX-2 expressions (p < 0.05). In conclusion, the oxidative stress and growth plate anomalies could
be assuaged using osthole.

Keywords: biochemical markers; genes; growth plate; liver antioxidants; osthole; tibial dyschondroplasia

1. Introduction

The poultry industry is extremely important for creating a sustainable livelihood and economic
independence. It provides animal proteins, i.e., chicken, meat, and eggs, that are widely consumed
by the human population [1]. The leg ailments are considered the biggest economic threats to the
poultry industry and many of these abnormalities are associated with interference in the maturational
sequence of chondrocytes within the growth plate [2]. Avian tibial dyschondroplasia is one of
these abnormalities [2] accounting for almost 30% of leg ailments in broilers [3]. It results in
abnormal differentiation of growth plate (GP) chondrocytes responsible for cartilage vascularization,
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mineralization, and bone formation [4]. The definite cause of TD is still obscure but factors causing
angiogenesis retardation have been recognized to induce its occurrence [5]. Thiram is an eminent
pesticide, fungicide, and fly and rodent repellent [4,6]. Owing to its diffusion in the soil, atmosphere,
and water [7], the pervasive usage of such agents is life-threatening [8]. Its inclusion into the poultry
food chain is a potential menace to the poultry industry [9] and can cause feed toxicity that in turn
leads the chickens to develop tibial dyschondroplasia. [6,10]. It has harmful and noxious effects on
the liver [11] and halts angiogenesis [6]. Moreover, thiram feeding can experimentally induce tibial
dyschondroplasia in chickens [12].

BMPs (bone morphogenetic proteins) are members of the transforming growth factor beta (TGF-β)
superfamily [13]. These proteins are responsible for bone regeneration and differentiation [14] and
have a key role in bone care and restoration [15]. BMPs expression elicits osteogenic signals driving
the bone differentiation process [16]. Among BMPs, BMP-2 is the earliest detected BMP having
a stout in vivo and in vitro osteoinductive competence [17,18]. It is an eminent stimulator of bone
development and osteoblasts differentiation [19]. Similarly, RUNX-2 (runt-related transcription factor-2)
is a vital transcription factor for chondrocyte maturation [20]. It is an obligatory gene for osteoblast
differentiation [21] and a key bone regulator [22].

Traditional Chinese medicines (TCMs) are used either individually or in combination against many
diseases [23]. These medicines have been used effectively in the treatment of metabolic disorders [24].
Osthole is a coumarin derivative [25]. It is commonly called “She-Chuang-Zi,” which is derived from
the dried fruit of Cnidium monnieri (Fructus cnidii) [26]. It has anti-inflammatory, anti-osteoporotic,
anti-tumor [27], anti-oxidant, and anti-apoptotic properties [28], and is used in the management of
allergies and asthma [29], inflammation, and vascular diseases [30]. In view of such eminent therapeutic
potential, we hypothesized that osthole may prove to be an excellent alternative to synthetic drugs
for the treatment of different ailments with special reference to tibial dyschondroplasia in chickens.
Therefore, the current project was designed to check the in vivo therapeutic effects of osthole on survival
rate, oxidative stress, liver toxicity, production performances, growth plate anomalies, and the genes
and protein expression of BMP-2 and RUNX-2 in broiler chickens affected with tibial dyschondroplasia.
The chemical structure of osthole is shown in Figure 1 [31].
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2. Materials and Methods

2.1. Animal Ethics

The animal trial was conducted under the approval of the ethics committee of the Huazhong
Agricultural University Wuhan, P.R China, by strictly taking into consideration all the national
legislation and protection of animal welfare concerns (approval No. 31273519).

2.2. Experimental Birds, Chemical Reagents, and Medicine

Two hundred and forty broiler chicks (average weight 41 ± 2 g) were purchased from a hatchery
(Chia Tai Animal Husbandry Co. Ltd., Jingzhou, China). Thiram was purchased from Shanghai
Macklin Biochemical Co. Ltd., Shanghai, China. Commercial reagents kits for superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and malondialdehyde
were purchased from Nanjing Institute of Biological Engineering, Inc., Jiangsu, China. Reagents
kits for aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase
(ALP) were purchased from Biosino Biotechnology and Science Inc., Beijing, China. Fluid for bone
demineralization (Cat: B1023) was purchased from Powerful Biology, Wuhan, China. Osthole (Lot:
T01M9B54821, purity ≥ 98%) was purchased from Shanghai Yuanye Biotechnology Co. Ltd., Shanghai,
China. Trizol reagent was procured from Invitrogen, Carlsbad, CA, USA. The First-Strand cDNA
synthesis kit was procured from TransGen Biotech, Beijing, China. Primers for BMP-2 and RUNX-2
genes and the reference gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were synthesized
by GenScript®, Nanjing, China. The bicinchoninic acid assay (BCA) protein detection kit and rabbit
polyclonal anti-BMP-2 (servicebio GB: 11252) antibodies were purchased from Service Biotechnology,
Wuhan, China. The rabbit polyclonal anti-RUNX-2 (Abcam: ab23981) antibodies were purchased from
Abcam Trading Company Ltd., Shanghai, China.

2.3. Experiment Design

The schematic experiment design is explained in Figure 2 [32]. An equal number of chickens
were incorporated into three groups designated as control, TD, and osthole groups (n = 80). The total
duration of the experiment was 18 days. Throughout the experiment, control group chickens received
standard normal feed and water. However, the TD and osthole groups’ chickens were challenged with
thiram at 50 mg/kg of feed from days 4–7 [9,33]. On day 8, the thiram feeding was discontinued in both
the TD and osthole groups followed by treating osthole group chickens only with osthole at 20 mg/kg
orally from days 8–18 [27,34].
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2.4. Sample Collection

Samples were collected on the 7th, 10th, 14th, and 18th days. Fifteen birds (n = 15) were randomly
selected from each group on each specified day. Before sacrificing, blood samples were collected
via jugular venipuncture, which were then centrifuged at 3000× g for 20 min for serum separation
and stored at −70 ◦C for later analysis of biochemical parameters. Afterward, the chickens were
sacrificed using cervical dislocation and were then dissected to collect liver, kidney, spleen, heart
and bone samples. The liver, spleen, kidney, heart, and bone samples were stored immediately at
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−80 ◦C. The liver was used for the assessment of the oxidative stress and bones for the genes and
protein expression and immunohistochemistry. Some of the tibiotarsal bone samples were fixed in
4% paraformaldehyde for later use in hematoxylin and eosin staining. The visceral organs, i.e., liver,
spleen, kidney, and heart were used for the measurement of visceral organs indices.

2.5. Mortality Assay, Production Parameters, and Visceral Organs Indices

The mortality was noted daily and the parameters regarding average daily weight gain, average
daily feed intake, and feed conversion ratio (FCR) were recorded on various days. The liver, kidney,
spleen, and cardiac indices were measured in all the groups on various days. The visceral organs
indices were calculated as their weight per body weight of chicken [6].

2.6. Biochemical and Antioxidants Analyses

The activity of ALP and the levels of AST and ALT in the serum samples were assessed in the
control, TD, and osthole groups via commercial kits using a semiautomatic biochemical analyzer
(Coulterr LH 750, Guangdong, China) as per the instruction manuals and the values were presented in
units per liter (U/L) as per previous studies [4]. Meanwhile, SOD, T-AOC, and GSH-PX activity, as well
as MDA contents, were assessed in the liver samples of all the groups. Concisely, a liver homogenate
was prepared with the help of a polytron aggregate homogenizer (Polytron PT-MR 3100, KINEMATICA
AG, Luzern, Switzerland) by adding a 10 mM phosphate buffered saline (10 mL PBS/0.1 g of tissue).
The homogenate was then centrifuged at 3500× g for 10 minutes and the supernatant was collected
for the determination of liver antioxidants with UV spectrophotometer using assay kits according
to instruction manuals. The values for liver SOD, T-AOC, and GSH-Px were expressed in U/mg
(U per milligram of protein), while liver MDA contents were interpreted in nmol/mg (nanomoles per
milligram) [35,36].

2.7. Tibia Bone Parameters

Tibia parameters, i.e., the length and weight of tibia, growth plate width, and tibia index were
recorded in control, TD, and osthole groups. A ruler, an electronic balance and digital calipers
(#SATA91511, TATA Company, Shanghai, China) were used to measure the length, weight, and GP
width respectively [6]. The tibia index was calculated as the tibia weight divided by chicken weight
before slaughtering [37].

2.8. Hematoxylin and Eosin (H&E) Staining and Immunohistochemistry

The tibiotarsal bone samples fixed in 4% paraformaldehyde were then decalcified in bone
demineralization fluid, dehydrated in ethanol, cleared in xylene, and embedded in paraffin wax.
Histological slides were prepared by cutting the growth plate sections into 5-µm thick slices, followed
by dewaxing in xylene and staining with hematoxylin and eosin stain for histological analysis [10].
Immunohistochemical analysis was performed according to an earlier described method [38]. After
washing with PBS and peroxidase blocking solution (Boster, Wuhan, China), the slides were incubated
with anti-BMP-2 and anti-RUNX-2 primary antibodies (1:1000) overnight at 4 ◦C. After washing with
PBS, they were again incubated with secondary antibodies (1:200), this time in the dark for 2 hours at
25 ◦C. Finally, the slides were then examined under the microscope (Olympus CX31, Tokyo, Japan).

2.9. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)

The RNA extraction and RT-qPCR were conducted as per previous studies [39]. The total RNA
from GP tissues was extracted using the Trizol method. After calculating the concentration of extracted
RNA with a Nanodrop 2000 analyzer (Thermo scientific, Waltham, MA, USA), the total RNA with a final
volume of 20 µL was then reversely transcribed to cDNA using a cDNA synthesis kit. The RT-qPCR
reactions were performed in quadruplex with a Step One-Plus™ qRT-PCR system (Applied Biosystems,
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Foster City, CA, USA). The sequences of the primers used in this study are given in Table 1. The relative
quantification of gene expression was measured using the delta Ct (2−∆∆Ct) method [40].

Table 1. Primers used in this study.

Genes Accession Number Primer Sequences (5′–3′) Product Size (bp)

BMP-2 XM_015283435.1 F: 5′-TCAGCTCAGGCCGTTGTTAG-3′

R: 5′-ACCCCACGTCATTGAAGTCC-3′ 185

RUNX-2 AF_445419 F: 5′-TAAAGGTGACGGTGGATGG-3′

R: 5′-TGTGGATTAAAAGGACTTGGTG-3′ 190

GAPDH NM_204305.1 F: 5′-GCCCAGAACATCATCCCA-3′

R: 5′-CGGCAGGTCAGGTCAACA-3′ 137

2.10. Western Blotting

Western blotting was performed as per previous studies [37,39]. Briefly, after the homogenization
of growth plates in ice-cold PBS and storage at 4◦C for 2 hours, the supernatant was collected after
centrifugation at 14,000× g for 10 min. Total protein concentration was determined using a BCA
kit and the samples were stored at –70 ◦C. The equal amount of proteins from growth plates were
separated using 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and
then transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were incubated in
5% skimmed milk for 1.5 hours at room temperature and then incubated at 4 ◦C overnight with BMP-2
and RUNX-2 primary antibodies (1:1000). The membranes were then washed with tris-buffred saline
tween (TBST) for 5 min and incubated with secondary antibodies (1:3000) at room temperature for
30 min, followed by washing with TBST four times. By using the β-actin as a loading control, finally,
the images were taken with an imaging system (Ultra-Violet Products Ltd., Upland, CA, USA).

2.11. Statistical Analyses

The data was analyzed using one-way analysis of variance (ANOVA) and Student’s t-test using
SPSS Statistical Package (v19.0, SPSS Inc., Chicago, IL, USA). All the figures were created using
Graphpad Prism 6 (GraphPad Software Inc., San Diego, CA, USA). The data were expressed as the
mean ± standard deviation (mean ± SD). The differences were considered statistically significant if
p < 0.05.

3. Results

3.1. Clinical Observations of Thiram–Induced TD

All the chickens were strictly monitored throughout the trial period for any obvious clinical signs.
Up to three days of consuming the normal standard feed, there were no signs of any deformities among
chickens in any of the groups. However, when the chickens in the TD and osthole groups were fed
with thiram from the 4th to 7th day, the chickens developed a variety of clinical signs like depression,
leg deformities, lameness, and difficulty in standing. In contrast, the control group chickens were
physically active and looking healthy. After thiram stoppage, the clinical signs in the TD group reduced
in severity but persisted throughout the experimental period. On the other hand, the osthole group
chickens were able to eat, drink, stand on their feet, and walk properly after treatment with osthole
(Figure 3).
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Figure 3. Birds showing characteristic clinical signs of lameness in the TD and osthole groups
after thiram feeding compared to the control group. Osthole provided efficient recovery in osthole
group chickens.

3.2. Chicken Mortality and Survival Rate

The mortality among groups was recorded on daily basis, i.e., from 1–18 days (Table 2). It was
evident that there was a drastic increase in the number of dead birds in the TD group. The mortality rates
in the control, TD, and osthole groups were 6.25% (5/80), 20% (16/80), and 12.5% (12/80) respectively.
This increased mortality rate was attributed to thiram administration in the TD and osthole groups.
However, fewer dead birds were recorded in the osthole group, chiefly after the osthole administration
(Figure 4).

Table 2. Mortality rates.

Days Control (n = 80) TD (n = 80) Osthole (n = 80)

1–7 2 9 7

8–10 2 5 2

11–14 1 1 0

15–18 0 1 1

Total dead birds 5 16 10

The mortality rate among control, TD, and osthole groups from day 1 to day 18. Chi-square analysis for total number
dead and alive chickens.
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Figure 4. Effect of osthole on the survival rate of chickens. The osthole group chickens that were
initially challenged with thiram from days 4–7 were treated with osthole from days 8 to 18.

3.3. Production Parameters Analysis

The daily weight of chickens (DW), average daily weight gain (ADWG), average daily feed intake
(ADFI), and the feed conversion ratio (FCR) were recorded. A significant decrease in the growth
parameters of TD affected chickens was observed on various days (p < 0.05). However, after the
osthole administration, these growth indices were significantly improved in the osthole group chickens
(p < 0.05). Moreover, the FCR of the TD group chickens was poor, signifying a poor weight gain and
feed intake. Conversely, the FCR of the osthole group was poor on day 10 but gradually improved on
days 14 and 18 after the osthole administration (p < 0.05) (Figure 5).
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3.4. Tibia Parameters Analysis

It was evident that there was significantly decreased length and weight of the tibia bone and
increased width of the growth plate in TD affected chickens along with an increased tibia index
(p < 0.05). Osthole significantly restored the width of the growth plate (p < 0.05). The length and
weight of the tibia and the tibia index in the osthole group were nearly normal, i.e., similar to the
control group, but the results were non-significant (Figure 6).
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3.5. Serum Biochemical and Liver Antioxidants Analyses

After thiram administration, the ALP activity was significantly decreased along with elevated
AST and ALT levels in thiram and osthole group chickens as compared to the control group (p < 0.05).
Moreover, there was a prominent oxidative imbalance in TD-affected chickens in terms of decreased
SOD, GSH-Px, and T-AOC levels, along with increased MDA contents. Osthole administration
significantly normalized the ALP activity and ALT and AST levels, and relieved the oxidative stress in
osthole group chickens, chiefly on the 18th day (p < 0.05) (Figure 7).
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Figure 7. Effect of thiram on serum biochemical and liver antioxidant parameters followed by excellent
recovery by osthole in the control, TD, and osthole groups: (A) ALP, (B) ALT, (C) AST, (D) SOD, (E)
GSH-Px, (F) T-AOC, and (G) MDA. There was a notable difference in values for different days. The data
are expressed as the mean ± SD (* p < 0.05).

3.6. Visceral Organs Indices

The liver, spleen, heart, and kidney indices were calculated on the 7th, 10th, 14th, and 18th days.
Overall, no significant difference was observed in these parameters among the groups. Nevertheless,
there was a significant difference in the cardiac index on the 7th and 18th days and in the spleen index
on the 18th day between the control and TD groups (p < 0.05) (Figure 8).
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3.7. Histological Examination of the Tibial Growth Plates

Hematoxylin-and-eosin-stained histopathological micrographs indicated enormous vascularity in
proliferative and hypertrophic zones with normal tibia GP in the control group along with regular
and tightly arranged chondrocytes with the nucleus at the center. Conversely, after thiram feeding,
the vascularity in the TD growth plate was lost and the chondrocytes were distorted and necrotized.
However, osthole administration from the 8–18th days efficiently restored the tibia GP and led to
a proper columnar arrangement of the chondrocytes with huge progressing blood vessels in the
hypertrophic zone of the osthole group (Figure 9).
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nucleus with less vascularity in the TD group. Key: Growth plate (GP), blood vessels (BV), tibial
dyschondroplasia lesion (TDL), articular cartilage (AC); proliferative Zone (PZ), hypertrophic zone (HZ).

3.8. Immunohistochemical Analysis

The localizations of BMP-2 and RUNX-2 antibodies in the growth plates of control, TD, and osthole
groups were checked using immunohistochemistry. There were a greater number of cells positively
stained with BMP-2 and RUNX-2 antibodies in the control and osthole-treated groups. Conversely, the
TD group had fewer positively stained cells (Figure 10).
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3.9. The mRNA and Protein Expressions of BMP-2 and RUNX-2

The mRNA expressions of the targeted genes and protein levels were scrutinized by conducting
RT-qPCR and western blotting techniques. Significantly abridged mRNA expressions of BMP-2 and
RUNX-2 were observed in the TD affected chickens (p < 0.05). Osthole administration gradually
improved the mRNA expression and protein levels of BMP-2 and RUNX-2 with significant up-regulation
on days 14 and 18 in the osthole group. The western blotting results followed almost the same pattern.
The protein levels of BMP-2 and RUNX-2 were significantly down-regulated in the TD group, followed
by significant up-regulation in the osthole group on various days (p < 0.05) (Figure 11).
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Figure 11. RT-qPCR and western blot analysis of BMP-2 and RUNX-2 in the control, thiram, and
osthole groups: (A) BMP-2 mRNA expression, (B) RUNX-2 mRNA expression, (C) BMP-2 protein
expression, and (D) RUNX-2 protein expression. The bands were quantified using Image Studio Lite
5.2.5® (LI-COR Biosciences, Lincoln, NE, USA). The data are expressed as the mean ± SD (* p < 0.05).
TD—Tibial dyschondroplasia.

4. Discussion

Thiram toxicity results in various distinct clinical manifestations in affected chickens, i.e., decreased
physical activities [41], swollen tibia and death [18], and a reduced length and weight of the tibia bone
with increased GP size and tibia index compared to normal healthy chickens [37,38]. Moreover, it
has been reported that thiram can induce tibial dyschondroplasia (TD) [37] with a resultant reduced
weight gain and feed intake and poor feed conversion ratio (FCR) [35,38]. In our study, compared to
the control group, TD-affected chickens showed clinical signs like depression, leg distortions, lameness,
standing difficulties, and increased mortality. The tibia length and weight were reduced and the
growth plate width and tibia index were markedly increased. Chicken production parameters, i.e.,
daily weight, average daily weight gain, and average daily feed intake were decreased, along with
having a poor feed conversion ratio. The alteration in production parameters was attributed to the
fact that thiram caused lameness and stress, which in turn led the chickens to be deprived of feeding.



Antioxidants 2019, 8, 330 15 of 19

Osthole relieved these clinical manifestations, reduced the mortality, restored the tibia parameters, and
improved chicken performance effectively.

Variations in the levels of serum biochemical markers/enzymes, i.e., ALP, AST, and ALT typically
reflects the health of liver. Lowered levels of ALP are reported to occur in osteoporosis [42]. Liver
damage causes an increased release of ALT and AST into the blood circulation by damaged hepatocytes,
causing their levels to rise [43,44]. In the current study, the levels of serum enzymes were assessed to
evaluate the liver damage due to thiram toxicity. There were significant variations in the ALP, AST, and
ALT levels in TD-affected chickens revealing a possible liver injury. These findings are in accordance
with previous studies where a decreased ALP and increased ALT and AST levels were reported in
thiram-induced TD chickens [12,45]. After the osthole treatment, the levels of serum enzymes were
significantly restored. Our findings are in accordance with previous studies where osthole has been
documented to augment the ALP activities [16] and is capable of reducing the higher levels of ALT
and AST in rat models with hepatic injuries [46,47].

Both aerobic metabolism and pathological disorders result in the production of oxidants [48].
In a normal health status, there is always a balance between oxidants and antioxidants [49]. Any
sort of disparity between these two is referred to as oxidative stress [48]. The liver is an important
organ contributing almost 2% of the total body weight of an animal [50]. Having a key role in the
detoxification of toxic compounds, the liver is vulnerable to many metabolic disorders for which
the oxidative stress is the foremost clinical indicator [51]. The antioxidant enzymes, i.e., superoxide
dismutase (SOD), provides an imperative antioxidant protection [52] by partitioning the superoxide
anion free radical (O2

−), thus decreasing the O2
− level responsible for the cell damage [53]. GSH-Px,

having peroxidase activity, reduces the lipid hydroperoxides to alcohols and free hydrogen peroxide
to water [54]. Total antioxidant capacity (TAC) is also used for assessing the antioxidant status and
response against the radicals produced in the diseased condition [55]. Thiram causes oxidative stress
and decreases the levels of these enzymes [12,56,57]. Oxidative stress affects the lipid peroxidation
of the cell membrane with resultant overproduction of malondialdehyde (MDA) [58]. MDA is an
extremely noxious end-product [59] and its level is an oxidative stress indicator [60]. Our results
showed a significant decrease in SOD, GSH-Px, and T-AOC contents, along with a marked increase in
MDA contents, indicating oxidative stress. Osthole treatment resulted in a marked assuagement of
oxidative stress by bringing the abnormal oxidant levels to nearly normal, thus confirming that osthole
has promising antioxidant effects [27,28,34,61].

Tibial dyschondroplasia is a bone anomaly in broiler chickens [62]. Hematoxylin and eosin staining
revealed that TD resulted in less vascular cartilage with a noticeable number of cells having a pycnotic
nucleus in proliferative and hypertrophic zones compared to the growth plates of control group
chickens. Immunohistochemistry indicated fewer cells positively stained with BMP-2 and RUNX-2
antibodies in the TD group. Moreover, the expressions of BMP-2 and RUNX-2 were significantly
down-regulated in TD-affected chickens compared to the control group. Our results are comparable to
the previous studies where it has been reported that thiram results in the down-regulation of BMP-2
and RUNX-2 [18,39]. Osthole administration gradually improved the columnar alignment of cells in
the growth plates of osthole group chickens along with an excessive number of cells positively stained
with BMP-2 and RUNX-2 antibodies. Moreover, osthole administration significantly up-regulated the
BMP-2 and RUNX-2 expressions in the osthole group chickens. Our findings are similar to previously
reported studies where osthole has been reported to promote osteogenesis by up-regulating the
expression of BMP-2 [16,63,64] and RUNX-2 [13,16,65].

5. Conclusions

In conclusion, osthole effectively averted the lameness and oxidative stress and enhanced the
productions performance of chicken affected with tibial dyschondroplasia. Furthermore, it regulates
the BMP-2 and RUNX-2 expressions, which are important for bone regeneration and osteoblast
differentiation. Keeping in view the economic losses associated with tibial dyschondroplasia, osthole
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provides new insights toward the therapeutic options in the prophylaxis and treatment of bone
maladies, particularly tibial dyschondroplasia in chickens. Altogether, it is an excellent traditional
Chinese medicine possessing substantial therapeutic properties and can be used as an alternative
medicine to synthetic drugs that are costly and have enormous side effects.
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