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In this article we propose a Fast Optimal Global Sequence Alignment Algorithm, FOGSAA, which aligns a
pair of nucleotide/protein sequences faster than any optimal global alignment method including the widely
used Needleman-Wunsch (NW) algorithm. FOGSAA is applicable for all types of sequences, with any
scoring scheme, and with or without affine gap penalty. Compared to NW, FOGSAA achieves a time gain of
(70–90)% for highly similar nucleotide sequences (. 80% similarity), and (54–70)% for sequences having
(30–80)% similarity. For other sequences, it terminates with an approximate score. For protein sequences,
the average time gain is between (25–40)%. Compared to three heuristic global alignment methods, the
quality of alignment is improved by about 23%–53%. FOGSAA is, in general, suitable for aligning any two
sequences defined over a finite alphabet set, where the quality of the global alignment is of supreme
importance.

I
n bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA or protein to identify
their degree of similarity that may be important in identifying functional, structural or evolutionary relation-
ships between them. If two sequences in an alignment share a common ancestor, mismatches can be inter-

preted as point mutations and gaps as indels, introduced in one or both lineages in the time since they diverged
from one another. In sequence alignment of proteins, the degree of similarity between amino acids occupying a
particular position in the sequence can be interpreted as a rough measure of how conserved a particular region is.
The alignment algorithms are generally of two types: Local Alignment Methods such as1–4, are designed to search
locally similar segments between two sequences while in Global Alignment Methods the overall similarity is
mapped out.

Global alignment algorithms like5,6 are found useful as biological sequences from related organisms satisfy
some ordering assumption. For example, the human and mouse genome share a conserved region up to 8
Megabases in length7. The fundamental contribution of global alignment described in8 was the widely adopted
one for optimal alignment of sequences. But this algorithm is very expensive with respect to time and space,
proportional to the product of the length of two sequences and hence is not suitable for long sequences. Then
GAP39 was proposed with improved sensitivity and was suitable for comparing sequences with intermittent
similarities. But as the underlying principle is based on dynamic programming, the computing time is still
proportional to the product of the sequence lengths. Beside this, the optimality of the alignment, as performed
by GAP3, is highly sensitive to the parameter values given in the program. There are some heuristic based fast
alignment programs also, like ACANA10, AVID11, ClustalW12, BLASTZ13, NUMmer14, LAGAN15 etc. However
these often compromise on the quality of the alignment.

In this article we propose a Fast Optimal global sequence alignment that overcomes the shortcomings of the
existing methods, and provides the optimal alignment of sequences without any parameter tuning. FOGSAA
gives exactly the same result as that provided by the Needleman-Wunsch method (NW)8, but in much less time.
The Result Section shows that among the three optimal global alignment programs (NW, GAP3, FOGSAA),
FOGSAA is the fastest. With respect to the heuristic alignment methods mentioned earlier, FOGSAA provides an
improvement of alignment scores of about 22.8% on simulated benchmark data16 and 53% on real human-mouse
ortholog sequences over these methods. FOGSAA also outperforms GAP39 on the overall quality of the align-
ment. Not only for the gene sequences, it can do equally well for protein sequences with or without affine gap
penalty. In such cases FOGSAA takes the match and mismatch scores from the substitution matrices like
BLOSUM62, PAM etc. and the gap penalties including the gap_open and gap_extension scores can have any
value as specified by the user. Experimental results show that for protein sequences FOGSAA achieves a time gain
of (25% – 40%).

The algorithm, FOGSAA, is basically a branch and bound approach of global pairwise sequence alignment. It
works by building a branch and bound tree where each root-to-leaf path represents a possible way to align the
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given pair of sequences. FOGSAA starts the branch expansion in a
greedy way taking the symbols from the input sequences (protein or
nucleotide) and continues till the end of the path. If at an intermedi-
ate point, some other branch is found more promising than the
current one, then it is started for expansion. The procedure is
repeated until no other branch is found better. Finally it returns
the optimal alignment along with the optimal score, by traversing
the optimal path. During expansion, if a path is found no longer
promising, it is pruned to save unnecessary computation. How-
ever, if less than 30% similarity of the input sequences is detected,
then the algorithm is terminated with an approximate score which is
equal to the best score obtained so far. Although FOGSAA can give
the accurate optimal alignment for any sequence pair even if they are
less than 30% similar, it may not be worthwhile to spend the
resources for aligning such dissimilar sequences. Therefore, we ter-
minate FOGSAA in these cases. The threshold of 30% was chosen
based on the intuition, though it can be changed if required. The
pruning strategy and the way of computing an approximate score for
highly dissimilar sequences are described in the Method Section. The
workflow of FOGSAA is depicted in Fig. 1. Some relevant definitions
and the theoretical formulation of the algorithm are provided below.

Let the two sequences of length m and n, respectively, be the
following:

S1 : a1a2 . . . amð Þ and

S2 : b1b2 . . . bnð Þ

Let P1 and P2 be the pointers to symbols in S1 and S2 respectively,
having initial values P1 5 0 and P2 5 0. FOGSAA computes the
optimal alignment between S1 and S2 by finding the optimal branch
in the corresponding branch and bound tree. Each node of this tree
shows the alignment between one pair of symbols pointed by (P1,P2)
which is (0,0) for the root node. A node has four components:

. (P1,P2) value pair

. The Type of alignment:
Type~1 indicates a match or mismath

Type~2 indicate a a gap in S2

Type~3 indicates a gap in S1

8><
>:

. PrS (Defined later)

. (Tmax,Tmin) (Defined later).

Then, a path from the root to a node ((P1, P2); Type; PrS; (Tmin,
Tmax)) represents an alignment of a1a2…aP1 and b1b2…bP2 with the
last pair of characters being aligned as Type. The PrS and (Tmin, Tmax)
give the Present Score and Fitness Score values respectively after
alignment of a1a2…aP1 and b1b2…bP2. These are defined later. In
this way, a path from the root to a leaf node i.e., a complete path
represents one possible way to align the given pair of sequences.
Therefore, a branch and bound tree is a search tree which searches
for an optimal alignment path while using an objective score to
bound the search space. Starting from the root of this tree,
FOGSAA proceeds in one of the following three ways:

. Advance both the pointers P1 and P2, i.e., align a1 with b1, which
can lead to either a match or mismatch.

. Move the pointer P1 keeping P2 fixed which will introduce a gap
in S2, i.e., a1 will be paired with a gap.

. Move the pointer P2 keeping P1 fixed, thereby introducing a gap
in S1.

Hence the root can have three children (a1,b1), (a1,–) or (–,b1),
where the first child indicates a match or mismatch, the second child
indicates a gap in S2 and the third one indicates a gap in S1. The
corresponding P1 and P2 values of these three children would be (1,
1), (1, 0) and (0, 1) respectively. Likewise every node of this branch
and bound tree can have at most three children (as shown in Fig. S1

in Supplementary). Among them only the best one will be expanded
according to the ‘Fitness Score’ (see Definitions below), while the
others are inserted in a hashed priority queue ordered by their scores.
These nodes might be expanded later on if they come in the top of the
priority queue.

This approach of selecting the fittest child based on the ‘Fitness
Score’ continues till the end of the branch. One branch, from the root
to a leaf, gives one alignment. Then the algorithm proceeds to the
next branch in search for a better alignment. This branch always
starts from a node which has the highest Fitness Score and is on
the top of the priority queue. All the decisions i.e., whether we should
go for a next branch or not, which should be that next branch and
how far a branch should be expanded, are taken according to the
above mentioned score. If at any point FOGSAA detects that the
score of the top most node of the priority queue indicates that the
two sequences have less than 30% similarity, then it terminates with
the best alignment and corresponding score that has been obtained
so far. In other cases, FOGSAA terminates with an optimal alignment
of the sequences based on the given values of match, mismatch and
gap scores. The gap score can also include affine gap penalties17 with
Gap-open (Go) and Gap-extension (Ge) costs. In such cases, the total
Gap cost of length L would be (Go 1 L 3 Ge). Similarly, for protein
sequence alignments, FOGSAA can use any substitution matrix, with
or without affine gap penalties.

The working principle of FOGSAA is based on two strategies: i)
Select the best child in the current branch. ii) Start next branching
from a node showing highest potential. The potential of any node, say
X, is computed using Fitness Score. If its potential is greater than
other siblings, then X will be expanded in the tree. The Fitness Score
is the summation of two other scores, the Present Score and Future
Score. The Present Score is the sum of all match/mismatch/gap
scores that have been encountered so far in the current branch start-
ing from root to the node X, while the Future Score is an estimated
score value that can result when the remaining parts of the sequences
would be aligned. These scores are defined below.

Let the given pair of sequences be

S1 : a1a2 . . . amð Þ and

S2 : b1b2 . . . bnð Þ

where jS1j 5 m and jS2j 5 n. If the current node is at position (P1,
P2) i.e., P1 symbols from S1 and P2 symbols of S2 have been checked
and (i1, j1),(i2, j2), … ,(ik, jk) are the k nodes that are expanded so far in
the current branch where, ik 5 P1 and jk 5 P2, then the Present
Score, denoted by PrS, is defined as:

PrS~
X

Vipjp,1ƒpƒk

SCipjp ð1Þ

The addition of scores for each node, from root to the current node of
the current branch, gives the Present Score. Here,

SCipjp~M if ai~bj

SCipjp~Ms if ai=bj

SCipjp~G if ai~gap _ bj~gap

8><
>: ð2Þ

Where M 5 Match Score, Ms 5 Mismatch Score and G 5 Gap
Penalty.

The Future Score reflects the scenario from the node X to the leaf
of the current branch. Unlike Present Score, the Future Score is not
known at this moment. It will attain its maximum value when there
are all matches in the path X to the leaf. On the other hand, all
mismatches will lead to its minimum value of the optimal alignment.
There can be any other alignment worse than this, but it is surely not
the optimal one. Note that there will be at least as many number of
gaps as the difference of lengths of the two strings. If the current node
is at (P1, P2), then the Present Score includes the alignment of the
symbols a1…aP1 of S1 and b1…bP2 of S2. For the remaining portion,
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Figure 1 | FOGSAA workflow : The basic working principle of FOGSAA is descried through flow-chart.
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i.e., for aP1 1 1…am of sequence S1 and bP2 1 1…bn of S2, we have to
compute the minimum and maximum scores. In the Future Score,
without loss of generality, it may be stated that there must be at least
j(m 2 P1) 2 (n 2 P2)j gaps. For the remaining part, at best there may
be (m 2 P1) matches, and at worst (m 2 P1) mismatches.

If the two sequences to be aligned are a1…am and b1…bn and the
present node is at position (P1, P2), then the two components Fmin

and Fmax of Future Score, for the subsequences aP111…am and
bP211…bn, are defined as:

Fmin~
x2 �MszG � x1{x2ð Þ, x2vx1

x1 �MszG � x2{x1ð Þ, otherwise

�
ð3Þ

Fmax~
x2 �MzG � x1{x2ð Þ, x2vx1

x1 �MzG � x2{x1ð Þ, otherwise

�
ð4Þ

where, x1 5 (n 2 P2) and x2 5 (m 2 P1).
Note that for amino-acid sequences, M and Ms take values from a

substitution matrix, which is by default BLOSUM 62.
The Fitness Score of a node, based on which the potential of a

branch is evaluated, is the sum of the Present Score (PrS) and the
Future Score. Fitness Score, having two components denoted by Tmin

and Tmax, is defined as follows:

Tmin~PrSzFmin ð5Þ

Tmax~PrSzFmax ð6Þ

The entire method for the selection of the best child depending on
these scores, which finally results in the optimal alignment, is sum-
marized in Algorithm 1. The nodes are inserted in the priority queue
based on their Tmax values i.e., the node having the highest value of
Tmax will be on the top.

An example of Fitness Score calculation using Algorithm 1 from
the partially computed FOGSAA tree is shown in Fig. 2. It uses 11

and 21 for the Match and Mismatch scores respectively and 22 as
the Gap penalty (without using affine gap).

The root starts with P1 5 0 and P2 5 0 and since no alignment has
been made so far, the Present Score, PrS 5 0. Here m 5 8 and n 5 6,
thus in the Future Score there will be at least (m 2 n) 5 2 gaps. The
best case would be if the remaining 6, as min(m, n) 5 6, are all
matches yielding Fmax 5 6 * 1 1 2 * (22) 5 2. Similarly, the worst
scenario would be if these 6 are all mismatches, giving Fmin 5 6 *
(21) 1 2 * (22) 5 210. Therefore, Tmin 5 P 1 Fmin 5 0 1 (210) 5

210 and Tmax 5 P 1 Fmax 5 0 1 2 5 2. This [Tmax, Tmin] 5 [2, 210]
value pair is shown in the top-right side of the root node in Fig. 2.
Now, from the root there are three possible moves (1, 1), (1, 0) or (0,
1). For the first one PrS 5 1, as it is a match. Here the Future Score is
computed for length x1 5 (m 2 P1) 5 7 and x2 5 (n 2 P2) 5 5 of
sequences S1 and S2 respectively. So, Fmax 5 5 1 2 * (22) 5 1 and
Fmin 5 5 * (21) 1 2 * (22) 5 29. Finally, Tmin 5 P 1 Fmin 5 1 1

(29) 5 28 and Tmax 5 P 1 Fmax 5 1 1 1 5 2. Similarly, it can be
shown that, node (1,1) has higher Tmax value than the other two
children (1,0) and (0,1). Hence this node is expanded in Fig. 2. The
algorithm continues in this way. A detailed illustration of FOGSAA
can be found in the Supplementary Figures2–6.

Note that although the example provided here is for a specific
scoring scheme without affine gap penalty, FOGSAA is able to han-
dle any scoring scheme including substitution matrices for protein
sequences, and also affine gap penalty. In the case of affine gap
penalty, the G of Eq. 2 will be computed as follows:

G~GozGe if new gap

G~Ge otherwise

�
ð7Þ

where Go and Ge stand for Gap-open and Gap-extension penalties
respectively.

In case of calculating Fmin, we have to consider the worst case
where each gap is a new gap. That means all the gaps are scattered
separately and the cost of each gap would be (Go 1 Ge). In contrast,
for Fmax we can take the best case scenario in which all the gaps are
clubbed together and there is only one gap open penalty. Therefore,
the Eq. 3 and Eq. 4 can be extended as follows to include affine gap
penalty.

Fmin~
x2 �Msz GozGeð Þ � x1{x2ð Þ, x2vx1

x1 �Msz GozGeð Þ � x2{x1ð Þ, otherwise

�
ð8Þ

Fmax~
x2 �MzGozGe � x1{x2ð Þ, x2vx1

x1 �MzGozGe � x2{x1ð Þ, otherwise

�
ð9Þ

Note that, Eq. 5 and Eq. 6 remain unchanged, though the com-
putation of PrS and (Fmin, Fmax) are modified as described above.

Results
FOGSAA is basically a branch and bound algorithm which starts its
branch expansion by greedy selection of nodes based on some spe-
cific score value. Branch and bound techniques can take exponential
time in the worst case. However, the average complexity of branch
and bound method is significantly lower18. It has already been shown
that the average case analysis of branch and bound problem
has polynomial complexity19. Here in FOGSAA, if the two input
sequences are of length m and n respectively, then there cannot be
more than m 3 n nodes in the branch and bound tree. Therefore, the
worst case running time of FOGSAA is bounded by O(m 3 n),
though, on an average, it is much lower. The best case, when
FOGSAA finds the optimal alignment just after expanding the first
branch, has complexity O(m 1 n), equal to the maximum length of a
branch. This is why FOGSAA achieves a large time gain in compar-
ison to NW, whose complexity is O(m 3 n) for all the cases -best,
average and worst. Note that the alignment quality of FOGSAA and
NW are exactly the same.

Figure 2 | FOGSAA tree: partially computed for the sequences
S1 5 ACGGTTGC and S2 5 AGCGTC, having m 5 | S1 | 5 8 and
n 5 | S2 | 5 6. Each node is annotated with (P1, P2) on the left and

[Tmax, Tmin] on the right. The label of a node indicates the symbol pairs that

are being aligned.
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We have divided the results into two categories: 1) Running time
comparison between three optimal global alignment programs, NW,
GAP3 and FOGSAA; 2) Comparative study of alignment quality
between FOGSAA, NW, and GAP3, and three heuristic methods
ACANA, AVID and ClustalW.

Running time comparison. To assess the performance of FOGSAA,
we have compared its running time with those of two other optimal
alignment programs, NW and GAP3, on 178 real DNA sequences
collected from NCBI GenBank (Code, test data and results are
available at http://www.isical.ac.in/,bioinfo_miu/FOGSAA.htm).
These DNA sequences are then divided into three classes based on
their similarity: i) greater than 80% similar, ii) 30% – 80% similar and
iii) less than 30% similar. Fig. 3 and Fig. 4 show the performance of all
the three methods for sequences having . 80% similarity and 30% –
80% similarity respectively, when they are run on Intel(R) Core(TM)
i7 CPU @ 2.93 GHz machine with 4 GB RAM with the scoring

scheme as M 5 1, Ms 5 21 and G 5 22. As can be clearly seen
from the graphs, FOGSAA comprehensively outperforms NW as
well as GAP3 in every case for sequences upto 6000 bp.

If FOGSAA encounters a situation when the most promising node
of the branch and bound tree (or, the first entry in the priority queue)
shows less than 30% similarity, then it terminates with an approx-
imate alignment. A detailed description of pruning strategy and
approximate score can be found in the Method Section. Table 1
shows the behavior of FOGSAA in comparison to NW and GAP3
for real gene sequences of less than 30% similarity. As can be seen
from the table, the optimal alignment score, whenever available, is
negative reflecting the low similarity of the sequences. And the
approximate score as given by FOGSAA, is very close to the optimal
one. In certain cases where the input sequences are very long and
dissimilar, then most of the times NW and GAP3 fail. However,
FOGSAA is able to provide at least a good approximate score as
shown in the last row of Table 1.

Figure 3 | Time comparison between Needleman-Wunsch, GAP3 and FOGSAA for sequences having . 80% similarity.

Figure 4 | Time comparison between Needleman-Wunsch, GAP3 and FOGSAA for sequences having (30 – 80)% similarity.
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FOGSAA performs significantly well even for different scoring
schemes with or without affine gap penalties. This is reflected in
Table 2. Here results are shown for 5 different scoring schemes with
and without affine gap penalty. Each scheme is tested on nearly 100
pairs of sequences having length upto approximately 10,000 bp, which
have been collected from NCBI GenBank. These sequences are of
varied similarity as they are picked arbitrarily. As can be seen from
the table, FOGSAA performs consistently better over all the scoring
schemes and produces an average time gain of 82%. Here, it is also
found that on an average 64% of the total possible nodes are pruned.

As mentioned earlier, FOGSAA is equally applicable for protein
sequences with any substitution matrix, both with and without affine
gap penalties. Here we provide the results for BLOSUM62. Fig. 5
summarizes the performance of FOGSAA as compared with NW for
100 pairs of amino-acid sequences with affine gap penalty. These
sequences are also selected arbitrarily from NCBI. Here we have used
290 and 225 as the Gap-open and Gap-extension penalties respect-
ively. From the histogram plot as shown in this figure, it is evident
that FOGSAA provides a high time gain for a very large number of
times. Here time gain is computed as (TimeNW 2 TimeFOGSAA)/
TimeNW. Similar results using different scoring functions with or
without affine gap penalty can be found in the Supplementary
Tables (S3–S6).

Result on alignment quality. FOGSAA is not only a faster alignment
tool, it also provides the best or optimal alignment of the input
sequences (having . 30% similarity). FOGSAA is sometimes
slower than some fast heuristic based alignment approaches. How-
ever, the quality of alignment of these faster methods often degrades
and is far from the optimal alignment. In this section, we provide
results pertaining to the alignment quality. Table S1 of Supplemen-
tary, shows the comparison between FOGSAA, ACANA, AVID,
ClustalW and GAP3 for the benchmark gene sequences16. The
mean and median of the alignment scores are provided. Greater
the alignment score, better is the alignment quality.

As can be seen from Table S1 in Supplementary, FOGSAA shows
the highest mean as well as median scores among all the methods. As
expected, the corresponding values for NW are the same since both
of them have exactly the same alignment quality. GAP3 has the

Table 1 | Comparative study for sequences having , 30% similar-
ity, where FOGSAA detects the low similarity and terminates with
an approximate score

Seq Length Score Time in msec

Len1 Len2 Optimal FOGSAA FOGSAA NW GAP3

87 903 21545 21545 2 56 20
1145 2616 22167 22905 11 1505 370
2667 7643 27523 28847 28 10161 2450
3359 12891 215789 216877 40 21575 5144
11376 2529478 Unknown 25024828 1463 — —

Table 2 | Time comparison between Needleman-Wunsch and
FOGSAA for gene sequences using different scoring schemes with
and without affine gap penalty. M: Match Score, Ms: Mismatch
Score, Gp: Gap penalty in the non-affine case, Go and Ge: Gap
open and extension penalties in the affine case

Scheme # M Ms Affine-Gap

Gap Penalty Mean Time in msec

Gp Go Ge FOGSAA NW

1 5 22 N 210 X X 539 5091
Y X 210 22 615 5300

2 10 25 N 215 X X 733 5068
Y X 210 22 530 5330

3 12 26 N 220 X X 417 5074
Y X 210 22 402 5240

4 20 210 N 240 X X 677 5184
Y X 240 215 782 5649

5 30 220 N 255 X X 789 5484
Y X 260 225 807 5888

Figure 5 | Time gain of FOGSAA over Needleman-Wunsch for protein sequence alignment with affine gap penalty.
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property of removing some base pairs, when they are found not
potential for alignment. That is why GAP3 provides good alignment
for sequences having intermittent similarity. But the performance
often degrades for the overall alignment as reflected by the negative
mean in the table. Here we have tuned the parameters of GAP3 in
such a way that no base pairs are removed, otherwise it will be
difficult to make the comparison as the sequence length would get
reduced. GAP3 provides the optimal alignment only in certain cases,
but not always as verified through personal communication with the
authors.

Table 3 shows the result of a comparative study on real sequences
containing human-mouse orthologs. Here FOGSAA is compared
only with ACANA, as it is one of the more recent methods, on 25
pairs of real ortholog sequences. The detailed count of matches (M),
Mismatches (MS), and Gaps (G) are given for both the methods. It is
evident from Table 3 that in general, FOGSAA provides better
alignment than ACANA for all the sequences with more matches
(M) and introducing lesser gaps (G). It is therefore apparent from the
results that FOGSAA provides a good balance of running time and
alignment quality. Some more results are included in the
Supplementary Table S2 based on alignment quality for 94 pairs of
real gene sequences.

Discussion
Obtaining high quality sequence alignment while minimizing the
running time is a challenge in bioinformatics. Though several efforts
have already been made in this regard, the problem is not totally
solved. When existing optimal alignment programs were found too
slow, faster heuristics were developed. However these faster solutions
compromised on the quality of alignment being better suited for
sequences with short regions of high similarity. Not only that, the
difficulty also lies in the selection of the alignment output because
almost no two alignment programs (other than the optimal ones)
give the same result for the same input sequences.

In this article we report on the development of FOGSAA that
provides optimal global alignment of a pair of sequences while being
remarkably fast. The results reported in this article demonstrate that
FOGSAA is effective for nucleotide sequences as well as amino acid
sequences, given any scoring scheme. It can also handle affine gap
penalty. Compared to the optimal NW algorithm, FOGSAA is faster
by 70%–90% for sequences having high similarity, while providing
the same optimal score. Compared to some heuristic alignment
methods, FOGSAA provides much improved alignment with higher
number of matches and smaller number of mismatches and gaps. We
believe that FOGSAA is of high significance with applications cover-
ing a large number of areas in Computational Biology, as pairwise
alignment is a fundamental process in sequence analysis. Most often,
it is the first step in any biological analysis, which is used to identify
evolutionary relationship between some novel sequences to existing
ones. Use of FOGSAA can also significantly reduce the time require-
ment of database searches, with no reduction in the accuracy of
alignment. Evidently, accuracy of the alignment affects the down-
stream processing tasks. Highly accurate alignments will help to
uncover subtle signals embedded in the sequences, that might other-
wise be missed or overlooked.

In future we want to demonstrate the application of FOGSAA for
analysis of Next Generation Sequencing data set20. We believe that
the underlying technique of FOGSAA can also bring significant
advancement in multiple sequence alignment methods. This is an
important direction in future research. Although the effectiveness of
FOGSAA is demonstrated for nucleotide and protein sequences, it is
equally applicable in other domains, such as web-clustering, where
the quality of alignment is of great concern.

Methods
Being a branch and bound method, FOGSAA starts its branch expansion from the
root node, selecting the best child at each step and inserting the other children in the
priority queue according to the values of Tmax, using separate chained hashing
technique. Hashing is a specialized technique for storing data which ensures constant
time search operation in ideal scenario. In this scheme, the data are placed in a specific
cell of the hash table depending on its hashed value, which is Tmax here. Collision
occurs if two or more data have the same hashed value. Separate chaining is one of the
most popular collision resolution techniques where the data that has the same hashed
value are placed in a chain of linked nodes. That means, all the nodes in a particular
chain will always have the same Tmax value and they are ordered by their corres-
ponding values of Tmin. The largest difference between Tmax and Tmin value provides
the theoretical bound on the number of possible hashed values. This node selection
procedure continues till the end of the first path (root-to-leaf path) which provides an
initial alignment of the sequences. Now, FOGSAA has to check whether there is a
chance of obtaining a better alignment. Note that the Tmax value of a node is the best
possible score that might be obtained by aligning along one of the branches starting
from it. If the Tmax value of the top node of the priority queue is greater than the best
alignment score that is obtained so far, then there is a possibility of improving the
alignment. Therefore, FOGSAA starts a new branch expansion from the corres-
ponding node. In the middle of a branch expansion, if it comes to a node having the
same (P1, P2) value as one of the existing nodes, which has already been expanded in a
better way producing better PrS score, then the current branch is pruned. The process
of selecting a new branch from the top node continues until the Tmax value of top node
falls below the best alignment score achieved till now. Then, FOGSAA reports the
optimum alignment along with the score and the algorithm terminates.

If the best possible score i.e., the Tmax value of the top node of priority queue
indicates less than 30% similarity of the input sequences, then rather than searching
for the actual optimal score, FOGSAA terminates with an approximate score which is
the score of the best alignment path (root-to-leaf) that has been obtained so far. The
detailed method is described in Algorithm 1.

In the remaining part of this section, we provide some technical insights into the
working principle of FOGSAA.

Lemma 1. Let a node X in FOGSAA tree have Fitness Score [Tmax, Tmin], then the
score of its child will be [Tmax, Tmin 1 (M 2 Ms)] if it makes a match, where M and Ms
are the match and mismatch scores respectively.

Proof. For the parent node X, let (Tmax)parent 5 PrSparent 1 (Fmax)parent, where PrS
denotes the Present Score (PrS) and (Fmax)parent 5 x 3 match_scores 1 y 3 gap_
penalties, and (Fmin)parent 5 x 3 mismatch_scores 1 y 3 gap_penalties. Where x is the
number of matches in the best case and number of mismatches in the worst, and y is
the number of gaps introduced. However, for the child: PrSchild 5 PrSparent 1 M, as it
has already made a match. Thus the future part is reduced by length one, i.e., there can
be (x 2 1) matches/mismatches but the gap penalties remain the same as it is
proportional to the length difference of the two sequences. So, (Fmax)child 5 (x 2 1) 3

Table 3 | Comparative Study for alignment quality on gene
sequences containing human-mouse orthologs using the scoring
scheme where M511, Ms521 and Gp522

Seq #

FOGSAA ACANA

#Match #Mismatch #Gap #Match #Mismatch #Gap

1. 1916 841 492 1277 890 1672
2. 1243 808 3123 1244 643 3451
3. 1872 383 1259 1273 754 1715
4. 946 495 2360 879 481 2522
5. 1128 191 1029 978 334 1043
6. 1682 426 911 1330 508 1451
7. 1638 482 330 1408 690 374
8. 757 259 209 599 371 301
9. 2019 1072 877 471 810 4497
10. 2481 656 1525 1578 1032 2579
11. 1172 261 1224 244 332 2938
12. 1030 192 353 830 340 457
13. 494 291 224 187 382 656
14. 623 89 1878 609 103 1878
15. 2650 392 239 2368 702 183
16. 834 389 431 196 304 1877
17. 3986 753 683 3787 898 791
18. 2181 410 58 2127 467 52
19. 2306 521 196 2093 669 326
20. 1078 334 53 1021 384 67
21. 1500 0 7238 1067 395 7314
22. 1756 0 6407 549 993 6835
23. 1390 912 461 823 421 2577
24. 1684 383 973 1159 626 1537
25. 3269 782 1041 3073 907 1183
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match_scores 1 y 3 gap_penalties, (Fmin)child 5 (x 2 1) 3 mismatch_scores 1 y 3

gap_penalties. Thus (Fmin)child 5 (Fmin)parent 2 Ms, as one mismatch is reduced and
(Fmax)child 5 (Fmax)parent 2 M because the child can have one less match than that of
the parent. Therefore,

Tmaxð Þchild~PrSchildz Fmaxð Þchild

~ PrSparentzM
� �

z Fmaxð Þparent �M
� �

~PrSparentz Fmaxð Þparent~ Tmaxð Þparent :

and

Tminð Þchild~PrSchildz Fminð Þchild

~ PrSparentzM
� �

z Fminð Þparent �Ms

~PrSparentz Fminð Þparentz M �Msð Þ

~ Tminð Þparentz M �Msð Þ
� �

:

Lemma 2. Let a node X in FOGSAA tree have Fitness Score [Tmax, Tmin], then the
score of its child will be [Tmax 1 (Ms 2 M), Tmin] if it makes a mismatch.

Proof. For the parent node X, let (Tmax)parent 5 PrSparent 1 (Fmax)parent, and
(Fmax)parent 5 x 3 match_scores 1 y 3 gap_penalties, and (Fmin)parent 5 x 3 mis-
match_scores 1 y 3 gap_penalties. However, for the child: PrSchild 5 PrSparent 1 Ms,
as it has already made a mismatch. Thus the future part is reduced by length one, i.e.,
there can be (x 2 1) matches/mismatches but the gap penalties remain the same, as it
is proportional to the length difference of the two sequences. So, (Fmax)child 5 (x 2 1)
3 match_scores 1 y 3 gap_penalties, (Fmin)child 5 (x 2 1) 3 mismatch_scores 1 y 3

gap_penalties. Thus (Fmin)child 5 (Fmin)parent 2 M s, as one mismatch is reduced and
(Fmax)child 5 (Fmax)parent 2 M because the child can have one less match than that of
the parent. Therefore,

Tmaxð Þchild~PrSchildz Fmaxð Þchild

~ PrSparentzMs
� �

z Fmaxð Þparent{M
� �

~PrSparentz Fmaxð Þparentz Ms{Mð Þ

~ Tmaxð Þparentz Ms{Mð Þ:

and

Tminð Þchild~PrSchildz Fminð Þchild

~ PrSparentzMs
� �

z Fminð Þparent{Ms

~PrSparentz Fminð Þparent~ Tminð Þparent :

Lemma 3. Let a node X in FOGSAA tree have Fitness Score [Tmax, Tmin], then the
score of its child will be [Tmax, Tmin] or [Tmax 1 (2 3 G 2 M), Tmin 1 (2 3 G 2 Ms)],
if it inserts a gap.

Proof. For the parent node X, let (Tmax)parent 5 PrSparent 1 (Fmax)parent and
(Fmax)parent 5 x 3 match_scores 1 y 3 gap_penalties, (Fmin)parent 5 x 3 mis-
match_scores 1 y 3 gap_penalties. However, for the child: PrSchild 5 PrSparent 1 G,
where G is the gap penalty. However the gap can be inserted in any of the two
sequences.

Case 1: If the gap is introduced in the shorter sequence then it makes no change, as
this gap is due to the length difference of the two sequences and it is already counted
within ‘y gap penalties’ in the parent node. The only change is that the gap has become
‘present’ now leaving y 2 1 gaps in the future. So, (Fmax)child 5 x 3 match_scores 1 (y
2 1) 3 gap_penalties, (Fmin)child 5 x 3 mismatch_scores 1 (y 2 1) 3 gap_penalties.
Thus (Fmin)child 5 (Fmin)parent 2 G and (Fmax)child 5 (Fmax)parent 2 G as one gap is
reduced . Therefore,

Tmaxð Þchild~PrSchildz Fmaxð Þchild

~ PrSparentzG
� �

z Fmaxð Þparent{G
� �

~PrSparentz Fmaxð Þparent~ Tmaxð Þparent :

and

Tminð Þchild~PrSchildz Fminð Þchild

~ PrSparentzG
� �

z Fminð Þparent{G

~PrSparentz Fminð Þparent~ Tminð Þparent :

Case 2: If the gap is introduced in the longer sequence then it is an extra gap which
will always cause an insertion of another gap at some position of the shorter sequence.
Hence in the future there can be (x 2 1) matches/mismatches and (y 1 1) gaps. So,
(Fmax)child 5 (x 2 1) 3 match_scores 1 (y 1 1) 3 gap_penalties, (Fmin)child 5 (x 2 1)
3 mismatch_scores 1 (y 1 1) 3 gap_penalties. Thus (Fmin)child 5 (Fmin)parent 2 Ms 1

G 5 (Fmin)parent 1 (G 2 Ms) and (Fmax)child 5 (Fmax)parent 2 M 1 Gp 5 (Fmax)parent 1

(G 2 M). Therefore,

Tmaxð Þchild~PrSchildz Fmaxð Þchild

~ PrSparentzG
� �

z Fmaxð Þparentz Gp{Mð Þ
� �

~PrSparentz Fmaxð Þparentz 2|G{Mð Þ

~ Tmaxð Þparentz 2|G{Mð Þ:

and

Tminð Þchild~PrSchildz Fminð Þchild

~ PrSparentzG
� �

z Fminð Þparentz G{Msð Þ

~PrSparentz Fminð Þparentz 2|G{Msð Þ

~ Tmiinð Þparent 2|G{Msð Þ:

Lemma 4. The branches that are pruned by FOGSAA (Algorithm 1) will never give
the optimal alignment solution.

Proof. The two reasons for which a branch is pruned according to Algorithm 1 are
specified in the lines 12 and 17 respectively.

Case 1: If the current node (say, X) of the branch has a Present Score which is
smaller than the Present Score of an existing node (say, Y) having the same P1 and P2
value pair, then the current branch is pruned (Line 12 of Algorithm 1), where the P1
and P2 represents the position in the string S1 and S2 respectively. As the P1, P2 values
of the nodes X and Y are same, both of them will have the same successors. Therefore,
the remaining part of the alignment, for both the nodes, will be the same. Let the score
of this remaining part be S. So, the actual score of the full alignment of the branch
containing X is (PrS)X 1 S and similarly, the actual score of the entire branch having
the node Y would be (PrS)Y 1 S. As (PrS)X # (PrS)Y, the branch containing X node
cannot give better alignment than the branch having node Y. Therefore, if this branch
of node X is pruned, it will not affect the optimal solution.

Case 2: If the Tmax value of the current node (say, Z) of a branch is less than the
optimal score which has been obtained so far (say, along branch B1), then this branch
is pruned [Line 17 of Algorithm 1]. Note that, the Tmax value of a node is the best
possible score that might be obtained by aligning along one of the branches starting
from it. So, a node cannot achieve an alignment having score better than Tmax.
Therefore, even if we expand the branch containing node Z, it cannot ever produce an
alignment better than B1. Hence, the branch which is pruned here will never give the
optimal alignment, as at least one better solution has already been found.

Corollary 1. Let a node X in FOGSAA tree have three children X1, X2, X3, then the
child having a match or a gap in the shorter sequence, is always the best child
according to the Fitness Score(Tmax).

Proof. Let the node X have (P1, P2) 5 (i, j), then its children X1, X2, X3 will have
values (i 1 1, j 1 1), (i 1 1, j), (i, j 1 1) respectively. The node X1 can have either a
match or a mismatch depending upon the symbol at that position of the two
sequences. But X2 and X3 will always have a gap. If X has Fitness Score value [Tmax,
Tmin], then according to Lemma 1 and 2, X1 will have [Tmax, Tmin 1 (M 2 Ms)] if it’s a
match, and [Tmax 1 (Ms 2 M), Tmin] otherwise. X2 and X3 will have Fitness Score
[Tmax, Tmin] or [Tmax 1 (2 3 G 2 M), Tmin 1 (2 3 G 2 Ms)], for the two different
cases as specified in Lemma 3. As M . 0, Ms , 0, G , 0 and usually G , Ms, it is
obvious that the child with a match or a gap in the shorter sequence has the highest
Tmax value, and hence it is most promising.

Proof of Correctness of FOGSAA. Given a pair of input sequences that have more
than 30% similarity, the alignment score provided by FOGSAA is optimal for the
given scoring scheme.

We will prove this by the method of contradiction. Let us consider the following
two cases:

Case 1: Without affine gap: Let us assume that the alignment reported by FOGSAA
is not optimal. Say B is the branch corresponding to the non-optimal alignment
provided by FOGSAA on termination. Also assume that there is another branch �B
which leads to the optimal alignment. Let X and �X be the terminal (leaf) nodes of the
branches B and �B respectively. At a leaf, there is no Future Score, hence
PrSð Þ�X~ Tmaxð Þ�X and (PrS)X 5 (Tmax)X. Since �X is the leaf on the optimal branch �B

while X is the leaf on the non-optimal branch B, so PrSð Þ�Xw PrSð ÞX . Obviously the
Tmax values of the ancestors of �X is greater than or equal to Tmaxð Þ�X , since while the
ancestors overestimate the Tmax values,the value at the leaf reflects the actual align-
ment score [The scores of a branch become accurate as the Algorithm 1 moves down
through it and makes the modification of scores as specified in the lines 15,16 of
Algorithm 1]. Consequently, the Tmax values of the ancestors of �X are all greater than
(PrS)X as Tmaxð Þ�Xw PrSð ÞX . Moreover, as FOGSAA has not expanded the branch �B, as
per out assumption, at least one of the ancestor nodes of �X are still there in the priority
queue because Algorithm 1 inserts the current node in the priority queue according to
the Tmax values of its best child (Line no.9 of Algorithm 1). That means, the top node
of the priority queue has a Tmax value which is greater than (PrS)X. But there cannot be
any such node because FOGSAA stops only when the Tmax value of top node of the
priority queue becomes smaller than the PrS value of its best branch i.e., the optimal
score obtained so far (See the loop termination condition of Algorithm 1, line 25).
Hence our initial assumption that FOGSAA terminates with a non-optimal align-
ment, is wrong. Therefore, if FOGSAA has terminated with an alignment along
branch B, then there can be no branch �B providing better score than B.
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Case 2: With affine gap: When the scoring scheme includes affine gap penalty, then
also the branch expansion and termination strategy of FOGSAA remains the same.
Only the way Tmax is being calculated, is different. Here also Tmax shows the best
possible score, but the gap penalties are computed using the formula (Go 1 L 3 Ge)
where L is the gap length. As the inherent technique remains same, it can be shown in
the same way that there cannot be any other branch producing better alignment than
the one provided by FOGSAA.

Thus, FOGSAA is correct and always outputs the optimal alignment.

Proof of termination of FOGSAA. In the best case, FOGSAA terminates after the
expansion of the first branch if the Tmax value of the top node of the priority queue
becomes smaller than the best alignment score obtained so far. Otherwise, it starts
expanding a new branch from the top node. This process continues until either Tmax

value of top node falls below the optimal score obtained so far, or the queue becomes
empty i.e., all possible paths have been checked. If the given sequences are of length m
and n, then there can be no more than m 3 n nodes. Again, each node can be pushed
into the queue only once. Therefore, even if FOGSAA checks all the nodes of the
queue, it will terminate in O(m 3 n) time, which is finite. Hence, FOGSAA terminates
within a finite amount of time.

Proof of Completeness of FOGSAA. It is quite obvious that FOGSAA is applicable
for any sequence over a finite alphabet. Just the scoring matrix for this alphabet needs
to be defined. This justifies the completeness property of FOGSAA.

Algorithm 1: FOGSAA.
Input: A pair of DNA or protein sequence S1 and S2.
Output: Optimal alignment of given sequence pair having $ 30% similarity.

Otherwise it terminates with an approximate alignment and score.
Data Structure:
c[i][j]: The node of FOGSAA tree having P1 5 i and P2 5 j.
Priority queue: Stores the nodes of FOGSAA tree for future expansion based on
their Fitness Score, using separate-chained hashing. (See the Method section for a
discussion).
jS1j 5 m and jS2j 5 n, P1 5 0, P2 5 0, c[0, 0]. PrS 5 0, optimal 5 c[0, 0]. Tmin

if m ? 0 AND n ? 0 then
repeat

while P1 # (m 2 1) OR P2 # (n 2 1) do
Select the best child from the remaining children according to the Tmax.
Let the corresponding P1, P2 values of the selected child be x and y
respectively.
if any child of the current node remains to be expanded then

insert the current node in the priority queue according to the Tmax score
of the next better child.

end if
if child_node.PrS # c[x, y].PrS then

Prune the current branch, as it has already been traversed in a better way.
else

c[child_node] r new_score
P1 r x, P2 r y
if child_node.Tmax # optimal then

Prune the current branch. The Tmax of a node shows the maximum
score that the branch can achieve and if this max value is smaller than
the optimal branch score obtained so far, then it can not ever lead to
the optimal solution.

end if
end if

end while
if c[P1, P2].Tmax $ optimal then

optimal 5 c[P1, P2].Tmax and set the current path as the optimal one.
end if
pick the top most node from the priority queue and update new Tmax.
if The top most node has Tmax such that it cannot have more than 30%
similarity then

end the process and report approximate score.
end if

until optimal $ new Tmax

end if
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