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The innate immune system is one of the first lines of defense

against invading pathogens. Pathogens have, in turn, evolved

different strategies to counteract these responses. Recent

studies have illuminated how the hemorrhagic fever viruses

Ebola and Lassa fever prevent host sensing of double-stranded

RNA (dsRNA), a key hallmark of viral infection. The ebolavirus

protein VP35 adopts a unique bimodal configuration to mask

key cellular recognition sites on dsRNA. Conversely, the Lassa

fever virus nucleoprotein actually digests the dsRNA signature.

Collectively, these structural and functional studies shed new

light on the mechanisms of pathogenesis of these viruses and

provide new targets for therapeutic intervention.
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Introduction
Pathogens and their hosts are locked in an evolutionary

arms race, each trying to gain the upper hand over the

other. As a result of this process, host organisms have

developed a sophisticated, multi-tier defense against

invading pathogens. The innate immune system provides

the first line of defense, and plays a particularly important

role in viral infections, as viruses are obligate intracellular

pathogens, dependent on host cell machinery and

resources for replication.

Early in infection, components of the innate immune

system sense pathogen-associated molecular patterns

(PAMPs). Among PAMPs, double-stranded RNA (dsRNA)
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is a key hallmark of infection by negative-sense viruses.

dsRNA is detected in the cytoplasm of an infected cell by

viral dsRNA receptors such as retinoic acid-inducible gene

I (RIG-I) [1] and melanoma differentiation-associated gene

5 (MDA-5) [2]. Upon recognition of their ligand, these

receptors initiate signaling pathways that result in the

translocation of interferon regulatory factor 3 (IRF-3)

and other transcription factors to the nucleus. Once in

the nucleus, these transcription factors activate expression

of interferons (IFN) a and b, which initiate the antiviral

response in the infected cells and prime neighboring cells

for a rapid response to viral invasion.

IFNs establish an antiviral state through both an auto-

crine and paracrine manner and trigger pathogen-specific,

adaptive immune responses. Early responses of the innate

immune system thus may be able to control viral replica-

tion and permit a subsequent, robust, and specific adap-

tive immune response to clear the virus and prevent

establishment of reinfection. However, viruses have

developed a myriad of countermeasures that allow them

to block, circumvent, or mitigate host cell defenses.

Numerous viruses have developed multiple strategies for

attenuating the initial innate immune response mounted

by their hosts. Suppression of these responses allows the

virus to gain an early foothold during infection, replicating

to a high titer before an effective adaptive immune

response can be mounted. This is particularly true for

certain hemorrhagic fever viruses, such as the filoviruses

Ebola and Marburg and several members of the arena-

virus family (Lassa (LASV), Lujo, Junin, and Machupo).

Filoviruses and arenaviruses are enveloped, negative-

sense, single-stranded RNA (ssRNA) viruses and as such,

produce dsRNA during viral replication. The Ebola virus

(EBOV) protein VP35 and the arenavirus nucleoprotein

(NP) have been shown to inhibit IFN-a/b production [3–
5]. In cases of human infection with EBOV and LASV,

patients with hemorrhagic fever display very high viral

titers (as high as 109 in some cases) and marked immune

dysregulation [6–11]. Recent structural studies of EBOV

VP35 and LASV NP have provided valuable insight into

the mechanisms by which these key viral proteins subvert

host immune defenses.

Ebola virus VP35
Significant immunosuppression is noted in natural ebo-

lavirus infection [12,13]. Five species in the ebolavirus
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genus have thus far been described: Ebola (formerly

known as Zaire), Sudan, Taı̈ Forest, Bundibugyo and

Reston viruses [14,15]. The VP35 protein of these viruses

appears to play a key role in blocking critical immune

signaling events early in infection. Indeed, VP35 has been

shown to prevent phosphorylation and dimerization of

IRF-3 [16], block induction of IFN a/b expression [3,16],

inhibit activation of protein kinase R [17,18], and serve as

a suppressor of RNA silencing [19]. This ability of VP35

to block IFNa/b expression has been mapped to its C-

terminal dsRNA-binding domain [20,21]. Recent struc-

tural analysis of the pathogenic EBOV [22,23��] and the

nonpathogenic (to humans) Reston virus (RESTV)

[24��,25�] identified key residues critical for IFN inhi-

bition and suggested a mechanism by which VP35

sequesters dsRNA and prevents it from being recognized

by immune sentry proteins. Interestingly, the VP35 struc-

tures are largely similar between EBOV and RESTV;

reasons why RESTV is nonpathogenic to humans remain

unclear.

The crystal structures reveal that VP35 RBD contains two

subdomains: an a helical subdomain, which consists of a

four-helix bundle, and a b sheet subdomain, which is

formed by four antiparallel b strands, an a helix and a

polyproline II helix (Figure 1a) [22,24��]. Electrostatic

surface calculations demonstrate the presence of two

highly conserved basic patches, one in each subdomain.

The first conserved basic patch lies in the a helical

subdomain, contains residues K222/K211, R225/K214,

K248/K237, and K251/K240 (numbering is EBOV/
Figure 1
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The structure of Ebola and Reston virus VP35. (a) RESTV (green, PDB codes 

similar aside from a single helix in the linker between the two subdomains (re

(b) Structure of RESTV VP35 in complex with dsRNA. Ribbon models of the

yellow, respectively. Residues comprising the central basic patch in both m
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RESTV henceforth), and is not critical for binding

dsRNA [22]. The second, ‘central basic patch’ lies in

the b sheet subdomain and contains K282/K271, R305/

R294, K309/K298, R312*/R301, K319/K308, R322*/

R311, and K339*/K328. Many of these residues were

previously identified in EBOV as critical for immune

suppression [21,26], and residues marked by * have been

shown to be critical for dsRNA binding [23��].

Structures of EBOV VP35 in complex with 8 bp of dsRNA

[23��] and RESTV VP35 in complex with 18 bp of dsRNA

[24��] revealed the VP35 of both viruses binds to dsRNA

using a unique bimodal strategy. In both structures, VP35

forms an asymmetric dimer that wraps about the end of the

dsRNA. Within each dimer, one VP35 RBD monomer

binds terminal nucleotides of the dsRNA as well as the

backbone (‘end-capping’). The other VP35 RBD mono-

mer binds only the phosphate backbone of the dsRNA

(‘backbone-binding’) (Figure 1b). The two monomers

together assemble a continuous, positively charged pocket

for receiving dsRNA.

The end-capping RBD contains several conserved hydro-

phobic residues, which form a nonpolar face that packs

against the terminal bases of the dsRNA. The C-terminal

carboxyl group of the end-capping VP35 polypeptide

hydrogen bonds to the terminal base of the dsRNA oligo.

Also, residues in the central basic patch of the end-

capping molecule (K282/K271, R312/R301, and R322/

R311) make hydrogen bonds to the phosphate backbone,

of the dsRNA.
(b)

end-capping
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binding
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3KS4 and 3L2A) and EBOV (blue, PDB code 3FKE) VP35 RBDs are highly

sidues 274–281 in RESTV and 285–292 in EBOV, indicated by an arrow).

 end-capping VP35 and backbone-binding VP35 are colored green and

olecules are illustrated in blue.
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Interestingly, in the backbone-binding VP35 monomer,

two of those central basic patch residues (R312/R301 and

R322/R311), as well as an additional central basic patch

residue (K339/K328) do not bind RNA, but instead form

the dimer interface to the end-capping molecule. Instead,

it is the residues I340/I329 (C-terminal carboxyl group),

S272/S261, R305/R294, and Q274/Q263 that make hydro-

gen bonds to dsRNA in the backbone-binding monomer.

The structural information suggests two roles for the

critical residues in the central basic patch for EBOV/

RESTV VP35: first, binding the backbone of dsRNA,

as seen in the end-capping subunit and second, forming

the dimer, as seen in the backbone-binding subunit

(Figure 1b).

Alignment of the VP35 RBDs of RESTV [24��] and

EBOV [22] shows a high degree of similarity between

the two species with an overall RMSD of 0.7 Å among

backbone atoms. Some flexibility is evident in residues

274–281 (RESTV numbering), which forms a helix in the

linker between the two subdomains of RESTV, but

adopts a distinct loop structure in EBOV. The helical

nature of the linker in RESTV could limit the flexibility

required for multiple interactions between the VP35

RBD and the dsRNA. However, the conservation of

structures and binding mechanism between pathogenic

(EBOV) and nonpathogenic (RESTV) viruses suggests

that the virulence determinant lies elsewhere: in a contact

of the VP35 RBD with a non-dsRNA factor, in N-terminal

regions of VP35, or in another component of the virus.

One of the most unusual findings from the structural

studies of VP35 is the unique mode of dsRNA recognition.

Each, otherwise identical monomer makes a different

interaction with the dsRNA ligand. Together, the com-

plete RNA-binding surface assembled by VP35 molecules

masks the terminus and backbone of dsRNA from recog-

nition by host dsRNA sensors such as RIG-I and MDA-5.

Indeed, recent structural analysis of RIG-I in complex with

dsRNA demonstrates that the different domains of the

protein coat the phosphate backbone and also the terminal

bases of the dsRNA [27�,28�,29�,30�]. Hence, while other

viral proteins, such as influenza NS1, appear to prevent

dsRNA recognition by solely coating the dsRNA backbone

[31,32], ebolavirus VP35 caps the ends of the dsRNA and

the specific recognition site of RIG-I. Whether VP35 also

coats expanses of dsRNA backbone between the ends is

currently unknown.

Lassa virus NP
The arenavirus NP is one of the only four proteins

encoded by the virus. NP is multifunctional, playing roles

in viral replication and transcription and also in suppres-

sion of the host innate IFN response, by inhibiting

nuclear translocation of IRF-3 [4]. Arenavirus infection

often results in unchecked viral replication, failure to

initiate an adaptive immune response and increased
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morbidity and mortality [33–38]. Mutagenesis throughout

LCMV NP, before the availability of a structure, ident-

ified key residues within the C-terminal half of NP critical

for such immunosuppressive function [5,39]. However,

the role of these residues, and the mechanism by which

arenavirus NPs cause immunosuppression remained

unknown. Recent structural analysis of LASV NP has

shed light onto these questions [40��,41��].

Crystal structures reveal that the C-terminal domain of

LASV NP consists of a mixed, five-stranded b sheet with

one antiparallel strand (b2) and six a helices connected by

a series of loops. One particularly long loop between a5

and a6 forms a basic ‘arm’ off one side (Figure 2a,b). A

zinc atom at the center of the structure is coordinated by

E399, C506, H509, and C529, which are located at the

bases of b2, the protruding basic arm and a6, respectively.

Primary sequence analysis of LASV NP showed no sim-

ilarity to other proteins outside the arenavirus family.

Although no particular enzymatic activity was previously

known for LASV NP, structural studies unexpectedly

revealed that the 3D fold was extremely similar to mem-

bers of the DEDDh family of exonucleases [40��,41��].
The members of this family are so named because they

contain strictly conserved Asp-Glu-Asp-Asp and His cat-

alytic residues in the active site [42]. LASV NP similarly

encodes D389, E391, D466, D533, and H528. Not only

does the overall fold align with known DEDDh enzymes,

such as IFN-stimulated gene-20 [43] and the e subunit of

Escherichia coli DNA polymerase III (DNA pol IIIe) [44],

it also appears to have the same active site as well. The

positions of D389, E391, D466, D533, and H528 in LASV

NP align beautifully with equivalent residues in the

active sites of known exonucleases.

LASV NP not only resembles an exonuclease, it also

functions like an exonuclease. Biochemical analysis

demonstrates that NP readily hydrolyzes an 18 bp dsRNA

oligonucleotide in the 30–50 direction, but has no effect on

ssRNA, ssDNA, or dsDNA [40��] (although dsRNA

specificity was not observed in a separate study that used

different assay conditions and substrates [41��]). Muta-

tional analysis confirms the importance of the active site

DEDDh residues [40��,41��] and those that coordinate

the zinc ion [40��] for exonuclease activity. Additional

residues within the active site, such as G392 and R492,

were also identified as critical to the exonuclease function

of NP [40��]. The position of these amino acids in the

active site suggests they may play a role in binding to the

terminal RNA residue. The stretch of four basic residues

within the basic arm of NP was also shown to be import-

ant, but not critical, for exonuclease activity [40��]. The

E. coli DNA polymerase I Klenow fragment uses a basic

arm to make contact with the primer strand of the duplex

DNA. Perhaps the basic arm of LASV NP contacts the

undigested strand of the dsRNA in a similar fashion.
Current Opinion in Virology 2012, 2:151–156



154 Virus structure and function

Figure 2
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The structure of the exonuclease domain of Lassa virus NP. (a) Cartoon representation of the C-terminal domain of Lassa virus NP (PDB code 3Q7B).

Residues within the active site are colored red, and residues proximal to the active site and known to disrupt exonuclease activity (G392 and R492) are

colored green. The basic arm includes residues K516, K517, K518, and R519. A single zinc (gray sphere) is coordinated by E399, H506, C509, and

C529. (b) Electrostatic surface potential calculated using APBS [49] shows that NP has an acidic active site and highlights the basic arm. Positive

surface is colored blue; negative surface is colored red with limits �10 kT/e.
Importantly, mutational analysis indicates that those resi-

dues important for exonuclease activity are also important

for immunosuppression. Wild-type NP blocks transloca-

tion of IRF-3 into the nucleus. Mutants that knock out

exonuclease activity fail to block IRF-3 translocation

[40��,41��] (proper fold and expression of these mutants

was verified by use of ELISA with conformational anti-

bodies). These results indicate that the exonuclease

activity is essential for the observed immunosuppressive

activities of NP in vitro.

The high sequence similarity among the arenavirus NPs,

conservation of the exonuclease active site, and the

demonstrated importance of the same D, E, D, D, and

H residues in LCMV NP [39] suggests the exonuclease

activity is a shared feature of arenavirus NPs.

This is the first time a virus has been shown to have

dsRNA-specific exonuclease activity, and the first time a

virus has been shown to counteract IFN responses by

actually digesting that PAMP. As previously discussed,

the ebolaviruses suppress dsRNA-mediated responses by

encoding proteins that bind to and physically shield

dsRNA from recognition by immune sensors like RIG-I
Current Opinion in Virology 2012, 2:151–156 
and MDA-5 and by RNA interference machinery

[19,20,23��,24��,25�]. Tombusvirus, Flock house virus,

and influenza virus also encode proteins that bind to and

shield dsRNA from immune recognition, although these

proteins bind the central backbone and not the ends of the

dsRNA oligos [32,45,46]. By contrast, rather than coating

dsRNA generated during replication and transcription, the

arenavirus NP instead digests the dsRNA.

Only one other mammalian RNA virus is known to

encode a protein with exonuclease activity. Nsp14 from

SARS coronavirus is also a DEDDh exonuclease, but

appears to have activity toward both ssRNA and dsRNA

[47]. Furthermore, nsp14 has been implicated in the

control of RNA synthesis and genome fidelity [48] and

has no known IFN suppressive activity. Thus, the exo-

nuclease activity of the arenavirus NP provides the first

example of a virus digesting dsRNA to evade host innate

immune responses.

Discussion and future directions
The importance of filovirus VP35 and arenavirus NP to

both the viral life cycle and the immunosuppression of

the host cell, and the availability of high-resolution
www.sciencedirect.com
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structures of these proteins should facilitate design of

antiviral drugs that target VP35 and NP. The RNA-

binding basic patch and the dimerization site of the

VP35 RBD offer two targets for binding of small mol-

ecules that inhibit dsRNA binding. Compounds that

target the exonuclease active site or the zinc-coordination

site of NP may also prove to be useful antiviral therapies.

In this endeavor, it will be important to develop com-

pounds that are specific for arenavirus NP and do not

cross-react to other, structurally similar host exonuclease

active sites. A structure of NP bound to its dsRNA

substrate would provide additional and perhaps more

specific targets for small molecules.
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