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ABSTRACT

The reconstruction of gene regulatory networks
(GRNs) from data is vital in systems biology. Al-
though different approaches have been proposed to
infer causality from data, some challenges remain,
such as how to accurately infer the direction and type
of interactions, how to deal with complex network in-
volving multiple feedbacks, as well as how to infer
causality between variables from real-world data, es-
pecially single cell data. Here, we tackle these prob-
lems by deep neural networks (DNNs). The underly-
ing regulatory network for different systems (gene
regulations, ecology, diseases, development) can be
successfully reconstructed from trained DNN mod-
els. We show that DNN is superior to existing ap-
proaches including Boolean network, Random For-
est and partial cross mapping for network inference.
Further, by interrogating the ensemble DNN model
trained from single cell data from dynamical system
perspective, we are able to unravel complex cell fate
dynamics during preimplantation development. We
also propose a data-driven approach to quantify the
energy landscape for gene regulatory systems, by
combining DNN with the partial self-consistent mean
field approximation (PSCA) approach. We anticipate
the proposed method can be applied to other fields
to decipher the underlying dynamical mechanisms of
systems from data.

INTRODUCTION

Many complex biological processes can be modeled as dy-
namical systems through regulatory networks. For exam-
ple, through dynamical network modeling, one can study
and analyze the underlying mechanisms of cell fate deci-
sions such as stem cell development (1–5) and canceriza-
tion (6–9). So, the reconstruction of gene regulatory net-
works (GRNs) and corresponding dynamical models from

biological data is essential to understanding cellular func-
tions. Many computational tools have been proposed to in-
fer the structure of GRNs (directed or undirected). How-
ever, the challenge remains (10). For example, with the ap-
proaches from correlation and mutual information it’s hard
to identify the direction of the interactions. Approaches
based on the Random Forest (11) have the potential to in-
fer the direction of interactions, but have difficulties to de-
termine the type of interactions (i.e. activation or inhibi-
tion). More recent approaches such as LogicNet algorithm
which based on Boolean network can reconstruct GRNs
with directed and signed edges (12), however, whether this
approach can be applied to more complex networks with
feedback loops remains unclarified. Also, these approaches
share a common limitation which is that they cannot distin-
guish direct interactions from indirect interactions. If two
nodes that are connected indirectly through other nodes or
a network, a direct interaction may be detected from these
approaches. Therefore, recently many researchers focus on
how to eliminate indirect effects and have proposed meth-
ods such as partial cross mapping (PCM) (13) and part mu-
tual information (PMI) (14).

On the other hand, how to quantify the transition dy-
namics of gene regulatory systems is a substantial question
in systems biology, and the energy landscape theory pro-
vides an possible route (1,15–20). For example, in our pre-
vious work, we have developed a self-consistent mean field
approximation (PSCA) approach to calculate the steady
state probability distribution and potential energy land-
scape (21), and a model-based dimension reduction ap-
proach of the landscape (DRL) for high-dimensional gene
regulatory systems (7). Nevertheless, it remains challenging
to develop approaches to quantify the landscape through
combining model-driven and data-driven approaches.

Deep learning has made breakthroughs in many
fields (22). Recently, researchers have used convolutional
neural networks (23) and graph neural networks (24) to
reconstruct GRNs from data, but these approaches are lim-
ited to inferring the direction of the interactions and cannot
obtain the type of interactions. Recently, Shen et al. have
used recurrent neural network (RNN) to infer the structure
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of gene regulatory networks successfully, in several biolog-
ical systems with different functions including adaptation,
controlled oscillation, and pattern formation (25). This
work emphasizes the potential effectiveness of deep neural
network (DNN) used for gene network reconstruction. In
biology, multistable and oscillation phenomena, which are
closely related to nonlinear dynamics, play vital roles in
cell fate decisions processes. Therefore, whether the DNN
can be generalized to infer the structure of multistable
and oscillation systems, especially for high-dimensional
systems remain to be studied. On the other hand, the
reconstruction of gene networks from single cell data is
another challenging problem (26–28). Inspired by previous
studies on DNN and the development of neural ordinary
differential equations (neural ODEs) (25,29–32), we seek
to apply DNN to multistable and oscillation systems for
the network reconstruction. Especially, we consider the
ensemble of multiple models to extract more information
from the data to address the unique challenges posed by
single-cell data, such as cell-to-cell variabilities, short time
series length, and high sparsity. This is not only beneficial
for reducing computational complexity, but also allows
for better modeling of system dynamics, resulting in more
accurate causal inferences. Thus, the network structure
and the dynamics that are both of practical interest for
revealing cell fate decision mechanism, can be obtained in
one framework.

In this work, we introduce the DNN approach for in-
ferring the structure of gene regulatory networks, and test
this approach in different systems. We validate the effec-
tiveness of the DNN in gene regulatory networks with dif-
ferent complexities (dimensions) both for multistable and
oscillation systems. For benchmark, the DNN is compared
with other methods including Random Forest, Boolean net-
work (33,34) and PCM. We find that at different noise level
(characterized by diffusion coefficient D), the DNN per-
forms much better than other methods in both accuracy
and robustness. We also test this network reconstruction ap-
proach for the real-world data from food chain and cardio-
vascular disease, for which the networks inferred by DNN
are well supported by prior knowledge or previous studies.

To further test how the DNN works for real biological
data, especially for single cell data, we study an important
example for cell fate decisions, the mouse preimplantation
development, which begins at fertilization and proceeds
from the 1-cell fertilized zygote to the 64-cell blastocyst. In
this developmental process, the trophectoderm (TE), prim-
itive endoderm (PE) and epiblast (EPI) constitute three dif-
ferent cell types of the embryo (35,36). Although many in-
sights have been gained from previous research, it remains
to be fully clarified for the regulatory mechanisms leading to
the formation of different phenotypes and their state tran-
sitions. Here, a major challenge is how to reconstruct the
gene network and corresponding dynamics based on single
cell data (37,38), which is paramount for revealing cell fate
decision mechanisms. We tackle this issue by applying the
ensemble learning to the single cell data for mouse embryo
development. We not only accurately reconstruct a small-
scale gene regulatory network based on single cell data, the
causal inference of which is supported by a Hill-function
model, but also effectively model a high-dimensional dy-

namical system for mouse embryo development. Based on
this ensemble model, we successfully reconstruct the cell lin-
eage of development, and quantify corresponding kinetic
transition path in terms of gene expression levels. We also
discover critical intermediate cell states in cell fate transition
process, which have been shown to play critical roles in de-
velopment (39). Finally, by combing the DNN model with
the PSCA approach, we propose an approach for combin-
ing data-driven and model-driven strategy to quantify the
energy landscape of gene networks.

Our work proposes a general data-driven approach to in-
fer the structure and dynamics of regulatory networks, espe-
cially for multistable and oscillation systems in biology, and
facilitates the mechanistic understanding of the cell fate de-
cisions in preimplantation development.

MATERIALS AND METHODS

Deep neural network

The neural network model we use contains two hidden lay-
ers, each with 32 nodes. The number of neurons in the in-
put layer and output layer varies for different systems. For
example, in the MISA model (Figure 1C), the number of
input neurons is four, namely x1, x2, a and b (a and b are
parameters, characterizing the intensity of regulation), and
the number of output neurons is two, i.e. f1 and f2. In the
four-dimensional system (Figure 2A), the number of input
neurons is six, which are x1, x2, x3, x4, a and b, and the
number of output neurons is four, which are f1, f2, f3 and f4.
The activation function is chosen as the ReLU function (ex-
cept for the output layer, where the Sigmoid function is used
to limit the state value to 0–1). The neural network model
is trained through standard gradient optimization (Adam
optimizer in Pytorch, learning rate is 0.0001), and the min-
imum batch size is set to 128. The loss function is the aver-
age value of the absolute difference between the prediction
data and the training data (the more detailed parameters of
each DNN model and some suggestions on the choice of
these values can be found in Supplementary Text and Sup-
plementary Table S1).

The trained DNN characterizes a function with input (x1,
x2, ..., xn, �1, �2, ..., �m) and output (f1, f2, ..., fn). We denote
the input as x, the connection weights among the four layers
as w1, w2, and w3, and the corresponding bias terms are b1,
b2, and b3, respectively. Then the output f can be expressed
as:

f = Sigmoid
{
wT

3 · ReLU
[
wT

2 · ReLU
(
wT

1 · x + b1

)
+ b2

]
+ b3

}
. (1)

It can be seen that fi is a function of input x, denoted as Hi:

fi = Hi (x1, x2, ..., xj−1, xj , xj+1, ..., xn, θ1, θ2, ..., θm). (2)

Then the link removal operation (e.g. removing the regu-
lation link from Xj to Xi) can be realized by changing the
input of the function Hi by setting Xj = 0, which leads to:

f̂i = Ĥi (x1, x2, ..., xj−1, 0, xj+1, ..., xn, θ1, θ2, ..., θm). (3)

Here, f̂i is independent of the variable Xj, so the output
dimensions ( f1, f2, ..., fi−1, f̂i , fi+1, ..., fn) simulate remov-
ing the regulation of Xj on Xi.
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Figure 1. General DNN framework and its application on MISA model and oscillation system. (A) The deep neural network framework. The input is
the gene expression of Xi (i = i, 2, ..., n) at time t, the output is fi, and then the formula is used to calculate the gene expression of Xi at time t + �t. In
this loop, xi(t + �t) is introduced into the model to obtain xi(t + 2�t). (B) The edge removal strategy for the reconstruction of network structure. Setting
the gene expression level of X1 to zero will eliminate the direct regulation of gene X1 on gene X2. (C) The structure diagram of the MISA model. The
green and blue round dots indicate genes, the arrows indicate positive regulation, and the blunt arrows indicate negative regulation. Here, genes X1 and
X2 are symmetrical, activating themselves and inhibiting each other. (D) Reconstruction of the network structure when the diffusion constant is 0.0004.
The parameters are set as a = 0.5, b = 0.8. In this case the system has two stable states. The dark blue (green) and light blue (green) lines indicate the
trajectory of gene X2 (X1) after and before edge removal, individually. (E) The oscillation network for repressilator. The oscillation network is a cyclic
negative-feedback loop composed of three genes. (F) Inference of the interaction regarding gene LacI in the oscillation network. If we delete a non-existent
interaction (for example, the regulation of LacI on CI), the target variable (CI) still maintains oscillation, while if we remove an existing interaction (the
regulation of LacI on TetR), the target variable (TetR) no longer exhibits an oscillation pattern.
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Figure 2. The comparison of different methods for network inference. (A) Structure diagram of the four-dimensional gene network system, and the pre-
diction result of DNN for network inference under the noise level D = 0.0001 (right panel), where the vertical axis represents the source of regulation, and
the horizontal axis represents the target of regulation. Here, green boxes (blue) indicate positive (negative) regulations and the darker (lighter) the color,
the stronger (weaker) the regulation is. The yellow boxes represent the predicted interaction, which are fully consistent with the network structure on the
left. (B) Structure diagram of the 10D gene network system. (C) ROC curves of DNN and PCM at different noise levels. (D) F1-score statistics of DNN,
BoolNet, Random Forest and PCM under different noise levels (10 trials, the data set used by each trial contains 3600 time series).

Estimation of the diffusion coefficient D

Consider a n-dimensional Langevin equation:

dx(t)
dt

= F(x(t)) + �(t), (4)

where F(x(t)) represents the driving force of the system
and �(t) = (�1(t), �2(t), ..., �n(t))T is n-dimensional inde-
pendent Gaussian white noise, satisfying E[�i(t)] = 0 and
E[�i(t)�j(t

′
)] = 2D�ij�0(t − t

′
) for arbitrary t and t

′
. Only

when i = j, �ij = 1, otherwise �ij = 0. �0(t − t
′
) is Dirac Delta

function. So the Equation (4) can be transformed into:

dx(t) = F(x(t))dt +
√

2DdW(t), (5)

where W(t) is the n-dimensional standard Brownian mo-
tion. With the Itô formula, Equation (5) can be written as:

dx(t) = F(x(t))dt +
√

2D
√

dtZ, (6)

where Z = (Z1, Z2, ..., Zn) and Zi�N(0, 1) (i = 1, 2, ..., n).
Then we can estimate the diffusion coefficient by calculating
the mean squared displacement from data (40). Specifically,

supposing the n-dimensional time series data xt1 , xt2 , ..., xtm
follow the stochastic differential Equation (6) with time step
�t, we have:

xti+1 = xti + �tF(xti ) +
√

2D�tξ , (i = 1, 2, ..., m) (7)

where ξ is a standard normal random vector. With xk,ti rep-
resenting the kth component of xti , the Equation (7) im-

plies that
xk,ti+1 −xk,ti√

2D�t
−

√
�t
2D F(xti ) is a standard normal ran-

dom variable for all i (i = 1, 2, ..., m − 1). Assuming the
time step �t is infinitesimal,

xk,ti+1 −xk,ti√
2D�t

can be considered as
a standard normal random variable for all i (i = 1, 2, ...,
m − 1). Using the sample variance to approximate the true
variance, we can obtain:

1

2D̂k�t(m − 1)

m−1∑
i=1

(
xk,ti+1 − xk,ti

)2 = 1, (8)
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D̂k = 1
2�t(m − 1)

m−1∑
i=1

(
xk,ti+1 − xk,ti

)2
, (9)

where D̂k is the estimation of D. We can get n estimations
of D (D̂k, k = 1, 2, ..., n). Thus, we can take the average of
D̂k as the final estimation of D:

D̂ = 1
n

n∑
k=1

D̂k. (10)

DNN-PSCA for calculating energy landscape

The dynamical system described by Eq. (5) is composed of
n-coupled differential equations. To obtain the energy land-
scape, one way is to solve diffusion equations describing the
probability evolution and obtain the steady state probability
distribution. Previously, we have developed a self-consistent
mean field approach (1,15), where we split the probability
into the products of individual ones: P(x1, x2, ..., xn, t) ∼∏n

i P(xi , t). Following a weak noise approximation, the
probability distribution can be approximated by a Gaussian
distribution (41,42):

P(x, t) = 1
(2π )n/2|σ (t)|1/2

× exp
{
−1

2
(x − xs(t))Tσ−1(t)(x − xs(t))

}
, (11)

where, xs(t) and �(t) are the first two moments of the Gaus-
sian distribution, i.e., the mean and the covariance, which
can be calculated by (41,42):

dxs(t)
dt

= F(xs(t)), (12)

dσ (t)
dt

= σ (t)AT(t) + A(t)σ (t) + 2D. (13)

Here, �(t) denotes the covariance matrix in time t, and the
matrix elements of A is Ai j = ∂ Fi (x)

∂xj (t)
|x=xs (t), where xs is the

steady-state value of the system. With F determined by the
DNN model, and diffusion constant D estimated from time
series data, we can solve Equations (12) and (13) to ob-
tain the first and second moments, and further calculate the
steady state probability distribution from Equation (11).

The probability obtained above corresponds to a basin
of attraction. If the system displays multiple steady states,
there should be several probability distributions localized at
every basin with different covariance. Therefore, the total
probability is the weighted sum of all these probability dis-
tributions. For example, the MISA model has two attractors
when the parameters are chosen as: a = 0.5, b = 0.8, so the
probability distribution takes the form: Pss(x) = w1 P1(x) +
w2 P2(x), where the weighting factors (w1, w2) represent the
relative size of different basin of attraction, and w1 + w2 =
1. Finally, once we have the total probability, we can con-
struct the potential landscape by: U(x) = −ln Pss(x) (1,15).
Of note, the difference between PSCA and DNN-PSCA is
that PSCA uses an explicit expression for F, whereas DNN-
PSCA models F using DNN from the noisy data, which

therefore provides a data-driven approach to calculate the
energy landscape for gene networks.

RESULTS

Idea illustration for network inference using DNN

We first illustrate the basic idea of using DNN to infer the
structure of regulatory networks. Consider a n-dimensional
stochastic differential equation, describing the dynamics of
a n-dimensional regulatory network, the ith equation can be
described as:

dxi (t)
dt

= fi (x1(t), x2(t), ..., xn(t)) − ki xi (t) + ξi (t), (14)

where xi(t) (i = 1, 2, ..., n) represents the state value of the ith
variable at time t, fi is a function accounting for the synthe-
sis of xi, ki is the degradation rate, and � i(t) represents exter-
nal noise, which is assumed as gaussian white noise (43–45).

It follows that the structure information of the network
is contained in f . Instead of modeling f with explicit form,
which may be hard to comprehend, we use DNN to model
the properties of f from the time series data. The DNN
model we employ here is composed of one input layer, two
hidden layers (each with 32 nodes), and one output layer
(using three hidden layers gives similar results, Supplemen-
tary Figure S5). Regarding the choice of nonlinear function
in DNN, the ReLU function is used for the activation func-
tion of the two hidden layers, while the sigmoid function is
used for the output layer, limiting the state value to 0–1. For
the system described by Equation (14), the number of input
nodes is n, corresponding to the state value of n variables at
time t, and the number of output nodes is also n, represent-
ing f1, f2,..., fn. We can obtain the time-evolving trajectory
x̂ which includes n variables (Figure 1A) via the following
discrete iterative equation:

x̂i (t + �t) = x̂i (t) + fi (x̂1(t), x̂2(t), ..., x̂n(t))�t

− ki x̂i (t)�t (i = 1, 2, ..., n),
(15)

where x̂i (tj ) is the ith element of vector x̂(tj ) at time tj. The
average of the absolute difference between the model trajec-
tory x̂ and the target trajectory x (time series data) is used

as loss function for training, i.e., Loss =
∑n

i=1

∑T
j=1 |xi (tj )−x̂i (tj )|

nT
(T is the total number of time points).

Here, we choose multilayer perceptron model for train-
ing the DNN model, which is simple but powerful as we
will show later. Generally, we do not know the value of the
degradation rate k, so we use the ensemble of multiple mod-
els trained at different k values. From Eq. (14), the regula-
tory relationship between variables can be inferred from the
monotonicity of fi. Specifically, if fi is a monotonically in-
creasing (decreasing) function on Xj, then Xj has an activa-
tion (inhibitory) effect on Xi. In the case of low-dimensional
system, DNN can learn the monotonicity of fi well (Sup-
plementary Figure S1B). However, for more complex sys-
tem, the learned fi is not necessarily monotonous, but has
a parabolic shape (Supplementary Figures S4B and S5B).
So we introduce an edge removal strategy to infer the net-
work structure (25). We assume that there exist interactions
between any node pair, and the strength of the interaction
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is represented by the network connection weight. By setting
the input of certain interaction to zero (Figure 1B, see Ma-
terials and Methods for details) for simulating the removal
of the corresponding regulation, we can observe the change
in the value of relevant variables, which will provide the in-
formation about the type of regulations. The remarkable
change in the value of relevant variables indicates the exis-
tence of regulatory effect. Specifically, if the value of the tar-
get variable increases (decreases) significantly after an edge
removal operation, the corresponding edge is inferred as a
positive (negative) regulation.

Rebuilding the structure of multistable system and oscillation
system

To see how the DNN works for inferring the network struc-
ture, we first study a simplified two-variable model called
mutual inhibited self-activation (MISA) model (Figure 1C).
The MISA model consists of mutual inhibition between two
opposing fates controlled by two transcription factors X1
and X2, which has been shown to govern cell fate decision
and commitment in multiple instances of multipotent stem
or progenitor cells (20,46–48). In biological modeling, Hill
functions are often used to describe the activation and inhi-
bition regulations:

dxi

dt
=

n∑
j=1

Aji × xnh
j

Snh
j i + xnh

j

+
n∑

j=1

Bji × Snh
ji

Snh
j i + xnh

j

− ki × xi + ξi . (16)

Here, Sji represents the threshold of the sigmoidal function,
nh is the Hill coefficient which determines the steepness of
the sigmoidal function (49), ki is the degradation rate of xi,
� is Gaussian white noise, whose autocorrelation function is
< ξi (x, t), ξ j (x, 0) >= 2Dδ(t), and D is diffusion coefficient
matrix. In addition, Aji is the activation constant, which
measures the strength of the activation of Xj on Xi, and Bji is
the inhibition constant, which measures the strength of the
inhibition of Xj on Xi. For example, for the MISA model,
A11 represents the intensity of the activation of the regula-
tory factor X1 on itself, and B21 represents the intensity of
the inhibitory effect of the regulatory factor X2 on the regu-
latory factor X1. Here, we choose a symmetrical case for the
MISA model, namely the parameters are set as: a = A11 =
A22, b = B12 = B21 and k = k1 = k2. With fixed parameter
values S = 0.5, nh = 4, and k = 1, as a and b vary, the system
will display different behavior of multistable states (20).

In a sense, the structure of a gene regulatory network de-
termines the dynamical trajectory of gene expressions. The
artificial neural network framework here seeks to infer the
network structure by first learning f from the trajectory
change of gene expressions. For the MISA model, the input
of the neural network is the gene expression of transcription
factors X1 and X2 at time t and the parameter a and b, and
the output is f1 and f2. The parameters a and b are used as
input to the model, so that we can predict the dynamics of
the system for changing a and b.

Considering the real data is noisy, here we first generate
stochastic trajectory (each time series has 15 data points
and diffusion constant D is 0.0004) from stochastic ODEs

(Eq. 16) for the training of DNN. Results suggest that the
DNN displays a good performance for replicating data gen-
erated by the ODE model. Essentially, for the final steady
state value of gene expression under different parameters,
the stable point value predicted by the DNN and corre-
sponding weight of reaching each stable point are consis-
tent with the simulation results from original ODE model
(Supplementary Figure S1A). These results suggest that
the DNN model can model the dynamical characteristics
of multistable systems. Further, by interrogating the DNN
model trained from the data, we can infer causality between
variables (see Materials and Methods). For example, by set-
ting the gene expression value of X1 at time t to zero (Fig-
ure 1B), we can simulate the expression trajectory of X2 for
removing the regulation from X1 to X2, by calculating f2. As
shown in the right side of Figure 1D, the expression value of
gene X2 is significantly increased after removing the regula-
tion of X1 on X2 (blue curves), so it can be concluded that
gene X1 has a negative regulatory effect on gene X2. With
the parameter a = 0.5 and b = 0.8, the system has two stable
steady states. Under this set of parameters, we can correctly
infer all regulatory effects from both X1 (including the self-
activation of X1 and the inhibition of X1 on X2, Figure 1D),
and X2 (Supplementary Figure S2). When the system dis-
plays one, three or four stable states (corresponding to dif-
ferent parameter values), we can still correctly rebuild the
structure of the network (Supplementary Figure S2). These
results support that the DNN can accurately infer the net-
work structure of multistable MISA model.

We further test how this approach works in an oscillation
system. We choose the repressilator as an example (50). As
shown in Figure 1E, LacI inhibits the transcription of gene
TetR, TetR inhibits the expression of gene CI, and CI in-
hibits the expression of LacI. The negative feedback loop
will lead to an oscillation behavior. The dynamics of the sys-
tem is described by six coupled first-order differential equa-
tions:

dmi

dt
= −mi + α

1 + pnh
j

+ α0, i = LacI, TetR, CI

dpi

dt
= −β(pi − mi ), j = CI, LacI, TetR

(17)

where pi is concentration of the repressor-protein, and mi
is the concentration of corresponding mRNA. The number
of protein copies per cell produced from a given promoter
type during continuous growth is �0, in the presence of sat-
urating amounts of repressor (owing to the ‘leakiness’ of
the promoter), and � + �0 in its absence. � denotes the ra-
tio of the protein decay rate to the mRNA decay rate, and
nh is a Hill coefficient. We add noise to the protein concen-
tration, and the noise level is D = 0.004. Our results show
that the DNN can not only predict temporal oscillation, but
also obtain the potential network structure behind the time
series data (Figure 1F). If we delete a non-existent interac-
tion (e.g. the regulation of LacI on CI), the target variable
(CI) still maintains oscillation, while if we remove an ex-
isting interaction (the regulation of LacI on TetR), the tar-
get variable (TetR) no longer exhibits an oscillation pattern,
indicating that the DNN can model this oscillation system
well and has the potential to reconstruct the network for an
oscillation system (Figure 1F, also see Supplementary Fig-
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ure S3 for similar results considering the regulations from
TetR and CI).

DNN performs better than other methods for network infer-
ence

To further evaluate the effectiveness of the DNN, we make
comparisons between DNN and other network inference
methods. Here, we define Ci j = xs

j − xs
i, j , where xs

i, j (xs
j ) is

the steady state value of Xj after (before) removing the edge
from Xi to Xj. So, Cij provides a quantitative measure for the
amount of change in the steady state value of the variable
Xj after knocking out the regulation of Xi on Xj. For bet-
ter accuracy, in the following work, we use the steady state
change Cij as the major measure for network structure in-
ference, and the change of gene expression trajectory is used
for an auxiliary verification. Specifically, when the variable
trajectory before the interaction is removed is always above
(or below) the variable trajectory after the interaction is re-
moved, the interaction is inferred as a positive (negative)
regulation.

We further apply DNN to a four-dimensional gene net-
work (Figure 2 A), which is also modeled using Hill func-
tions (Equation 16). This network contains four variables
(denoted as Xi, i = 1, 2, 3, 4) and eight interactions, includ-
ing the self-activation of each variable and four inhibitory
interactions, forming a feedback loop. When the parameter
values are chosen as: a = 0.35, b = 0.3, S = 0.2, nh = 4, and k
= 1, the system displays seven stable points. We first gener-
ate simulation data based on this four-dimensional dynam-
ical model (each time series has 15 data points), and then
train DNN to get f with these simulation data. In this way,
we actually obtain a dynamical system model expressed by
DNN, although not with explicit form of f functions. We
find that this DNN model is able to replicate all the results
from original ODE models. For example, the values of sta-
ble points predicted by the DNN model and corresponding
weight of reaching each stable point are in line with the sim-
ulation results from original ODE model (Supplementary
Figures S4A and S5A). Based on the DNN model, using the
edge-removal approach, we can further infer the network
structure. As shown in Figure 2 A (right), the positive (neg-
ative) value indicates activation (inhibition), and the greater
(smaller) the absolute value, the stronger (weaker) the reg-
ulation is predicted. Here, the vertical axis represents the
source of regulation, and the horizontal axis represents the
target of regulation. For example, when the noise level D =
0.0001, the DNN can accurately predict the network struc-
ture (see Supplementary Figure S6 for other noise level D).
It is worth noting that the prediction of interaction depends
on the choice of the threshold. However, the values of Cij are
linearly separable when noise level D is not large, so the se-
lection of the threshold has a minor effect for the inference
of the interaction (Figure 2 A, Supplementary Figures S4C,
S5C and S6).

Next, we apply the DNN to a more complex system,
which is a ten-dimensional gene regulatory network. We fur-
ther compare DNN with other methods, including tradi-
tional Random Forest (11) and Boolean network (33,34),
as well as the latest PCM (13) (Figure 2 B). We run 10 tri-

als under each different noise level, and the data set used by
each trial contains 3600 time series and each with 20 data
points (except for the time series used by PCM for which
each time series contains 200 data points). When the pa-
rameter values are chosen as: a = 0.5, b = 0.8, S = 0.2,
nh = 4, and k = 1, the system possesses over 100 stable
points. Even for such a complex system, the DNN method
can still model the system dynamics and infer the causality
well from small amounts of data (see Supplementary Fig-
ure S7 for one trail result). The true positive (TP) is the
number of predicted interactions matching the true struc-
ture, the false positive (FP) is the number of interactions
predicted but not present in the true structure, the false neg-
ative (FN) is the number of unpredicted interactions in the
true structure, and the true negative (TN) is the number of
unpredicted interactions matching the true structure. It is
worth noting that other methods only need to match the in-
teraction with the correct structure, regardless of the type of
interaction, while for DNN the interaction type (activation
or inhibition) must also match. The true positive rate (TPR)
is defined as TP

TP+FN , the false positive rate (FPR) as FP
TN+FP

and F1-score as 2∗TP
2∗TP+FN+FP . We can further get the receiver

operating characteristic (ROC) curve (Figure 2C). With the
increase of noise level, the DNN method still maintains a
high accuracy rate in causality inference even with only a
small amount of data. Meanwhile, the PCM does not give
good enough performance at different noise levels (Figure 2
C).

Since this ten-dimensional gene network is a multistable
system, there exist multiple stable attractors in this system.
This may explain why the correlation-based PCM does not
perform well when the noise level is small, since correlation-
based methods usually require oscillating data. We perform
statistical analysis on the results of all experiments via F1-
score (Figure 2D). Consistent with the ROC curve, F1-
score shows that PCM does not perform well under small
noise, and for all noise considered, the DNN displays high-
est accuracy for the network inference (Figure 2 D). Only
at D = 0.005 and D = 0.01, BoolNet performs closely as
DNN does, but we need to emphasize that BoolNet can-
not identify the type of interaction. Additionally, when the
noise level increases to D = 0.02, the prediction perfor-
mance of BoolNet drops rapidly, while the performance of
DNN does not decrease significantly, indicating that DNN
has better robustness for structure inference. In general, the
DNN shows best performance in the accuracy and robust-
ness of network structure inference among all methods con-
sidered. It’s important to point out that the DNN can not
only predict the type of interaction, but also predict the self-
regulation, which is usually not available for other methods
mentioned above.

Reconstructing networks from real-world data

DNN is shown to perform well for network inference for the
simulated data. We hope to see how it works on structure in-
ference from real-world data. We first consider a food chain
network composed of three organisms: Picophytoplankton
(P), Rotifers (R) and Cyclopoids (C) with the predator-prey
relations (Figure 3A). The oscillatory population data come
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Figure 3. Reconstructing networks from real-world data. (A) A food chain network composed of three types of plankton, where the thickness of the arrows
represents the food preferences of the species and the direction of each black arrow represents the interaction between prey and predator. (B) The prior
structure used in DNN. Arrows ending with a dot characterize the interaction with directions but without the interaction type. (C) The interaction predicted
by DNN, where the square marked by the black box are consistent with the black arrow in (A). (D) The results of all interactions between air pollutants
and cardiovascular diseases predicted by DNN. (E) The reconstructed network based on (D), where the thickness of the arrow indicates the intensity of
interaction. The red arrows highlight the causal interactions on cardiovascular diseases, which correspond to the red boxes in (D).

from a plankton community isolated from the Baltic Sea
which is cultured for more than eight years under constant
external conditions (13,51,52). For network inference, a
critical issue is how to distinguish the direct causal links
from the indirect ones, i.e., how to avoid misidentifying in-
direct causations as direct ones (13). We seek to test whether
DNN can distinguish the direct causal interaction (P to R
and R to C), from indirect causal interaction (i.e. the link
from Picophytoplankton to Cyclopoids). We do this by first
introducing the prior structure with both direct and indi-
rect interactions among R, P and C (Figure 3 B). Then we
train DNN to perform the network structure inference. It
is worth noting that each time series we use in this exam-
ple has only 10 data points (see Supplementary Text and
Supplementary Table S1 for parameter settings). Remark-
ably, the DNN not only successfully predicts the promoting
effect of Picophytoplankton on Rotifers and the promoting
effect of Rotifers on Cyclopoids, but also eliminates the link
from P to C in prior structure, that is, the DNN predicts
that there is no direct causal interaction from Picophyto-
plankton to Cyclopoids (Figure 3C), which is consistent with
the ground truth structure (Figure 3A). These results indi-
cate that the DNN model has good ability to distinguish
direct interactions from indirect interactions. Additionally,
the DNN can also model the food preferences of the species

(the black square in Figure 3C). Here, deeper color corre-
sponds to stronger interaction, which is consistent with the
biological knowledge (the thickness of the arrows in Fig-
ure 3A represents the food preferences) (51).

Our second real-world example is from the data of hos-
pitalization records of air pollution and cardiovascular dis-
eases in Hong Kong from 1994 to 1997 (53–55). In this case,
we also introduce a prior structure, that is, the number of
people suffering from cardiovascular disease has no effect
on pollutants, and pollutants have little effects on them-
selves. According to the prediction of the DNN model (each
time series we use in this example has 20 data points, and
see Supplementary Text and Supplementary Table S1 for
parameter settings), only two pollutants, namely nitrogen
dioxide and respiratory suspended, are found to be the main
cause of cardiovascular disease (Figure 3D and E). Neither
sulfur dioxide nor ozone is identified as the cause of the
disease, which is in line with previous studies (13,56,57).
Due to the influence of other factors (such as tempera-
ture, humidity, wind speed, etc.), the causal relations of
pollutants warrant further verifications. In summary, the
DNN displays great predicting ability for causality infer-
ence for real-world data, with a great performance in dis-
tinguishing direct causal interactions from indirect causal
interactions.
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Reconstructing the developmental network from single cell
data

Inferring the structure of gene regulatory networks from
single cell gene expression data is a challenging problem in
computational systems biology. We seek to tackle this prob-
lem using DNN. Here we have two major purposes. The first
one is to test how the DNN performs in network inference
based on single cell data. The second one is to explore the
underlying mechanism of cell fate decisions in development
based on single cell data. We obtain the data set describing
the expression of 48 genes during preimplantation develop-
ment of mice from the 1-cell stage to the 64-cell stage (35).
During this period, the cells make two fate decisions. One is
the differentiation of cells (16-cell stage) into two different
cell lineages: trophoblast (TE) and internal cell mass (ICM).
The other is the differentiation of ICM cells (32-cell stage)
into primitive endoderm (PE) and ectoderm (EPI). Our first
step is using DNN to infer the network structure of mouse
development. We first focus on a small-scale network com-
posed of four genes, NANOG, GATA6, OCT4 and CDX2,
by using the regulatory relationship in the literature (58) as
a benchmark structure.

Here, a major challenge is that for single cell data we do
not have well-defined time series data. What we have is total
442 cells (data points) at 7 time points. To generate suitable
time series data for DNN training, we randomly combine
the normalized data from different time points without ex-
ploiting developmental lineage, while the reconstruction of
developmental lineage is regarded as a measure of model
accuracy which will be described in the next section. We di-
vide the data set as three data sets for training (70%), vali-
dating (15%) and testing (15%), respectively. The regulatory
relationship between genes at different stages is not static,
but changes over time (34). Considering the heterogeneity
among cells and the influence of noise, we consider the en-
semble of several models for improving the performance of
causal inference. We train 15 models each with different k
values (k = 0.1, 0.2, ..., 1.5). Different approaches have been
proposed for model ensemble (59,60). Here, we use major-
ity voting strategy to ensemble the 15 models. We denote the
classifiers as h1, h2, ..., hn, respectively, and hi(x) represents
the classification result of the classifier hi on the interaction
x. The set of hi(x) value is {1, -1, 0}, where 1 (-1) means
that the interaction x exists and is an activation (inhibition),
and 0 means that the interaction x does not exist. Then, we
have:

H(x) =
⎧⎨
⎩

1, i f
∑n

i=1 |hi (x)| > λn and
∑n

i=1 hi (x) � 0,

−1, i f
∑n

i=1 |hi (x)| > λn and
∑n

i=1 hi (x) < 0,
0, otherwi se,

(18)

where � is 0.5 by default, but can be adjusted according to
different tasks. For example, in order to reduce the redun-
dancy of the network, we set � = 0.65 to remove relatively
unnecessary links.

As shown in Figure 4A, the left panel is the benchmark
structure, and the middle panel is the structure predicted by
the DNN. Among them, black arrows represent the consis-
tent interactions between the two structures and red arrows

represent links in the same direction but different type, indi-
cating a high degree of similarity. We need to emphasize two
points. The first one is that the benchmark structure (Fig-
ure 4A, left panel) is by collecting experimental evidences
from previous studies, while the structure predicted by the
ensemble model is completely inferred from single cell data,
i.e., the two structures are totally from different types of
source. This could be a potential reason for the inconsistent
links between the predicted structure and the benchmark
structure. The second one is that for the structure recon-
struction, here the ensemble DNN model predicts both the
interaction directions and the interaction types (activation
or repression), which are important for the gene network
dynamics.

To evaluate whether our inferred network structure is
biologically implementable, here we model the regulation
network dynamics by using Hill functions to characterize
gene regulations. Specifically, we aim to verify whether the
model based on Hill function can match the single cell data.
As shown in the right panel of Figure 4A, the predicted
network can be successfully converted to a Hill function
model (Equation 16) via searching for parameters through
Bayesian optimization (see Supplementary Text for details),
and the corresponding parameters of the Hill function are
a = 0.8787, b = 0.0248, S = 0.6111, nh = 4.871 and k =
0.4104. Here, the landscape is derived from the correspond-
ing Hill function model, and the points are single cell data
(Figure 4 A). One of the major challenges in gene network
inference is extensive redundancy of regulatory interactions
in real-world networks. Therefore, we raise � to 0.65 to re-
move some relatively unnecessary links. The de-redundant
regulation network is also successfully transformed into a
Hill function model (Supplementary Figure S8).

In this sense, we consider the DNN performing very well
in this task, indicating that DNN is a very promising way
for the reconstruction of small-scale gene networks based
on single cell data. For the whole 48-dimensional network,
it is hard to rebuild the whole gene network due to limited
number of single cell data. Alternatively, we resort to mod-
eling the system dynamics with DNN, and with that we can
explore the important questions usually only available with
dynamical equations in hand, such as the mechanisms of
cell fate determination.

Rebuilding the dynamics of developmental network from sin-
gle cell data

To study the dynamical mechanisms of cell fate decision in
mouse development, we employ the energy landscape the-
ory, which has been proposed to study stochastic dynam-
ics of gene regulatory network in different biological sys-
tems (1,7,15). The potential energy of the system can be cal-
culated via U(x) = −ln(pss(x)), where pss(x) is the steady
state probability density of the gene expression variable x.
Specifically, we use the data of all 48 genes to obtain an en-
semble model via DNN. With the increase of k, the vali-
dation loss of the model first decreases and then increases
(Supplementary Figure S9A), so we select several models
with relatively small validation loss (the threshold is chosen
as 0.12) for ensemble (k = 0.3–1.15, with interval 0.05). For
calculating the probability distribution pss(x) and the en-
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Figure 4. Inference of structure and energy landscape from single cell date. (A) The reconstruction of a small-scale gene networks from single-cell data.
The left panel is the benchmark structure, and the middle panel is the structure predicted by the DNN. Black arrows denote the consistent interaction of
the two structures, red arrows denote the links in the same direction but different type. The right panel shows the validation of the predicted structure,
as its corresponding Hill function model closely matches the single cell data, where the landscape is derived from the corresponding Hill function model,
and the points are single cell data. (B) The two-dimensional and three-dimensional energy landscape for the 48-dimensional model of mouse development
constructed from single-cell data (all stages) via DNN. Four attractors (characterizing cell types) including EPI, TE, PE and intermediate state emerge on
the landscape. (C) The two-dimensional landscapes at 32-cell and 64-cell stage modeled by DNN.

ergy landscape U(x), principal component analysis (PCA)
is used to reduce the dimensionality of the system. Then, by
collecting the statistics of data points in two-dimensional
plane, we acquire the probability distribution for all cell
stage (Figure 4B).

By making comparisons with experimental data (35), we
can correspond the attractors on the landscape to cell phe-
notypes. Interestingly, except the TE, PE and EPI pheno-
type, the DNN model also identify an intermediate cell state
(Figure 4B). The identified cell types are supported by the
coefficient of PC coordinates in reduced dimensions (Sup-
plementary Figure S9C). In PC1, the coefficients of the four
markers of TE (DppaI, Id2, Krt8 and Tspan8) are nega-
tive, and the coefficients of the markers of PE (Gata4 and
Pdgfra) and EPI (Bmp4, Fgf4, Klf2, Nanog and Sox2) are
all positive, which means that PC1 is a suitable coordinate
for distinguishing TE from PE and EPI. In PC2, the coeffi-
cients of PE markers (Creb312, Gata4 and Pdgfra) are nega-
tive, the coefficients of TE markers (Cdx2, DppaI, Id2, Krt8
and Tspan8) are close to zero, and the coefficients of EPI
markers (Fgf4, Klf2, Nanog and Sox2) are very positive,
which means that PC2 is a suitable coordinate for distin-
guishing PE from EPI. The DNN model also identifies an
intermediate state, which is a transitional state which cells
tend to go through for cell fate transitions. Specifically, the
intermediate state identified displays following characteris-
tics: (i) the expression levels of DppaI, Id2, Krt8 and Tspan8
(markers of TE cells) in intermediate cells are lower than the
expression levels of these genes in TE cells, and higher than
the expression levels of these genes in PE and EPI cells. (ii)
The expression levels of Fgf4, Klf2 and Nanog (markers of

EPI cells) in intermediate cells are lower than the expres-
sion levels of these genes in EPI cells, and higher than the
expression levels of these genes in TE and PE cells. (iii) The
expression level of Gata4 (marker gene of PE cells) in inter-
mediate cells is lower than the expression level of this gene
in PE cells, and higher than the expression level of this gene
in TE and EPI cells. Therefore, the intermediate state cells
exhibit transitional characteristics, which is also supported
by the correlation matrix of all cells (Supplementary Fig-
ure S9B).

We further quantify the energy landscape of mouse de-
velopment at different cell stages. To better simulate the
temporal changes of developmental process, we use the ex-
perimental data to constrain the initial condition of the es-
tablished DNN model. Specifically, the initial condition for
DNN model is generated by adding Gaussian white noise
to the single cell data in 1-cell stage. With these initial con-
ditions and the established DNN model, we can recalculate
the temporal trajectory of the mouse developmental system.
Similarly, we classify the cells and calculate the coefficients
of PC1 and PC2 as well as the correlation matrix of the cells
for both 32-cell state and 64-cell stage (Supplementary Fig-
ure S10A and B). We obtain the energy landscape at dif-
ferent stages with different cell types marked on the land-
scape (Figure 4C). Through analysis at the gene expression
level, we find that the DNN model reconstructs the devel-
opmental lineage well (Supplementary Tables S2 and S3, see
Supplementary Text for the characteristics of intermediate
states at the 32-cell stage and 64-cell stage), that is, (i) the 16-
cell stage cells differentiate into 32-cell stage ICM and TE
cells, and (ii) the 32-cell stage ICM cells differentiate into
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EPI and PE cells at 64-cell stage, while TE cells do not dif-
ferentiate.

Identifying the transition path and critical genes in develop-
ment

With the information about the cell lineage, we manage to
generate a better data set to retrain DNN for a more accu-
rate model. Specifically, to consider the missing information
between different cell stages, we perform a second-order
spline interpolation to add 10 more time points. So, the new
data set includes total 13 data points. Using this data set,
we train a total of ten models with different k (0.05–0.95,
with interval 0.1). Benefitting from the lineage information
inferred above, here we combine the validation loss and
the clustering indicator Davies-Bouldin Index (DBI) (61)
to evaluate the model performance. Considering the data
set {y1, y2, ..., ys}, with the clustering results described as
C = {C1, C2, ..., Ck}, the DBI is defined as:

DBI = 1
k

k∑
i=1

max
j �=i

(
avg(Ci ) + avg(Cj )

dcen(Ci , Cj )

)
, (19)

where dcen(Ci , Cj ) = dist(μi ,μ j ), μi represents the cen-
ter point of cluster Ci, defined as μi = 1

|Ci |
∑

ym∈Ci
ym, and

dist( ·, ·) is a measure of the distance between two sam-
ples (the Euclidean distance is used here). So, dcen(Ci, Cj)
is a measure of the distance between the central points
of different clusters. avg(Ci) is a measure of the dis-
tance of data points within a cluster, defined as avg(Ci ) =

2
|Ci |(|Ci |−1)

∑
ym,yn∈Ci

dist( ym, yn), so the smaller the DBI, the
better the classification is.

Specifically, for each integration model, k-means is used
to divide the cells of the 64-cell stage into three clusters to
calculate the DBI (Figure 5 A). Here we have ten models for
integration. The model 1 is a single model obtained at k =
0.05, model 2 is an ensemble model for k = 0.05 and k =
0.15, and so on. Compared with the other eight ensemble
models, the DBI of model 4 and model 5 are lower, indi-
cating that these two ensemble models are more likely con-
sistent with the prior knowledge of lineage information. By
further validation of the model for differentiation data from
32-cell to 64-cell stage (Figure 5 B), we find that the model
4 is more in line with the cell lineage tree, that is, ICM cells
at 32-cell stage differentiate into EPI and PE cells at 64-cell
stage (see Supplementary Figure S11 for the result of model
5). Based on above analysis, we choose model 4 for follow-
ing analysis. We use this DNN model to simulate the devel-
opmental trajectory of 12 000 cells from 16-cell stage to 64-
cell stage. We further quantify the kinetic transition paths
of cells as the developmental path (Figure 5C), where each
path is the average of thousands of corresponding trajecto-
ries. The transition paths provide a quantitative description
of the dynamical transition process in development, which
end at three phenotypes (EPI, TE and PE).

Since we treat the DNN model as a dynamical model, we
ask whether it can model biological perturbations, such as
knockout of genes. So we perform knockout experiments on
the DNN model. We knock out different genes one at a time
in the DNN model, observing the changes in cell types at 64-

cell stage to uncover critical genes that govern cell differen-
tiation. Specifically, we remove the connection between one
gene and all other genes to achieve the effect of knocking
out the corresponding gene. K-means is used to cluster the
64-cell stage cells from the model into two and three clus-
ters, individually, to calculate DBI. If DBI2 < DBI3 (DBI2
(DBI3) represents the DBI calculated when the data is di-
vided into two (three) clusters), the data set tends to be di-
vided into two clusters. The greater the difference between
the two values (DBI2 and DBI3), the greater the degree of
confidence is. Conversely, if DBI3 < DBI2, the data set tends
to be divided into three clusters (for the original model 4 at
64-cell stage, DBI3 < DBI2). To quantify the results for the
total 48 knocking-out experiments, we define the following
indicator:

ScoreDBI = DBI2 − DBI3

DBI3
. (20)

If ScoreDBI < 0, the simulated 64-cell stage cells after gene
knockout tend to be divided into two clusters, which means
that knocking out corresponding gene may result in the loss
of cell cluster, since cells in 64-cell stage should be divided
into three clusters, namely PE, TE and EPI. The greater the
absolute value of the ScoreDBI, the greater the degree of the
confidence is.

To further improve the credibility of DBI, we make veri-
fication by analyzing the results in reduced PC dimensions.
Specifically, we first select the 11 genes with the largest ab-
solute value of ScoreDBI among the genes with negative
ScoreDBI (Figure 5D), and then scrutinize the knockout re-
sults for these genes in reduced PCA coordinates, which
leaves us nine genes whose knockout results in loss of cell
cluster (Supplementary Figure S12). Finally, from each set
of data of knockout experiments, the cell fate change after
knockout is inferred from the gene expression level. Knock-
out of the genes Pou5f1, Sall4, Gata3, Nanog and Fgf4
will all result in the loss of EPI. This embodies the critical
roles of Pou5f1, Sall4 and Gata3 on stem cell differentiation,
which is consistent with experimental studies (62,63). Both
Nanog and Fgf4 are markers of EPI (35). Knockout of the
gene Krt8 results in the loss of TE, which is consistent with
the fact that Krt8 is a marker of TE (35). For the remain-
ing three genes, knockout of the genes Pecam1 and Msx2
both will lead to the loss of EPI, and knockout of the gene
Msc leads to the loss of PE and EPI, which are both con-
sistent with biological knowledge. So, these results support
that the DNN model is able to replicate major perturbation
results in development, and can be treated as a reasonable
dynamical model for modeling mouse development.

Quantifying the energy landscape with DNN

The fact that the DNN can successfully describe a dy-
namical model inspires us to use DNN for other purpose
from dynamical model perspective. How to quantify the
energy landscape for gene regulatory networks is a chal-
lenging problem (15). One way of quantifying the land-
scape for high-dimensional gene networks is the PSCA
method (1,49), which requires an explicit model as well as
the value of diffusion coefficient D, quantifying the noise
level. In above sections, we have shown that with DNN we
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Figure 5. DNN model identifies the lineage transition path and critical genes for cell fate transitions. (A) The DBI value for three clusters for different
models. Here, model 1 is for k = 0.05, model 2 is an ensemble model for k = 0.05 and k = 0.15, and so on. (B) The cell clusters for 32-cell and 64-cell stage
in reduced PC dimensions from model 4. It can be seen that the ICM cells in stage 32 (left panel) differentiate into EPI cells and PE cells in 64-cell stage
(right panel), respectively. (C) Landscape at 16, 32 and 64-cell stage and corresponding transition paths predicted by model 4. Each path is the average of
thousands of corresponding trajectories. (D) ScoreDBI with different genes knocked out. A negative ScoreDBI indicates that the simulated 64-cell stage data
after gene knockout tend to be divided into two clusters. Since cells in 64-cell stage should be divided into three clusters in wild-type, namely PE, TE and
EPI, it means that knocking out corresponding gene result in the loss of cell clusters.

can obtain a deterministic model from the data. We further
manage to estimate the diffusion coefficient by calculating
the mean squared displacement from the data (see Materi-
als and Methods) (40). So, we propose a DNN based PSCA
(DNN-PSCA) approach for quantifying the energy land-
scape. i.e., we follow the idea of PSCA approach, with the
driving force f modeled by DNN and the diffusion con-
stant D estimated from the time series data.

We use the MISA model (Figure 1 C) previously de-
scribed to test the DNN-PSCA approach for quantifying
the energy landscape. We find that the smaller iteration step
of the data gives more accurate estimation of the diffusion
coefficient D (Supplementary Figure S14A). When the it-
eration step �t is <0.667, the error between the Destimation
and the Dreal can be controlled within 10%. In addition, we
fix the iteration step size to compare the deviation of the
Destimation from the Dreal when the diffusion coefficient varies.
The results show that our method can estimate D accurately
(Supplementary Figure S14B). Of note, when the state tran-
sition appears (e.g. when the diffusion coefficient is 0.02, a
transition between stable states will occur, Supplementary
Figure S13), the diffusion coefficient can still be estimated
accurately (Supplementary Figure S14).

To further evaluate the performance of DNN-PSCA for
quantifying the energy landscape from the data, we perform

simulations by Langevin dynamics method (see Materials
and Methods for details), and obtain the probability dis-
tribution and the corresponding potential landscape from
the simulation as ground truth for benchmark (using the
bistable case of MISA model as an example, with parame-
ters set as a = 0.5, b = 0.8, �t = 0.1, and D = 0.02, Figure 6A
and E). We further make the comparisons among PSCA,
DNN simulation (simulations using DNN as deterministic
term and Gaussian white noise as stochastic term), DNN-
PSCA and Langevin simulation for calculating the distribu-
tion and the corresponding potential landscape (Figure 6B–
D, F–H). We calculate corresponding deviations between
the distribution from PSCA (DNN simulation or DNN-
PSCA) and that from Langevin simulation. This deviation
measures the accuracy of corresponding methods for cal-
culating probability distributions. Specifically, we use L2
distance and Kullback–Leibler (K–L) Divergence (64) to
measure the deviation of distributions to the ground truth,
quantitatively. These two measures are respectively de-

fined as: dL2 =
√∑

i j (PSimulation
i j − PEstimation

i j )2, and dK L =
∑

i j PSimulation
i j log(

PSimulation
i j

PEstimation
i j

), where PSimulation
i j represents

the probability distribution calculated from Langevin sim-
ulation, and PEstimation

i j represents the probability distribu-
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Figure 6. Comparisons among different methods for calculating probability distributions and corresponding energy landscapes. (A–D) The distribution
calculated by Langevin simulation, DNN simulation, PSCA and DNN-PSCA. (E–H) The potential landscapes corresponding to (A–D). The distribution
calculated from PSCA based on the explicit model is closest to that from Langevin simulation (dL2 = 0.0053, dKL = 0.1121), followed by DNN-PSCA
(dL2 = 0.0113, dKL = 0.1426) and DNN simulation (dL2 = 0.0154, dKL = 0.2871).

tion calculated from PSCA (DNN simulation or DNN-
PSCA). L2 measures the distance between two distributions
via Euclidean distance. When the deviation of two distribu-
tions increases, dKL will also increase, with dKL = 0 meaning
two equal distributions.

The comparison results (Supplementary Table S4) show
that both from L2 distance and K–L divergence, that the
probability distribution calculated from PSCA is most sim-
ilar to that from Langevin simulation (dL2 = 0.0053, dKL =
0.1121), while DNN-PSCA also gives a good performance
for estimating the probability distribution (dL2 = 0.0113,
dKL = 0.1426). It should be noticed that the PSCA method
require an explicit form of a dynamical model, while the
DNN-PSCA method is only based on the time-series data.
These results demonstrate that the DNN may provide an
effective data-driven approach for quantifying the energy
landscape.

DISCUSSION

The reconstruction of gene regulatory networks is critical to
understanding the underlying mechanisms of cellular pro-
cesses. Gene regulatory networks can be constructed by
mining the literatures, which may be time-consuming and
inefficient, whereas reverse engineering provides a challeng-
ing but fascinating way for inferring gene regulation net-
works. Many approaches have been developed to recon-
struct gene regulatory networks from the data, however, it
remains challenging to accurately infer the direction and
type of interactions, especially when the network is involved
with self-regulations and feedbacks. It is also vital to de-
velop an approach to distinguish direct causal interactions
from indirect causal interactions (13). In this work, we seek
to address these issues with DNN. We illustrate the effec-

tiveness of DNN in network inference with various exam-
ples.

DNN displays multiple advantages for network infer-
ence and simulating unidentified dynamical systems. Firstly,
the DNN displays good accuracy and robustness in net-
work inference for various systems. In our first four exam-
ples (Figures 1 and 2), we study two completely different
systems modeled by differential equations, i.e., multistable
systems and oscillatory systems. In the next three exam-
ples (Figures 3 and 4A), the networks inferred by DNN
with only a small amount of real data are well supported
by the prior knowledge and previous studies. In the exam-
ple of ten-dimensional gene regulatory network, we com-
pare DNN with other methods, including Boolean network,
Random Forest, and the latest PCM. The DNN outper-
forms these commonly used approaches in terms of accu-
racy and robustness for network inference (Figure 2D). Sec-
ondly, DNN can simulate the system dynamics, which is not
available for other network inference approaches. So one
can treat and analyze the DNN model from a dynamical
system perspective. Thirdly, DNN is able to predict both
the interaction direction and interaction type, which is criti-
cal to studying the dynamical mechanism of regulatory net-
works. Also, in the example of food chain and cardiovas-
cular disease, DNN displays great ability for distinguishing
direct causal interactions from indirect causal interactions.
Finally, DNN is able to deal with single cell data for both
network inference and simulating the dynamics of cell fate
decision systems, which offers a new way to bridge data-
driven and model-based approaches on cell-fate transitions
at single-cell level.

An important issue is whether DNN can model biologi-
cal processes from a small amount of data to explore the un-
derlying mechanisms of cell fate decisions. Although DNN
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shows good performance in reconstructing small-scale gene
regulatory network from single cell data, inferring high-
dimensional networks from a small amount of data war-
rants further study. By studying a high-dimensional system
of mouse development modeled via DNN, we discover the
existence of intermediate cell states which play a critical role
in development, and successfully reconstruct the cell lin-
eages by simulating the temporal changes of gene expres-
sion in development. We further quantify the developmen-
tal path in terms of gene expression based on DNN model.
Importantly, by treating the DNN model as a dynamic
model, we can simulate biological perturbations, such as
knockout of genes. We perform single gene knockout ex-
periments through DNN model to explore the key genes
controlling cell differentiation, and obtain results consistent
with experiments.

We further propose that DNN provides a data-driven
approach to quantify the energy landscape, which is cru-
cial for understanding the mechanisms of cell fate deci-
sions. The Waddington landscape is a classic metaphor
for describing cellular development. Recently, the quan-
titative framework for constructing energy landscape of
gene regulatory networks has been developed from model-
driven perspective (e.g. (1,15,20)) and data-driven perspec-
tive (e.g. (18,19,65,66)). Based on the deterministic system
obtained from DNN and the estimated diffusion coeffi-
cient, we propose the DNN-PSCA approach, which of-
fers an approach for combining data-driven and model-
driven strategy to quantify the energy landscape for gene
networks. Of note, our method showed reasonable com-
putational efficiency. For example, in the MISA task, the
learner contains 1348 synaptic weights, and it takes about
7 minutes to train one epoch, on a laptop computer,
with Inter Core i7 and a memory size of 16GB, under
Windows 10.

Certain points need to be emphasized. Firstly, it is known
that the problem of causal inference of networks may have
no unique solution, and different biophysical processes may
lead to similar time series. An example is that many models
discovered from optimization can predict data equally well,
but fail to match the correct hypothesis (67). To mitigate
this problem, one possible way is to identify models with
correct interpretation by comparing model features across
multiple data samples (67). In our work, we use the idea of
ensemble learning, by integrating several DNNs with differ-
ent hyperparameters, to capture more comprehensive infor-
mation from the data. Secondly, in this work, we use a feed-
forward neural network structure. It is interesting to see that
this simple network structure can model GRNs with feed-
back loops, due to a hidden feedback loop structure in our
computational framework coming from the iteration pro-
cedure when we use f to calculate gene variable x. In future
work, other neural network approaches can be absorbed to
current framework to acquire better performance of learn-
ing, such as exploiting prior knowledge (network structure
in this work) (68), and in-memory computing (69). More-
over, from the application side, we showed that the DNN
can model the oscillation pattern well from a synthetic gene
network. We also anticipate that our approach can be used
to reveal oscillation patterns from single cell data in more
realistic systems (15,70).

In summary, the DNN developed in this work provides
a general data-driven approach for the reconstruction of
gene regulatory networks and quantification of stochastic
dynamics of high-dimensional gene regulatory systems. Our
results promote the mechanistic understanding of cell fate
decisions and roles of intermediate cell states in develop-
ment.
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