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dangerous. In Djibouti, the two species of Plasmodium are present in different proportions
in the infected population: 77% of P. Falciparum and 33% of P. Vivax. In this study we
present a new mathematical model describing the temporal dynamics of Plasmodium
Falciparum and Plasmodium Vivax co-infection. We focus briefly on the well posedness of
this model and on the calculation of the basic reproductive numbers for the infections with
each Plasmodium species that help us understand the long-term dynamics of this model

Keywords:
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Stability analysis (i.e., existence and stability of various eqiuilibria). Then we use computational approaches
Sensitivity analysis to: (a) identify model parameters using real data on malaria infections in Djibouti; (b)
FAST method illustrate the influence of different estimated parameters on the basic reproduction
LHS method numbers; (c¢) perform global sensitivity and uncertainty analysis for the impact of various
Djibouti data model parameters on the transient dynamics of infectious mosquitoes and infected

humans, for infections with each of the Plasmodium species. The originality of this
research stems from employing the FAST method and the LHS method to identify the key
factors influencing the progression of the disease within the population of Djibouti. In
addition, sensitivity analysis identified the most influential parameter for Falciparium and
Vivax reproduction rates. Finally, the uncertainty analysis enabled us to understand the
variability of certain parameters on the infected compartments.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Malaria is one of the deadliest infectious diseases that has claimed million of lives around the world. In 2022, the World
Health Organization (WHO) (World Health Organization, 2022) estimated that there would be 249 million cases of malaria
and 608 000 malaria-related deaths in 85 countries. The evolutionary potential of parasites and vectors, the rise and fall of
human immunity, changes in the behavior of human and vector populations, and the interactions among the many het-
erogeneous subpopulations complicate the development of programs and policies optimal for the control of infectious dis-
eases. Malaria is an infectious disease caused by the Plasmodium parasite, transmitted by the bites of an infected female
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Anopheles mosquito (Ogunmiloro, 2019; Somma et al., 2017). According to the World Health Organization (WHO) (Hay et al.,
2005; World Health Organization, 2022), the estimated number of deaths from malaria is 580 000, with Africa recording 95%
of fatalities. The different parasite species responsible for malaria include P. falciparum, P. vivax, P. malariae, P. knowlesi, P.
ovale wallikeri, P. ovale curtisi (Garrido-Cardenas et al., 2019; Hay et al., 2005; Loy et al., 2017). Moreover, according to the
World Health Organization (WHO), children under five account for 80% of malaria deaths in the African region. In sub-Saharan
Africa (Rodriguez-Morales, 2008), it is the second leading cause of death after HIV/AIDS. Malaria is caused by parasites of the
genus Plasmodium transmitted to humans through the bites of infected female Anopheles mosquitoes, called “malaria
vectors”. There are five species of parasites that cause malaria in humans, two of which, Plasmodium falciparum and Plas-
modium vivax, are the most dangerous (Mueller et al., 2009). In 2018, P. falciparum accounted for 99.7% of estimated malaria
cases in the WHO African Region, 50% of cases in the South-East Asia Region, 71% of cases in the Eastern Mediterranean region
and 65% of cases in the Western Pacific region (Nnamonu et al., 2020; Sankineni et al., 2023).

In Djibouti, the two species of malaria parasites are present in different proportions (Khaireh et al., 2013; Moussa et al.,
2023): 77% of P. falciparum and 33% of P. vivax. The mosquito species Anopheles Arabiensis and Anopheles Stephensi are
two major vectors of malaria in the country. These 2 vectors are at the root of the epidemics that have hit the country since 2013.
The country recorded an increase in malaria cases in 2015. From January 2019 to December 2019, a total of 49402 malaria cases
out of the 220 381 examined (a positivity rate of 22.42% and an incidence of 49.76 cases per 1000 inhabitants) were affected by
malaria in the population. More recently, the annual number of reported malaria cases in 2020 is 73.535. In the same period the
first case of Covid19 was confirmed in March 2020 in Djibouti and the article (Souleiman et al., 2021) was published on the
dynamics of the disease. The complexity of the parasite life cycle, its high genetic variability and the many mechanisms it can
develop to evade the host immune response, make it very difficult to find a vaccine to suppress human malaria (Flores-Alanis
etal, 2017; Tuju et al., 2017). Additionally, the biology of P. vivax, as opposed to P. falciparum, makes its control and elimination
more difficult. In (White et al., 2018) the authors study the duration of re-infections, recrudescences and relapses of P. vivax and
P. falciparum. Other reasons are related to the presence of hypnozoites (latent liver forms), which lead to multiple relapses and
low parasite densities, which makes diagnosis difficult and delays treatment (Olliaro et al.,, 2016). On the other hand, there are
no suitable experimental models for the analysis of a hypothetical vaccine. Despite this, finding a vaccine to eradicate malaria
caused by P. vivax has become a fundamental goal for WHO and scientific communities around the world.

While there are numerous mathematical modelling studies that investigate malaria infections (see the review paper
(Mandal et al., 2011) and the references therein) most of them focus on infections with single Plasmodium species. There are
also a few studies that focused on the co-infections between malaria and other viruses/bacteria: in (Ray et al., 2020; Sardar
et al., 2020) the authors investigate malaria-COVID-19 co-infections, in (Mukandavire et al., 2009a; Seidu et al., 2015; Shah &
Gupta, 2014) the authors investigate malaria-HIV co-infections, in (Long et al., 2008; Porco et al., 2001) the focus is on
malaria-tuberculosis co-infections, in (Okosun & Makinde, 2014) the focus on malaria-cholera co-infection, while in (Mensah
et al., 2018) the focus is on malaria-zika co-infection. Even fewer studies focused on triple co-infections between malaria,
dengue and typhoid infections (Deshkar et al., 2015; Oluwafemi et al., 2020; Suresh et al., 2013). Nevertheless, all these
studies focus on a single malaria species. Yet, in many geographical areas there are co-infections with multiple Plasmodium
species, and their particular dynamics impacts the persistence of the infections and the success of the treatment. Among the
very few mathematical models derived to investigate co-infections with multiple Plasmodium species we remark two
studies: (i) the study in (Mahato et al., 2015) focused on Indian data that showed slightly more infections with P. Vivax
compared to P. Falciparum in late 1990's and almost the same number of infections with P. Vivax and P. Falciparum in 2010;
and (ii) the theoretical study in (Workie & Koya, 2022) focused on modelling a triple infection with typhoid fever, P. Vivax and
P. Falciparum, but which did not focus on specific data. Nevertheless, investigating the dynamics of P. Vivax and P. Falciparum
in the context of data for specific geographical regions is extremely important for the understanding of the transmission of the
infections with these two species, and the short-term/medium-term evolution of their dynamics.

In this study we propose a mathematical model for the dynamics of the P. Vivax and P. Falciparum the infections, as informed
by the specific Djibouti data that we use to estimate our model parameters. Due to the paucity of data in our possession, in this
article we will assume that there will be no interaction between the two malaria vectors (Falciparium and Vivax). These data will
also be illustrated by sensitivity analyses with Sobol’ indices introduced in 1993 in the seminal work (Sobol, 2001). Assuming
finite second order moment for the model, the computation of these indices is based on the decomposition of the variance. The
main objective of this work is to apply the Fourier Amplitude Sensitivity Test (FAST) method and the Latin Hypercube Sampling
(LHS) method (Marino et al., 2008; Massard et al., 2022) to identify the factor that most influences the evolution of the disease in
the population. We will also use the Monte Carlo method to compare results on sensitivity analysis. This approach allows us to:
(i) understand the transmission of malaria in Djibouti; (ii) compare our results with data-informed modelling results in other
geographical regions in the world where the two Plasmodium species are present, so we can draw conclusions about the
evolution of these infections in response to the specific characteristics of these different geographical regions.

The remainder of the paper is organized as follows: in section 2, we present the mathematical model describing infection
dynamics, as well as the positivity and boundedness of the solutions to verify that the model is well-posed. In section 3, to
better understand the complete model with the infection of the two pathogens, we start by first studying the two sub-models
characterised by single infections: the sub-model with P. Falciparum infection and the sub-model with P. Vivax infection,
before returning to the full model. The details of this section are found in the appendix, where we calculate the basic
reproduction number for the infection dynamics of Plasmodium Falciparum and Plasmodium Vivax. Then, we present the
existence of disease-free and endemic equilibrium points in the models and use a nonlinear stability analysis method to prove
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the local stabilities of these equilibrium. And finally, in section 4, we estimate the essential parameters and conduct a global
sensitivity analysis using both the FAST and LHS methods to identify the most influential factors on the reproduction base
rates.

2. Model formulation

The total human Nj, population is divided into four classes. Indeed, the susceptible individuals Sy, the individuals infected
by plasmodium falciparum Ig, and by plasmodium vivax Iy, the recovered individuals Ry. Thus, the total human population is

Ny (€) = Sp(t) + In(6) + Rp(8),

with, In(t) = Im(t) + Lyn(t). The total mosquito Ny, population is divided into three classes, the susceptible classes Sy, and the
two infective classes by plasmodiums falciparum Igy, and vivax Iym. Thus, at time t, the total population of mosquitoes is

N(t) = Sm(€) + In(t),

with, Ii(t) = Ign(t) + Iym(t). In the rest of this section, we present a description of the variables involved, the graph and the
system of differential equations describing the model.

Fig. 1 below shows the diagram of the model studied in this paper, where the dotted light-blue arrow represents disease
transmission from a falciparum-infected (respectively, vivax-infected) mosquito to a healthy human via the solid light-pink
arrow, while the dotted light-pink arrow represents disease transmission from a falciparum-infected (respectively, vivax-
infected) human to a healthy mosquito.

The transmission dynamics of malaria are given by the following mathematical model:
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Fig. 1. Schematics model diagram.
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Table 1
Model parameters and their descriptions.
Notation Description
Afm Infection P.falciparum transmission probability in mosquitoes
A Infection P.falciparum transmission probability in humans
Avm Infection P.vivax transmission probability in mosquitoes
Avh Infection P.vivax transmission probability in humans
Wth Death rate due to infection with P.falciparum
Hvh Death rate due to infection with P.vivax
Wm Natural death rate of mosquitoes
Wh Natural death rate of humans
Ofh Recovery rate of humans infected by P.falciparum
Oyh Recovery rate of humans infected by P.vivax
Th Constant total recruitment rate of susceptible humans
Tm Constant total recruitment rate of susceptible vectors
B Average biting rate of mosquitoes on humans
dp Rate at which recovered individuals become again susceptibles

These are the equations of a dynamic epidemiological model of malaria taking into account both Plasmodium falciparum
and Plasmodium vivax, including a return of the cure to the sensitive human compartment, and equations for mosquitoes.
Where, Sy, represents the number of susceptible individuals to contract malaria, I, and Iy, represent the number of in-
dividuals infected with P. falciparum and P. vivax respectively, Ry represent the number of individuals recovered, Sy, repre-
sents the number of susceptible mosquitoes, Iry, and Iy, represent the number of mosquitoes infected with P. falciparum and
P. vivax respectively, Ny, is the total human population size, As, and Ayp, are the respective transmission rates of P. falciparum
and P. vivax from humans to mosquitoes, Asy, and Ay, are the respective transmission rates of P. falciparum and P. vivax from
mosquitoes to humans, dy, is the respective recovery rates in humans, puy and iy, are the respective mortality rates of humans,
mosquitoes and descriptions of all parameters are given in Table 1 below.

The basic dynamic characteristics of model (1) will now be explored. Since the model monitors human and mosquito
populations, all of its associated parameters and state variables are positive for t > 0. The model assumptions are given in
Theorems 1 and 2, and their proofs are presented in Appendix A. For model (1) to be epidemiologically significant, it is
important to prove that all its state variables are positive for all times. That is, the solutions of model (1) with positive initial
data will remain positive for all t > 0.

Theorem 1. Let the initial data be Sy(0) > 0, Siy(0) > 0, I, (0) > 0, Iyh(0) > 0, Ign(0) > 0, Iym(0) > 0 and Ry(0) > 0. We assume that
Ry(t) > 0 is positive then the solutions of the model (1), with positive initial data, will remain positive, i.e., Sp(t) > 0, Sp(t) > 0,
Im(t) > 0, Iyp(t) > 0, Ign(t) > 0 and Iym(t) > O for all time t > 0.

The above result represents bounding the solution in the theorem.

Theorem 2. The closed region

Q= {(Sh7sm71ﬂ'[711/h71frn711/m7Rh)ERZ, :Nh < ;_Zst S;_m}v
m

is positively invariant sets for the system (1).

3. Analysis of the all models
To have a better understanding of the full model with the infection of the two pathogens, we start by investigating first the
two sub-models characterised by single infections.The sub-model with the Plasmodium falciparum infection (sub-section

3.1) and the sub-model with the Plasmodium vivax infection (sub-section 3.2). Finally we will return to the analysis of the full
model (sub-section 3.3).

3.1. Plasmodium falciparum model

Here, we study the dynamics of the falciparum sub-model only. Taking I,y = Iy = 0, we obtain:
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% =Th + dpRy — (up Np + A b Ifm)f]_’;’

C;Lfth =Am b Iﬁn%f (b + g + om)Im,

ddith = amlm — (4 + dp)Ry, @
%:Tm — (ttm N + A blfh)lsv—”;,

d:%": A b Ifhfv—n;_ﬂmlﬁn’

The solutions of this sub-model system exist in a space limited by the total human population N;, and mosquito population
Nm:

_ 5. Th Tm
Q= {(sh,sm,Ifh,lfm,Rh)eR+ Ny < N < }

As in the previous theorem 2, the closed region Q¢ is a positive invariant set for the system (2).

The basic reproduction number Ry, also called the basic reproduction rate, is an epidemiological metric used to describe
the contagiousness or transmissibility of infectious agents. This number is the average number of susceptibles that an infected
person will infect at the start of the epidemic. This parameter describing the average number of new infections due to a sick
individual, plays a crucial role. Using next generation matrix (Diekmann et al., 2010), the basic reproduction number of (2) can
be found. To this end, we start by calculating the disease-free equilibrium (DFE) point for system (2): DFE is Eyy = (ZT:,O,O,;—:,O),
the reproduction number of the Plasmodium falciparum model (2) is given by the following expression (for details see
Appendix B)

AnAmb2Tmi
Rop = |75t 3)
Thitin (n + Km + o)

The following Theorem emphasises the importance of this reproduction number for the existence and stability of the steady
states of model (2), that characterize the long-term behaviour of this sub-model. For the proof of this Theorem see Appendix
B.

Theorem 3. The DFE point (Eof), which exists for all parameters, is locally asymptotically stable if Ror < 1. The endemic equi-
librium exists and is unique if conditions (12) are satisfied, i.e., if Ros > 1. In this case the DFE is unstable.

3.2. Plasmodium vivax model

Here, we study the dynamics of the vivax sub-model only. Taking Ig, = Ify, = 0, we obtain:

ds S

d—:: Th +thh — (up Ny +Ayh b Ium)N_};v

dl, S

dth =Xnb Iva_: = (kp + B + @n)lon,

dR

cTth = &yplyn — (up + dp)Rp, @
ds S

7(1;“ =Tm— (/Jm Nh +)Lvm b Il/l’l)]\lirz7

dl S
d“l{" =Amb IvhNﬂh — tiplm.
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The solutions of this sub-model system exist in a space limited by the total human population Ny and mosquito population
Nm:

Q= {(sh,sm,lvh,lvm,RmeRi Ny <1 Ny < T—’"}.
K Hm

As in Theorem 2, the closed region Qy is a positive invariant set for the system (4).
The basic reproduction number Ry, is also calculated in the same way above. By using the next generation matrix
(Diekmann et al., 2010), the basic reproduction of (4) can be found. Thus, the DFE for system (4) is

T T
Eo, = (7.0.0.3%0).
o MK Hm
and the reproduction number is give by (for details see Appendix C):

2
oo \/ I b2t (5)
Thibin (tn + Boh + p)

The following Theorem emphasises the importance of this reproduction number for the existence and stability of the steady
states of model (4), that characterize the long-term behaviour of this sub-model. For the proof of this Theorem see Appendix
C.

Theorem 4. The point DFE (Egy), which exists for all parameters, is locally asymptotically stable if Rq, < 1. The endemic equi-
librium exists and is unique if conditions (17) are satisfied, i.e., if Roy > 1. In this case the DFE is unstable.

3.3. Analysis of the full model

After analyzing the dynamics of the two sub-models, Plasmodium Falciparum and Plasmodium Vivax, we now turn our
attention to the complete infection model. The basic reproductive number R, of an epidemiological model is defined as the
average number of secondary cases produced by one infectious individual in an otherwise fully susceptible population where
no control measures are implemented. An important objective of any infectious disease control program is to implement
control measures effectively to reduce the reproductive number below one. The isolation reproductive numbers in a multi-
parasite model, such as this two-parasite malaria model, refer to the basic reproductive numbers for the model when only one
parasite species is present at a time. These values are essential for understanding the transmission potential of each parasite
species individually within the context of the overall infection model. By analyzing the isolation reproductive numbers, we
can gain insights into the dynamics of each parasite species and tailor control strategies accordingly.

Using the next generation operator approach (Diekmann et al., 2010), we find that the control reproductive number R for
the malaria model (1) is given by Ry = max( Rqy; Ro,), Where Ry is the reproductive number for P. falciparum, and Ry, is the
reproductive number for P. vivax. These reproductive numbers for P. falciparum and P. vivax are described by the expression
(3) and (5) respectively.

Theorem 5. The DFE for the full model (1) is locally asymptotically stable if Rg <1, otherwise it is unstable.

The proof of this theorem 5 is based on Theorems 3 and 4 and can be found in Appendix D.
4. Numerical results

This section is devoted to the numerical simulation of the model. As a result, we begin by estimating the parameters,
before returning to the sensitivity analysis on the number of basic reproductions. We conclude with a global sensitivity
analysis on the infections compartments.

4.1. Parameter estimation

Numerical estimation is an approach to approximating the value of a mathematical quantity using mathematical algo-
rithms and tools. Here, we study numerically the behavior of the systems (2) and (4) using some of the parameter values
compatible with malaria in the article (Agusto & Tchuenche, 2013). This method fits a nonlinear model to data on Falciparum
and Vivax infections and deaths in Djibouti. The process involves importing cumulative infection and death data, calculating
day indices and daily increases, and refining the model through 100 iterations using the "nlinfit” function. Daily increases in
infections and deaths are plotted, adjusted, and compared. Numerical estimation is used to approximate mathematical
quantities, taking into account estimation errors due to algorithm and data limitations. The parameter set must be identifiable
for accurate estimation, involving sensitivity analysis and identifiability analysis to determine which parameters can be
estimated based on available observations.

1100



Y. Souleiman, L. Ismail and R. Eftimie Infectious Disease Modelling 9 (2024) 1095—1116

Now, to support the analytically obtained results in the previous section and to get abetter understanding of the behavior
of system (1), we perform some numerical simulations. As a result, we are going to compare on the same graph the results of
the values of some parameters obtained during the data collection for the case of malaria from January 1, 2022 to April 30,
2022 in Djibouti with those extrapolated. Therefore, it is necessary to partially validate the accuracy of the obtained data. First,
we estimate the parameters by sub-model to better identify the structures of the data according to the two vectors Falciparum
and Vivax.

Figs. 2 and 3 represent the cumulative cases, infected cases, and deaths from Falciparum which are then interpolated by
the deterministic Falciparum sub-model to estimate the most influential parameters such as A, Afm, %m and g, in Table 2.

With these estimated parameters in Table 2, we can now simulate the Falciparium sub-model and we obtain Fig. 4 which
represents the evolution of the human and mosquito model. This figure show that the disease persists in the population until
20th days. A relatively larger decrease in the infected population as the number of infected mosquitoes decreases. Impor-
tantly, the figure shows that the infected populations can be completely controlled for a low rate of mosquito bites on
humans. Thus, one can say that the disease can be totally controlled by enhancing the use of disinfectants against the
mosquito. For this parametric setup in Table 2, we obtain the value of basic reproduction number as Rg; = 3.3692> 1.

As in the case of the previous figures, Figs. 5 and 6 represent the cumulative cases, infected cases, and deaths from Vivax
which are then interpolated by the Vivax sub-model to estimate the most influential parameters such as Ayn, Aym, oh and pyn
in Table 3.

Fig. 7 show that the disease persists in the population until 15th days like the case in Fig. 4 but with a smaller peak, when
the number of infected mosquitoes begins to decline. There is also a discrepancy in the number of people infected with
Plasmodium Falciparum and Plasmodium vivax, respectively, on the death case. This discrepancy shows that Falciparum is
more infectious than Vivax. With the parameters in Table 3, we also get the value of the basic reproduction number as R, =
2.6185 > 1. This gives us the reproduction number of the full model Ry = max(Rgs; Ro,) = 3.3692> 1.

Figs. 8 and 9 show that the importance of average mosquito biting rate on humans to reduce the evolution of the epidemic
by infected individuals plays a major role in the control or elimination of the disease. Moreover, we observe that for b = 0.25 it
gives Ry = max(Rqs; Ro,) = Max(3.3692;2.6185) = 3.3692 > 1, the disease persists inversely for b = 0.048 it gives Ry =
max(Rof; Roy) = max(0.647;0.5027) =0.637 <1, the infection disappears from the community. Finally, we see the impact of
this variation for individuals infected by Plasmodium Falciparum and Plasmodium vivax. However, the number of infected
individuals decreases with increasing mosquito mortality rates, respectively.

4.2. Sensitivity analysis for the basic reproduction rate

The purpose of sensitivity analysis is to investigate the influence of each input parameter and their possible interactions on
the output measures. Sensitivity analysis can be separated into two main methods: local analysis based on a local pertur-
bation around an average value and global analysis that considers input parameters as random variables and decomposes the
output variance into several components. Global sensitivity analysis (Homma & Saltelli, 1996; Ismail et al., 2023; Saltelli,
2002; M Sobol, 1993) is a technique that assesses the overall changes in a model's results for larger changes in key model
variables. Since the knowledge on the model parameters is incomplete, we now perform a global sensitivity analysis of the
different compartments, where we vary all parameters at the same time. For this purpose, we consider the classical Monte
Carlo (MC) approach and the Fourier Amplitude Sensitivity Test (FAST) method (Cukier et al., 1973, 1975, 1978). The Fourier
Amplitude Sensitivity Test (FAST) is a sensitivity analysis method that uses statistical analysis techniques to assess the un-
certainty of the model results. This method was developed by Cukier (Cukier et al., 1973, 1975, 1978) as well as Schaibly and
Shuler (Schaibly & Shuler, 1973). It focuses on the first and second moment of the distribution of each key model variable to
determine the uncertainty of the model results.
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Fig. 2. Approximation on the accumulation of real data of infected cases and the percentage of the ratio between daily infections and daily deaths due to
Falciparium Plasmodium in Djibouti.
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Table 2
Parameter estimation for the falciparum model.
Parameter Value Reference
Th 0.05/day Mukandavire et al. (2009b)
dp 0.97202/day Estimated
Tm 1000/day Mushayabasa et al. (2014)
Hen 0.0405/day Estimated
Hh 0.00004/day Jones et al. (2015)
A 2.4029/day Estimated
Hm 0.1429/day Mukandavire et al. (2009b)
Am 0.9391/day Estimated
B 0.25/day Mukandavire et al. (2009b)
Oifh 0.4462/day Estimated
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Fig. 4. Evolution humans and mosquitoes of sub-model Falciparium with the estimated parameters Am = 2.4029, am = 0.4462, Am = 0.9391 and R¢; = 3.3692.
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Fig. 6. Approximation of the daily evolution of the real data of infections and deaths due to Vivax Plasmodium in Djibouti.

The fitting method involves the application of sampling and sensitivity analysis techniques, including Saltelli (Saltelli,
2002), FAST (Fourier Amplitude Sensitivity Test) and Latin Hypercube Sampling, to assess the impact of input variables on
the basic reproduction rates R of Plasmodium falciparum and R, Plasmodium vivax infections.

The objective of the MC and FAST methods is to determine which key model variables have the greatest impact on the
model results. We consider the output model defined by (3) and (5),

ApnAmb2T
_ \mAmO” Tmip
Rof Ay Asm, s igm) = \/Thﬂzm(#h i+ oy

and

A m/.{ hszm,uh
Rov( Ay Avms Qs \/ L )
ol Aoms G o) Thidy (L + tyh + Q)

We now study the impact on R¢f and Ro, when we vary uniformly the parameters.

We consider that the parameters (Ath, Afm, Avh, Avm, Oh, Ovh) are random and follow the uniform law on the following
respective intervals As, € [2.35; 2.45], A € [0.88; 0.98], Aviy € [1.90; 2.00], Ay, € [0.56; 0.66], oy  [0.39; 0.49], oy, € [0.36;
0.46], um < [0.035; 0.045] and pyn € [0.010; 0.020].

From Table 4, we notice that the parameter Ag, which represents the probability of Falciparum transmission in mosquitoes
influence at with 20%. The parameter og which represents the recovery rate of Falciparum infected humans is the most
influential with 76%. From Table 5, we notice that the parameter A, which represents the probability of Vivax transmission in
mosquitoes influence at with 31%. The parameter ag, which represents the recovery rate of Vivax infected humans is the most
influencial at with 64%. In Tables 4 and 5, as the sum of the indices is very close to 1, we can conclude that the combined effects
of the interactions between the parameters on the basic reproduction rates (Ror and Ryg,) is considered negligible.

In the context of this paper, sensitivity analysis is used to assess the impact of uncertainty in the parameters (A, Afm, Avh,
Avm, %h, %wh) ON the respective base reproduction rates (Rof, Ro,) of sub-models (2) and (4). We used this analysis to assess the
robustness of the model results and to identify the most influential parameters for predicting the prevalence of malaria
infection in the region. In particular, we performed a global sensitivity analysis based on Monte Carlo and FAST methods. This
method estimates global sensitivity indices for each model parameter. The global sensitivity indices reflect the overall
importance of each parameter in the prevalence of malaria infection.

4.3. Global sensitivity analysis on the compartments

First, since the knowledge of the model parameters is incomplete, we perform an uncertainty analysis of (+1 days) on the
compartments (A, Afm, Avh, Avm) by making all the parameters using the Latin hypercube sampling (LHS) (Marino et al., 2008;
Massard et al., 2022). Then, we will perform a sensitivity analysis of the parameters (Am, Afm, Avh, Avm) ON the evolution of the
compartments I, Iy, Iy and Iy, in order to identify the most influential parameter using the Monte Carlo technique.

Fig. 10 show the variation in the number of humans and mosquitoes infected with falciparum (Figure a and b) and vivax
(Figure c and d) when we vary the four transmission parameters (A, Afm, Avh, Avm) Of the full model (1). The black curves show
the time evolution Ig, and Iy, while the dark blue and light blue regions show the interval between the quantiles q05 — q95
and q25 — q75 respectively. It can be seen that I, and Igy, are very sensitive to day changes. For example, in Fig. 10 (a and b), at
day t = 15, a variation of one day leads to a number of infected humans from 10 to 150 and at day t = 20 to a number of
infected mosquitoes from 100 to 2500 by facilparum. In Fig. 10 (c and d), the peak of the median is at day t = 10 for 28 of vivax
infected humans as opposed to 18 for the black curve which is an increase of 10 of infected individuals. The peak of the median
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Table 3
Parameter estimation for the vivax model.
Parameter Value Reference
Th 0.05/day Mukandavire et al. (2009b)
dp 0.97202/day Estimated
Tm 1000/day Mushayabasa et al. (2014)
Hvh 0.015145/day Estimated
Hn 0.00004/day Jones et al. (2015)
Avm 0.6137/day Estimated
Hm 0.1429/day Mukandavire et al. (2009b)
Avh 1.95054/day Estimated
b 0.25/day Mukandavire et al. (2009b)
Ovh 0.4123/day Estimated
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Fig. 7. Evolution humans and mosquitoes of sub-model Vivax with the estimated parameters Ay, = 1.95054, oy, = 0.4123, Ay, = 0.6137 and R, = 2.6185.
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Influence of the parameters on Rgy.

Sensitivity Indices Ath Afm Ofh W Sum of the indices Time running
Monte Carlo 0.0301 0.2009 0.7605 0.0076 0.9991 2.216
FAST 0.0296 0.199 0.758 0.007 0.9936 0.333
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Table 5

Influence of the parameters on Ry,.
Sensitivity Indices Avh Avin Ovh Hvh Sum of indices Time running
Monte Carlo 0.0304 03125 0.6494 0.0065 0.9988 2.0326
FAST 0.03057 03121 0.6483 0.0064 0.9973 1.6711

for vivax-infected mosquitoes is at day t = 15 for 500 of mosquitoes, versus 300 for the black curve, which is an increase of 200
of infected mosquitoes.

In Figs. 11—14, we have represented the singular influence of the parameters (Am, Afm, Avh, Avm) ON the compartments of
human and mosquitoes infectants (I, Itm, Ivh, lvm)-

Figs. 11 and 12 show that the transmission parameters Ag, and Afp act in the compartments of human infected (Ig,) and
mosquitoes infected (Ify) by Facilparum and do not act in the other two compartments infected by Vivax. We also note that
the intensity of influence of Ag, is much higher than the parameter Agy, in both compartments (I, and Iy ). Conversely, in Figs.
13 and 14 the parameters Ay and Ay influence only the compartments infected by Vivax. We also note that the intensity of
influence of Ay, is much higher than the parameter A,y in both compartments (I, and Iyp).

This said, each of the parameters evolves according to the connected compartments, even if the influence is not the same:
for example for t = 20 days the influence of Am, on I, reaches 200 infected persons while that of Ay on Iy, is 33 persons. And
the influence of Afy on Iy reaches 1900 infected mosquitoes while the influence of Ay, on Iy, is 1350 number of mosquitoes.

5. Conclusion and discussion

In this study, we explore the dynamics of malaria infection in the Djibouti region using a mathematical model. Malaria
infection is a phenomenon in which a person is infected with two or more different strains of parasites, which can have
serious health consequences. In this study, we presented a mathematical model that takes into account the infections with
different strains of parasites and the immunity acquired by individuals. We used statistical methods to fit the model to real
data and analyze the dynamics of malaria infection. We calculated the basic reproduction rates of the sub-models (Falciparum
and Vivax) and showed the existence, uniqueness and positivity of the solution of the system of equations. We showed the
stability of the equilibrium points. A sensitivity analysis on the base reproduction rates (Ros and Ro,) of two sub-models
(Falciparum and Vivax) has highlighted the most influential parameters. Next, we performed an uncertainty and sensi-
tivity analysis on the infected compartments (human and mosquito). We found that each of the infection parameters acts on
the compartment in which it is connected.

Biological significance. The analytical results of our study have epidemiological implications. Based on Djibouti data, we
estimated that the basic reproductive number of Plasmodium Falciparum is higher than the basic reproductive number of
Plasmodium vivax. Hence, we expect that for Djibouti, the Plasmodium falciparum might spread faster than Plasmodium
vivax. The data in Figs. 3 and 6 is supporting this analytical result. This is an interesting biological observation, since a recent
epidemiological review (Price et al., 2020) emphasized the fast spread of Plasmodium vivax in many geographical areas
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Fig. 10. Variability in the (a) I, (b) Ifm, (¢) Ivn, (d) Iym output variables as we vary simultaneously, by a maximum of +1 day, all transmission parameters that
appear in the full model (1) (we vary these parameters according to the LHS scheme).
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(mainly outside of sub-Saharan Africa) where anti-malaria control activities have successfully reduced the incidence of
Plasmodium falciparum (but these activities had less impact on reducing the transmission of P. Vivax). This suggests that even
for Djibouti, the employment of anti-malaria control activities will eventually lead to a surge in P. Vivax, and new control
activities will have to be employed at that time.

Comparison with published literature. A slightly different model that includes also exposed human and mosquito
populations, as well as humans and mosquitoes co-infected with the two species at the same time, was developed in (Mahato
et al,, 2015) in the context of Indian data. Compared with the study in (Mahato et al., 2015) (that focused on the calculation of
equilibrium points and of basic reproductive number, in addition to some numerical simulations), here we also carried out a
global sensitivity analysis to investigate the impact of certain model parameters on the basic reproductive numbers and on
the infected compartments. Moreover, we note that the different data sets corresponding to different geographical regions
(Djibouti in this study vs. India in (Mahato et al., 2015)) led to different values for the basic reproductive ratios: here we
obtained Ry = 3.3692 and R, = 2.6185, while in (Mahato et al., 2015) the authors obtained Rqr = 1.3336 and Rq, =
1.4151. Therefore, while in India the P. Falciparum was less infectious than P. Vivax, in Djibouti we have seen the reversed
scenario: P. Falciparum is more infectious than P. Vivax. In addition, the transmission of malaria in Djibouti seems to be much
higher than the transmission in India. Overall, the results of this study emphasise the importance of investigating the malaria
infections with different Plasmodium species across different geographical areas, as this could require different prevention
and treatment strategies for all these different regions: Ali Sabieh, Dikhil, Tadjourah, Obock, Arta and Djibouti.

Other articles deal with the dynamics of Plasmodium vivax and Plasmodium falciparum reinfections. For example article
(White et al., 2018), this article analyzes genotype samples from two longitudinal cohorts in Papua New Guinea and Thailand
using a statistical model to estimate the acquisition and clearance times of each clone in each individual through a data
augmentation process.

This study could be further extended to new mathematical models that incorporate different vaccination approaches, or
incorporate different control approaches applied to the most influential parameters. It could also be extended to investigate
the spatial spread of the two Plasmodium species (as different districts in Djibouti seem to be characterised by different
numbers of P. Falciparum and P. Vivax cases (Moussa et al., 2023)), and the spatial competition between them. Finally, this
work can be studied in the case of co-infections to see the interaction of this disease.

We note, for example, that a few other studies (Mason, 2000; Mason et al., 1999; Mason & Mckenzie, 1999; McQueen &
McKenzie, 2006) focused on within-host mathematical models for the blood-stage dynamics of mixed Plasmodium vivax and
Plasmodium falciparum infections in humans. The results in (Mason & Mckenzie, 1999) emphasized some characteristics
observed in nature, namely that P. vivax infections can influence P. falciparum infections, notably by reducing their peak
parasitemia. Moreover, the study in (Mason & Mckenzie, 1999) highlighted the possible complications when mixed infections
were misdiagnosed and incorrectly treated. Therefore, even we could not find Djibouti data to support such mixed infections
(which is consistent with older studies on the low prevalence of mixed-species infections (Cohen, 1973; Richie, 1988), we
believe that the future incorporation of such an assumption into an extension of our model 1 could generate new testable
biological hypotheses. Furthermore, the development of multi-scale models connecting between-host epidemiological in-
fections and within-host blood infections, could help understand the impact of anti-malaria drugs that might not be as
effective for all species in mixed infections.
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Appendix A. Proofs of positivity and bounding the solution theorems

Proof of Theorem 1. Taking into account the nonlinear system of equation (1), we consider the first equation

ds,

S
W:Th—i-thh—(,uh Nh"'/ljhblﬁ’n'i'}kvh bI,,m)N—};7 (6)
which means that
ds, S
d_[lz —(,Llh Nh+Afh blfm+avh vam)N_’; (7)

By using the exponential growth criterion and integrating (7) gives

t 1
Sh(t)>Sh(0)exp( - /0 (it Nu(S) + Ay b Iin(S) + Ay b Iym(s))mds>,
which implies Sy(t) > 0. By following similar steps as for the condition in Sy(t), it can easily be shown that Spy(t) > 0, Im(t) >0
Iyn(t) > 0, Ign(t) > 0 and Iyy(t) > 0, YVt > 0. O
Proof of Theorem 2. Adding the first eight equations, and the last two equations, of model (1) gives, respectively,

dN,
d_th: Th — #pNp,

dN,
dtm =Tm — U Nm.

Since B < 7 — wyNy, and D < 7y — yNiy it follows that B < 0 and % < 0 if Nj(t) > 2t and N (t) > Im, respectively.
Hence, it follows, using comparlson theorem (Lakshmikantham et al., 1989), that

N(t) < Ny(0)e +;—’“(1 —et),
h
Nin(t) < Nen(0)e#n + 7™ (1 — ~n)
m

In particular, Ny(t) < ;’; if N,(0) < ;’; and Ny (t) < T’" if Nm( ) < ;m respectively. Thus, the region Q is positively-invariant for
the model (1). Furthermore, if N;(0) > T’“ and Nm(O) # , then either the solution enters Q in finite time or, Ny (t)— % and
Nm(t)— T"' = Hence, the region Q attracts all solutions in [RZ7 O

Appendix B. Proofs of Theorem 3: Stability of the equilibrium states Eor and The endemic equilibrium E}

Let 7 represents the rate of new infection matrix and Vy denotes the transfer rate matrix of the individuals:

Amb
(10 )5
N, NS (ke + g + )
A I Amb
b, (“m*r’fﬁ)sm
N, mSm bl

Let us define
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0 0 0 0
0 0 0 b

a
F=-2E)=lo o o o |
! AimbT
HmPTmih 0
Thlm
and
0 (,U.h+,uﬂ1+0£ﬂ1) 0 0
V. —%(E ) =
= an of) = 0 )\fmbTm,LLh iy 0
Thitm
0 0 0 punm

The reproduction number for the plasmodium falciprum model given by (2) can be calculated from the relation
Rog(t) = p(FfV; ") with p the spectral radius of F;V !, where

Amb
1 0 0o ‘M7
Kn Khtm
I S 0 0
Hp + W + A
vil=
Thin (Hh +up + o Hm
0 0 0 l
Km
and
0 0 0 O
Amb
0 0 =
o Hm
FVi =10 0 0 0
Asnb
0 fm2Tmith 0 0

Thﬂm(lih + U + g

This number is found to be

_— \/ AimAmb2 T it
TN b o + i + o)

Now, we shall establish the stability of the equilibrium states. The Jacobian matrix for any equilibrium point Ef of the model (2)

Ambl AmbS
_ fh™fin _ Ambon
(thr Ny ) 0 & ° N
Ambl AmbS
Yh=lfm _ \fhDSh
N, (Bn + B + o) 0 0 N,
J(E) = 0 o ~( + dy) 0 0
AmmbS Ammbl,
_ffmZom _ fm™fh
0 N, 0 (um+ N; ) 0
0 AmbSm 0 Amblpy

N, 7Nh —Hm
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The Jacobian matrix corresponding to the system (2) at DFE point Eg; = (J 0,0,In 0)

7# b
—Mp 0 dh 0 7Aﬂ1b
0 —(Mh-i-,ufh-l-oljh) 0 0 /\ﬂqb
0 U —(up + dp) 0 0
J(Eof) = 2 b
\fimDTmMp
0 _ 0 - 0
Thim Hm
AgnbT
\fimDTmMp
0 - 0 0 -
Thitm Hm

The characteristic polynomial of the matrix J(Eqs) is
P(X) = (=t = X) (~ttm = X)( = i = iy = X) (X2 + kyyX + oy ).

where klf = gum + Mp + Um (th) and sz = ,u.m(p.h + Hm + (th) (1 — R%)f)

It can easily be seen that there are three obvious negative eigenvalués. For the other two eigenvalues, we will use the
Routh-Hurwitz criterion (DeJesus & Kaufman, 1987) with kyf > 0 and kyf > 0 if Rgp <1. This concludes the disease free
equilibrium is locally asymptotically stable if Rqr <1.

The endemic equilibrium E; = (Sp, I, Ry, Sty I,) are solutions of the system:

dt ~dt  dt  dt  dt

To begin with, we define ﬁ;h and ﬁf*m are the force of infections of humans and mosquitoes falciparum at the equilibrium point,
given by

« Amb « Am b
B =Ll B = 9)
N;, m meoN,
From this system (8) and equation (9), we obtain:
BrSh = (n + i + o)l Ry =— o Sm=—"" _ and I LY
n Hh erhfh/ " Hm Jrﬁfm fm um(ﬂm +ﬁfm)
Substituting I, into (9), we get:
ﬁj*h N;; :U'm(/“Lerﬁ;m) - Aﬂ1 b tm 6f*m =0, (10)
and, after long computations of system (2), we get
* cir B
g — f Pfh (11)

Cof ﬁj*h + C3f7
where
Cif = Th b Agn(up +dp)
and
Caf = dn Ny (it + tgm) + i Ni (it + im + )
and
Cap = tn Ny (g +dp) (up + i + ).

Now, substituting (10) into (11), we get
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* 2 *
aor(Bm) + aypBm = 0, (12)
where
dor = Ny fim(ftm Cop +C1¢),  and  ayp = 3Ny i (1 - Rp).-

Note that aof is positive, and there is a unique endemic equilibrium if ai¢ < 0 (i.e. if Rgr > 1).

Appendix C. Proofs of Theorem 4: Stability of the equilibrium states Eg, and The endemic equilibrium E:

Let F, represents the rate of new infection matrix and V, denotes the transfer rate matrix of the individuals:

Avmb
o (1 181,
/\fhbl s h
N_h vm2h (:u'h + My + avh)lvh
]:v = ) Vv =
Tm Avmb
tm +—g o |Sm
Avmbl S Ny
Nh vh=m leum
Let us define
0 0 0 O
0 0 0 1
IF, wnb
F, = ox: (EOU) =10 0 0 0 ’
J
0 AumbTm/‘h 0 O
Thlm
and
Hn 0 0 Auhb
0 (up+tmp+tay) 0 O
v _ vy Eo)—
v = aij( ov) = 0 AvmbTmiy u 0
Thitm "
0 0 0 up

The reproduction number for the plasmodium vivax model given by (4) can be calculated from the relation R, (t) = p(F,V, 1
with p the spectral radius of F,V,, 1 where

1 0 0 _Hnb
Hn Hnlm
1
_ 0 0
V,] . B+ Byn + 0p
! /lvmb'rm#h i 0
it (U + Mo + p)  Hm
0 0 0 l
Hm

and
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0 0 0 0

0 0 M

_ Mm
Fv:1=

vy 0 0 0 0

AvmbTmpp 0 o

Thibm (fn + Boh + Qyp)

This numbar is equal to

R — Avm/\vhbzTm,U'h
Oy = 2 .
Thitéa (Bh + Moh + Q)

Now, we shall establish the stability of the equilibrium states. The Jacobian matrix for any equilibrium point E, of the model

(4)

_ (#h + W) 0 dy 0 —%
W —(Up + By + Q) 0 0 %
J(Ey) 0 A —(kp +dp) 0 0
0 _AWN% 0 - (um + /me%) 0
: mbse g mbh

The Jacobian matrix corresponding to the system (4) at the DFE point Eg, = (T—h, 0, 0,;—2, 0), is as follows

My

—Hh 0 dy 0 —Anb
0 _(:u'h + My + avh) 0 0 Avh b
0 Ay ~(up+dp) O 0
J(Eoy) = A b T
0 _fvm D Tmfy 0 _ 0
Thim Hm
Afm b Tmuy
0 _— 0 0 =
Thlm Hm

The characteristic polynomial of the matrix J(Eqy) is
P(X) = (=t = X) (—tim = X)( =ty = dy = X) (X2 + knuX + ko )

where ky, = (i + Bi + Mon + &) AN Koy = i (i + Bon + Xp) (1 — R, )-

It can easily be seen that there are three obvious negative eigenvalues. For the other two eigenvalues, we will use the
Routh-Hurwitz criterion (DeJesus & Kaufman, 1987) with kiy > 0 and kyy > 0 if Rg, < 1. This concludes the disease free
equilibrium is locally asymptotically stable if R, < 1.

* ok

The endemic equilibrium E, = (S}, Iy, R, Sy, Iom) are solutions of the system:

dt — dt  dt — dt  dt

0. (13)

As in the previous case of falciparum, we also define 8, and 8, are the force of infections of humans and mosquitoes vivax at
the equilibrium point, given by

* A h b * * Aym b *
ﬁyh = ¥ Iv ) ﬂy = * I,;h- (14)
N, ™ "N,
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From this system (13) and equation (14) we obtain:

Oé,,h I*
wp + dp

BunSh = (b + top + )y, Ry =
Substituting I, into (14), we get:
Bun Niy (it + Bym) = A b Tm By =0,

and, after long computations, we obtain

.

* C1y 61111
ﬂvm - %
Coy ﬁvh +C3

where
€1y =Tn b Am(ptp +dp)
and
Cav = dn Ny (p + tom) + £ Np (g + Lo + 0up)
and
€3, = ftp Ny (i +dn) (h + Ho + Gon)-
Now, substituting (15) into (16), we get
aou(ﬂﬁh)z +ay,B,, =0,

where

*
m

Tm

Mm + ﬁ:m

Aoy = Nj i (i C2p+C1,),  and @y, = c3,Np i (1= RG,).

Infectious Disease Modelling 9 (2024) 10951116

*

Tm 6vm

and [ =—T"%m
" (e + Bom)

(16)

Note that agy is positive, and there is a unique endemic equilibrium if a;y < 0 (i.e. if Rg, > 1).

Appendix D. Proofs of Theorem 5: Stability of the equilibrium states Eg

The Jacobian matrix corresponding to the system (1) at the DFE point

Eo = (T—’% 0,0,0,7™ 0, 0),
Mp Mm

is given by
—HMp 0 0 dh 0 *Aﬂ-, b *A,}h b
0 —(uh+ufh+afh) 0 0 0 /ljh b 0
0 0 —(Bh + Hoh + p) 0 0 0 A b
0 am Oyh —(up + dp) 0 0 0
JE)=1| o ~An b —dm b 0 ~tm O 0
0 S 0 0 0 - 0
Hm Th fim
/Ivm b tm Mp
0 0 _ 0 0 0 -
Mm Th Hm
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The characteristic polynomial of the matrix J(Eop) is
PX) = (=t = X)(—ttm = X)( =t = = X) (X 4 KagX + kg ) (02 + ki X+ Kz ).

It can easily be seen that there are three obvious negative eigenvalues. For the other four eigenvalues, we will use the previous
theorems 3 and 4 which give stability if Ror < 1 and Rg, <1 respectively. This concludes that the disease-free equilibrium is
locally asymptotically stable if Rg < 1.
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