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Abstract

Complex disorders are a class of diseases whose phenotypic variance is caused by the interplay of multiple genetic and
environmental factors. Analyzing the complexity underlying the genetic architecture of such traits may help develop more
efficient diagnostic tests and therapeutic protocols. Despite the continuous advances in revealing the genetic basis of many
of complex diseases using genome-wide association studies (GWAS), a major proportion of their genetic variance has
remained unexplained, in part because GWAS are unable to reliably detect small individual risk contributions and to capture
the underlying genetic heterogeneity. In this paper we describe a hypothesis-based method to analyze the association
between multiple genetic factors and a complex phenotype. Starting from sets of markers selected based on preexisting
biomedical knowledge, our method generates multi-marker models relevant to the biological process underlying a complex
trait for which genotype data is available. We tested the applicability of our method using the WTCCC case-control dataset.
Analyzing a number of biological pathways, the method was able to identify several immune system related multi-SNP
models significantly associated with Rheumatoid Arthritis (RA) and Crohn’s disease (CD). RA-associated multi-SNP models
were also replicated in an independent case-control dataset. The method we present provides a framework for capturing
joint contributions of genetic factors to complex traits. In contrast to hypothesis-free approaches, its results can be given
a direct biological interpretation. The replicated multi-SNP models generated by our analysis may serve as a predictor to
estimate the risk of RA development in individuals of Caucasian ancestry.
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Introduction

The study of genotype-phenotype relationship in complex

disorders represents a great challenge in the field of translational

genetics, due to their importance from a public health perspective

and to the difficulties involved in their analysis at the genetic level

[1,2]. In contrast to monogenic traits, the phenotypic variance of

complex traits is caused by the interplay of multiple genetic and

environmental factors [3–6], which limits the applicability of the

traditional approaches used for mapping of Mendelian traits [1–

3,7,8].

Genome-Wide Association Studies (GWAS), a powerful method

for the large scale analysis of genotype-phenotype relationships

[7,9,10], are currently the method of choice for dissecting the

genetic basis of complex diseases. A large number of disorders such

as cardiovascular disorders, Crohn’s disease, rheumatologic

disorders, diabetes, bipolar disorder, schizophrenia and human

malignancies, have thus far been studied with this approach

leading to the detection of many previously undetected contrib-

uting loci (for example [1,11–15]). However, despite the very large

number of markers that can be genotyped using currently

available array-based SNP genotyping platforms (up to one

million SNP genotypes per run) [16], in most cases GWAS have

so far shown limited success in explaining a considerable pro-

portion of genetic variance of complex diseases [7,10,17]. This is

in part due to the nature of complex diseases, and in part to

limitations which are inherent to the current analytical framework

employed to analyze and interpret the obtained data [18–20].

To start, most of the susceptibility loci so far discovered by

GWAS are of small predisposing risk [4,7] and it has been

hypothesized that the genetic variance of complex diseases may be

largely due to the joint contribution of multiple susceptibility loci

having small individual effects [21,22]. Detecting such infinitesi-

mal contributions is difficult, especially when the predisposing

allele is rare or the sample size is not sufficiently large [2,3], and

the very large number of markers under investigation raises the

issue of multiple testing, making it even harder to reliably detect

a small association signal [16]. This is also true in the case of rare

variants with major phenotypic effects, as put forward by the

complex disease-rare variants notion [17]. Moreover, the genetic

architecture of a complex disease may include epistatic effects

among interacting loci [23,24], and effects related to gene-

environment interactions [6]. Statistical methods that analyze

SNPs individually are unable to address such complex effects.

Although current regression-based methods have enough power to

analyze some low-order interactions (e.g. - quadratic or cubic

terms), provided that the non-interactive terms have significant

main effects, they are unable to explore all potential combinations

of markers because as the number of factors under analysis

increases linearly, the number of their combinations grows
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exponentially, resulting in a computationally intractable situation

[18,19]. The sparsity of data and issues of overfitting and multiple

testing may also impose additional hurdles in such cases [18].

A further weakness of current analytical methods is that they

analyze genome-scale datasets without necessarily taking the

existing biological knowledge about the trait of interest into

account. It has been suggested that using prior knowledge can help

reduce the dimensionality of large scale datasets, and may guide

the process of extracting biologically meaningful results in a more

effective manner [19,25,26]. Pathway-based association studies

represent an example of the integration of biological knowledge

with statistical data analysis, and have recently drawn attention as

an alternative to hypothesis-free methods. For instance, in an

attempt to extend gene set enrichment analysis used for gene

expression data to GWAS, O’Dushlaine et al. [27] introduced the

SNP ratio test, which calculates the ratio between the number of

individually significant SNPs and the number of non-significant

ones in sets of SNPs derived from every pathway of interest, and

determines a pathway to be associated with the trait under

investigation if its corresponding SNP ratio proves statistically

significant. As another example, Peng et al. [28] and Yu et al. [29]

suggested ways of computing an overall p-value for a gene by

combining the p-values obtained from the association tests on all

the individual SNPs belonging to that gene. Gene-level p-values, in

turn, were employed to define a pathway-level p-value to

investigate pathway-trait associations. However, despite the fact

that the limitations of classical GWAS in the context of complex

diseases are increasingly being recognized and that pathway-based

association studies are receiving growing attention, there is still no

optimal approach able to overcome the above described

challenges and provide a comprehensive interpretation of

genome-scale data.

The work presented here focuses on developing an innovative

hypothesis-based analysis method that combines a non-deterministic

computational approach to the analysis of large-scale genotype

datasets with pre-existing biological and biomedical knowledge in

order to increase our understanding of the genetic basis of

complex disorders. In the following sections we provide a detailed

description of our method, called KBAS (Knowledge-Based

Association Study), and we present its application to large-scale

genotyping datasets for Rheumatoid Arthritis (RA) and Crohn’s

disease (CD). We will use these examples to show how our method

can be used to compare alternative hypotheses about the disease of

interest which in turn can lead to new insights into the genetic

structure of the complex disease under consideration. We also

present the results of a replication study, in which we validated the

results obtained on RA through a different independent dataset.

Since complex disorders are widespread and important from the

public health perspective, dissecting their genetic architecture and

reconstructing the integrated networks of factors underlying their

pathogenesis may help develop more specific and sensitive

screening and diagnostic tests and more efficient therapeutic

targets [1,19]. This in turn may lead to reducing the morbidity and

mortality of these diseases [1], consequently decreasing the burden

imposed on patients and society. We believe that the KBAS

method will represent an advance in this direction, and will help

increase our understanding of the genetic basis of complex

disorders.

Methods

KBAS Method Overview
We propose a hypothesis-based approach that performs a holistic

analysis of genome-wide association data. Figure 1 illustrates the

basic outline of KBAS method. Given a hypothesis formulated by

the investigator, the method generates a number of models,

consisting of sets of markers corresponding to the hypothesis

under consideration. The models are then tested and refined on

the basis of their ability to accurately classifying subjects as affected

or not affected on the basis of their genotypes.

To start, we define an encoding scheme that converts the

genotypes of the markers under consideration to numerical

values. Each marker is then given a weight that quantifies its

contribution to the overall genotype-phenotype association. The

combination of a set of markers and their corresponding weights

represents a model. The genotype values corresponding to each

marker in the model, along with their respective weights, are

combined according to an appropriate mathematical formula,

producing a score variable for each subject, and the distributions

of scores for the subjects in the case and control groups are

then compared to evaluate the model’s classification ability. The

idea at the base of our method is that, if the set of markers

included in the model is relevant to the phenotype, their joint

signal, obtained by combining their individual association signals

into an overall variable, will be able to accurately classify cases

and controls. The optimal combination of SNPs and their

corresponding weights leading to a model with maximized

classification ability is determined through an iterative adjust-

ment procedure based on Genetic Algorithms (GA) which

generates, tests and refines different models relevant to the

hypothesis under investigation. A detailed explanation of the

steps employed by KBAS method is provided in the following

sections.

Hypothesis Generation
The KBAS method we propose is aimed at verifying or

disproving a hypothesis put forth by the user. In this context, the

hypothesis is the statement that a particular set of genes

contributes to the trait under investigation. The set of genes to

be included in a hypothesis will in general be determined by the

investigator on the basis of existing biological knowledge. Bio-

chemical and regulatory pathways, gene ontology classes, gene

expression databases, protein-protein interactions databases, and

biomedical literature are some examples of sources of information

that can be used to generate relevant hypotheses [26].

Once our hypothesis is formulated, the method tests whether

a subset of genetic markers related to the specified set of genes is

able to precisely separate cases from controls, when converted into

a single variable through an appropriate mathematical combina-

tion of their genotype values. In the following sections we will

assume that the markers under consideration are SNPs, and

therefore only exhibit two alleles, but the method can be applied to

any kind of polymorphic marker, given a way of encoding its

genotypes into numerical values. In a typical scenario, an

investigator may wish to determine which of the two different

sets of genes is more likely to be involved in a disease of interest.

This question can be answered by creating two competing

hypotheses, each producing a set of SNPs belonging to the two

gene sets, and evaluating them on the basis of their power to

discriminate cases from controls.

Genetic Algorithm
KBAS uses a Genetic Algorithm to adjust the weights of the

SNPs composing a model, in order to maximize the model’s

ability to accurately classify subjects into the case and control

groups on the basis of the scores they receive. A Genetic

Algorithm is a heuristic search algorithm able to efficiently

explore very large and complex parameter spaces, in order to
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maximize a fitness function over the potential solutions of the

problem under consideration [30,31]. Genetic Algorithms

belong to the class of non-deterministic computational methods,

which also includes other methods such as neural networks

[32,33], genetic programming [34], and cellular automata [35].

Given the limitations of classical analysis methods, these

approaches offer new strategies to address the complex issue

of genotype-phenotype mapping.

A GA receives a number of randomly generated potential

solutions (organisms) to the problem under consideration; each of

which contains an encoded representation (artificial chromosome) of

the set of parameters describing the solution. Solutions are then

evaluated according to the specified fitness function, and are

optimized through a simulated process of evolution using

operators borrowed from evolutionary biology such as mutation,

crossover and selection [30,31]. The GA used in this work is

a variation of the CHC algorithm [36], implemented by the

authors. We followed the standard practice of encoding each

model parameter (in this case, each SNP weight) as a binary

number consisting of the appropriate number of bits. Artificial

chromosomes are therefore represented by bit vectors whose

length is proportional to the number of SNPs in the model. In the

simplest case only one bit is used to represent each SNP’s weight:

the weight therefore indicates whether the corresponding SNP is

present in the model or not.

The definition of the fitness function is a critical aspect in the

use of a GA. In our application the fitness of a model is a measure

of the model’s ability to discriminate cases and controls, which in

turn is calculated on the basis of the set of scores assigned by the

corresponding model to the subjects in the case and in the control

groups. The score corresponding to a particular model is defined,

for each subject, as the logarithm of ratio of the conditional

probabilities of the subject’s genotype under the two phenotype

states of interest (e.g. diseased vs. healthy), according to the

following formula inspired by the definition of Bayes factor [37]:

Si~ln
P Gi DState1ð Þ
P Gi DState2ð Þ

where Si is the score for individual i, Gi is the genotype of

Figure 1. A flow chart illustrating the steps applied by the KBAS method.
doi:10.1371/journal.pone.0044162.g001
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individual i for the set of SNPs included in the model, and State1
and State2 are the two phenotype states being compared to each

other, i.e. case vs. control.

Once the scores are computed for all subjects in the case and

control groups, their distributions are compared using a two-

sample t-test, and the p-value resulting from the comparison of the

score distributions is used as the fitness measure. The assumption

is that a model with high fitness generates highly different score

distributions in the two groups resulting in a more extreme t-value

and a smaller p-value compared to those generated by a model

with low fitness. Therefore, models with smaller fitness p-values are

preferred.

The GA will then rank all simulated organisms on the basis

of their fitness, remove the lower half of the ranked organisms,

and replace them with a new generation produced by applying

the aforementioned genetic operators to the surviving organisms.

Although the GA is initialized using a user-specified number of

SNPs, reflecting the user’s preference for the approximate

number of markers included in the model, during this step the

number of non-zero weights can increase or decrease due to

occurrence of crossover and mutations, causing the GA to

discard some markers or to include new ones in the models.

This cycle continues until a desired fitness level is attained, or

the maximum number of generations is reached. Note that the

desired fitness level should be adjusted according to Bonferroni’s

correction [38] to account for the number of artificial

chromosomes, of simulated generations, of investigated hypoth-

eses and of pair-wise case-control comparisons performed in the

analysis. At the last generation of GA, the set of weights

encoded by the organism with the highest fitness is used to

generate the successful model, that is, the one that displays the

highest ability to separate cases from controls.

Association Criteria
The successful model is then evaluated by permutation testing

to validate its suggested association with the trait of interest.

Holding the values of the generated score variable constant, the

case-control labels of subjects in the original dataset are permuted.

The model is then applied to the resulting permuted dataset and its

corresponding fitness value is recorded. This process is repeated

a large number of times to produce an empirical distribution of the

fitness values, which can then be used to asses whether the fitness

value derived from the original dataset is significant.

If the successful model shows a fitness p-value lower than the

user-specified significance threshold and also proves significant

under permutation test, it is considered to be associated with the

trait under investigation and its fitness level can be used as

a measure of the strength of the association. We can therefore

conclude that the SNPs included in the model represent causal

variants or are in linkage disequilibrium (LD) with causal variants

in neighboring regions.

Replication of the Results
Like in any association study, the significant findings should be

further validated in an independent case-control dataset to prove

their replicability. In the replication step, a score variable is

generated and tested in the replication dataset using the same

model that was generated and tested in the discovery dataset. If

a model successfully discriminates cases from controls in the

replication dataset and the p-value of its permutation test is also

significant, it is considered replicated.

Logistic Regression Analysis and Disease Risk-Score Class
Diagram
To evaluate how the disease-associated successful models

produced by the GA affect the risk of developing the disease

under consideration, a multiple logistic regression model is fitted

using the scores produced by these models as the independent

variables, and the disease state (affected vs. healthy) as the response

variable. In addition, to investigate potential interactions among

the successful models under consideration, all their pairwise

interaction terms are included as predictor variables as well, and

a stepwise selection procedure was applied to only retain the

statistically significant variables.

A simple regression model is also fitted by regressing disease

state on the overall score variable computed for the entire set of

SNPs present in the significant disease-associated models. To

illustrate the relationship between the overall score variable and

the disease risk, we then discretize the overall score variable into

multiple classes and compute the posterior probability of being

affected by the disease for each class of this newly generated

discrete variable using Bayes’ formula [37] (see Methods S1).

Logistic regression analysis is performed using SAS (v9.2).

Method Evaluation
We used the KBAS method to test a number of hypotheses

indicating that genes in a set of pathways related to the activity and

regulation of the immune system play a role in the development of

Rheumatoid Arthritis (RA). In addition, we tested the applicability

of the KBAS method to other diseases like Crohn’s disease (CD)

and type I diabetes (T1D). In particular, the results related to CD

will be described in this manuscript. The tests were performed

using genotype data provided by the Wellcome Trust Case-

Control Consortium (WTCCC) [1]. Patients in the RA and CD

groups served as cases, and healthy individuals in the 58C and

NBS groups constituted the controls. Case and control groups

contain ,2000 and ,1500 individuals respectively. Study subjects

are of Caucasian ancestry, and each one was genotyped at around

500,000 SNPs using the Affymetrix platform (Affymetrix Gene-

Chip 500 K Mapping Array). The small values of the trend test’s

over-dispersion parameter (l=1.03 for RA and 1.11 for CD)

based on principal component analysis indicates only trivial

confounding effects exists related to the population stratification

[1]. We converted SNP genotypes to numerical values by

representing the major allele (A) at each locus as 0 and the minor

allele (B) as 1. The three possible genotypes can therefore be

encoded as follows: AA=0, AB= 1, BB= 2. Alternative encoding

schemes, for example to consider dominant or recessive effects,

can easily be adopted.

Using two control groups provides the advantage that the

successful model produced by the comparison of the case group

against one of the controls (e.g. RA vs. NBS) can be tested in two

more comparisons, one between the case group and the other

control group (e.g RA vs. 58C), and the other one between the two

control groups (58C vs. NBS). This increases the robustness of the

inferred associations and reduces the risk of overfitting, because

the successful model should be able to separate the case group

from the second control group, and should not be able to separate

the two control groups from each other. This in turn shows that

results are reproducible and provides evidence that the GA is not

simply learning to classify different groups of subjects or finding

models consisting of chance aggregations of SNPs due to small

differences between the groups unrelated to the disease (such as

those due to geographic or ancestral factors), but produces results

that are directly related to the disease of interest.

Association Studies for Complex Diseases
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Rheumatoid arthritis is an autoimmune disorder primarily

affecting joints in a monoarticular or oligoarticular pattern with

subsequent progression to a polyarthritis with clinical manifesta-

tions related to inflammation of synovial membrane, and articular

cartilage erosion and destruction. The etiology of the disease is

unknown, but it seems both genetic susceptibility and environ-

mental triggers contribute to the pathogenesis of the disease [39].

A number of previously reported RA-predisposing loci (for

example [1,11,40–43]) implicate the role of genetic factors in the

process of disease development. Crohn’s disease is also a chronic

immune-mediated disorder characterized by recurrent transmural

inflammation of the gastrointestinal tract [44]. It has been

suggested that an inappropriate immune response to microbial

flora of the intestine in genetically susceptible individuals may play

an important role in the development of this disease [1,45]. A

previous meta-analysis reported over 71 CD-associated loci [15]

corroborating the role of genetic factors in the disease suscepti-

bility. The entire set of these predisposing loci accounts for about

21% of heritability of the disease [23].

Due to the suggested auto immune nature of the rheumatoid

arthritis and Crohn’s disease, we focused on fourteen pathways

related to different aspects of the human immune system as test-set

pathways. Moreover, we selected ten other pathways involved in

processes unrelated to the immune system, and therefore are likely

to be irrelevant to the pathogenesis of RA and CD, to serve as

negative controls in our analysis. Table 1 provides complete details

on both sets of pathways. Pathway definitions were retrieved from

the KEGG database (Kyoto Encyclopedia of Genes and Genomes:

http://www.genome.jp/kegg/) [46].

For each pathway, we selected all validated SNPs found within

the transcripts encoded by the genes belonging to it, extending up

to 3,000 bp upstream and downstream. We then filtered this set of

SNPs to retain only those that were genotyped in the WTCCC

study. To further reduce the number of selected SNPs, the

investigator has the option to choose a subset of ‘‘representative’’

SNPs from each transcript (e.g. only one SNP), on the basis of

a prioritizing rule that preferentially selects non-synonymous

coding SNPs, followed by promoter SNPs, exon-intron junction

SNPs, synonymous coding SNPs, other exonic SNPs, and intronic

SNPs. Table S1 summarizes the functional roles of the genotyped

and validated SNPs related to the pathways under investigation.

All procedures related to SNP set creation, manipulation and

filtering were performed using Genephony, a user-friendly web-

based browser for large-scale genomic datasets manipulation and

for knowledge-based discovery tasks [47].

Finally, to test if the association detected for RA-associated

pathways can be generalized to other cohorts, we tested the

significance of the corresponding successful models in an in-

dependent case-control dataset of white Americans (NARAC)

[41]. This dataset contains genotype data for 908 patients suffering

from RA as the case group (NARAC-A) and for 1,260 healthy

individuals as controls (NARAC-C). All subjects are of Caucasian

ancestry and were genotyped at 545,080 SNPs using the Illumina

Infinium HumanHap550 array. The set of SNPs genotyped in this

dataset is not the same as that of the WTCCC study, due to the

different genotyping platforms used. Therefore, we relied on

linkage disequilibrium between markers in close proximity to

replace SNPs in the successful models that were not genotyped in

NARAC with the closest SNPs for which NARAC data is

available.

The KBAS Software
The KBAS method described here was implemented in a freely

available software package, that can be downloaded at http://

genome.ufl.edu/rivalab/KBAS/as a 64bit GNU/Linux com-

mand-line executable. The program allows users to specify the

input genotype datasets (case and control groups), and the GA

parameters such as number of organisms, number of generations,

weights encoding scheme, etc. It also provides users with an

interface to the Genephony system [47] to automatically generate

sets of SNPs related to the hypotheses under study on the basis of

biological knowledge. The output of the program is a file

containing the names of the markers in the successful model with

their respective weights and functional roles. The program can

also perform randomization testing on the successful model and

write the resulting p-value on the output file. All results described

in the remainder of this paper were generated using the KBAS

software.

Results

Analysis of the Rheumatoid Arthritis (RA) Dataset
For each of the twenty four initial sets of SNPs derived from the

pathways listed in Table 1, KBAS initialized a GA using

a population of 200 candidate models (represented by artificial

chromosomes, using a single bit for each SNP weight). Each

artificial chromosome was initialized to contain non-zero weights

for a random subset of approximately 10 SNPs. The population

was then evolved over 500 simulated generations, and the artificial

chromosome providing the best fitness value in the final generation

was used to generate the successful model.

Tables 2 and 3 summarize the p-values associated with the

fitness of each successful model on the basis of the pairwise

comparisons between the case group and the two control groups

(i.e. RA vs. 58C and RA vs. NBS). Note that the significance level

was adjusted to 6.94461029 according to Bonferroni’s correction,

given the number of artificial chromosomes (n = 200), simulated

generations (n = 500), investigated pathways (n = 24) and pair-wise

population comparisons (n = 3). To validate the significance of

theses fitness values, we assessed the goodness-of-fit of each model

using permutation testing performed over 100,000 rounds. Given

the total number of pair-wise comparisons (n = 48), we used

a corrected significance threshold of 0.00104 according to

Bonferroni’s correction. A randomization test p-value between

0.05 and 0.00104 was considered borderline. A model was

considered significant if in both RA vs. 58C and RA vs. NBS

comparisons had significant p-values, and was considered non-

significant if resulted in non-significant p-values in at least one of

the two comparisons. In all other situations, it was considered

borderline. The p-values obtained from permutation tests are also

shown in Tables 2 and 3 next to the fitness p-values.

Test-set Pathways
For each of the tested pathways, with the exception of the Fc

epsilon RI signaling, Fc gamma R-mediated phagocytosis, regulation of

autophagy and T-cell receptor signaling pathways, KBAS was able to

identify a model that classifies cases and controls with a highly

significant p-value, ranging from 2.5561029 to 1.19610223 for the

RA vs. 58C comparisons and from 1.2361029 to 1.64610222 for

the RA vs. NBS comparisons. By contrast, the successful models

were unable to separate the NBS and 58C groups, and the p-values

of the comparisons were always non-significant (see Table 2). The

fact that successful models derived from these ten pathways were

able to separate case-control groups with fitnesses more extreme

than the pre-determined significance threshold comparing RA vs.

NBS and RA vs. 58C, but were not able to discriminate the two

control groups from each other, indicates that they represent sets
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of SNPs which could potentially be associated with rheumatoid

arthritis.

In permutation tests performed by comparing RA vs. 58C and

RA vs. NBS, the fitness p-values related to all these ten models

except for those related to the chemokine signaling and the natural killer

cell mediated cytotoxicity pathways, were validated with p-values less

than 1025, suggesting their remarkable performance in distin-

guishing the RA cohort from unaffected individuals. The eight

pathways that give rise to significant p-values in permutation test

Table 2. The p-values associated with the pairwise comparisons of the RA group and the two control groups using the successful
models derived from immune system related pathways.

Pathway 58C vs. NBS RA vs. 58C RA vs. NBS

Fitness Fitness Randomization-test Fitness Randomization-test

Antigen Processing and Presentation 0.00589 1.0361029 ,1025 3.96610216 ,1025

B-cell Receptor Signaling 0.04550 4.44610214 ,1025 5.79610213 1025

Chemokine Signaling .0.05 9.76610211 0.00073 1.2361029 0.00336

Complement and Coagulation Cascades .0.05 1.19610223 ,1025 2.31610220 ,1025

Cytokine-Cytokine Receptor Interaction 0.04981 1.09610220 ,1025 1.64610222 ,1025

Fc Epsilon RI Signaling 0.03246 6.9761025 .0.05 2.4761025 .0.05

Fc Gamma R-mediated Phagocytosis 0.04356 1.9161026 .0.05 1.4361027 0.01143

Immune Network for IgA Production 0.00408 6.65610211 ,1025 4.31610218 ,1025

Leukocyte Trans-endothelial Migration .0.05 1.11610217 ,1025 2.71610218 ,1025

Natural Killer Cell Mediated Cytotoxicity 0.00437 2.5561029 0.00263 7.97610210 0.00085

Phagosome .0.05 2.48610216 ,1025 4.34610217 ,1025

Regulation of Autophagy .0.05 0.00941 .0.05 0.01714 .0.05

T-cell Receptor Signaling 0.04116 5.8361028 0.00111 8.0361028 0.00161

Toll-like Receptor Signaling .0.05 6.82610214 ,1025 2.68610212 ,1025

The fitness p-values measure the fitness of each successful model retrieved by Genetic Algorithm engine. They are calculated by comparing original case and control
datasets using corresponding successful models. Randomization-test p-values measure the significance of fitness p-values of their corresponding successful model by
comparing permuted case and control datasets. According to Bonferroni’s correction, a fitness p-value ,6.94461029 and a randomization test p-value ,0.00104 were
considered significant. The p-values of the models showing strong or moderate association with rheumatoid arthritis are in bold.
doi:10.1371/journal.pone.0044162.t002

Table 3. The p-values associated with the pairwise comparisons of the RA group and the two control groups using successful
models derived from negative control pathways.

Pathway 58C vs. NBS RA vs. 58C RA vs. NBS

Fitness Fitness Randomization-test Fitness Randomization-test

Cardiac Muscle Contraction .0.05 0.01392 .0.05 0.01158 .0.05

Gap Junction .0.05 0.00051 .0.05 0.00202 .0.05

Glycolysis/Gluconeogenesis .0.05 0.0007 .0.05 0.00288 .0.05

Insulin Signaling .0.05 4.3061025 .0.05 0.000533 .0.05

Nucleotide Excision Repair .0.05 0.00144 .0.05 0.00084 .0.05

Oxidative Phosphorylation 0.02171 9.1261028 0.04476 1.2661026 .0.05

Purine Metabolism .0.05 .0.05 .0.05 .0.05 .0.05

Pyrimidine Metabolism .0.05 0.00782 .0.05 0.03497 .0.05

Renin Angiotensin System .0.05 0.00273 .0.05 0.02638 .0.05

Spliceosome 0.02692 4.4761026 .0.05 0.00024 .0.05

doi:10.1371/journal.pone.0044162.t003
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are therefore considered to be strongly associated with rheumatoid

arthritis.

Despite the high fitness values of the models obtained from the

chemokine signaling and natural killer cell mediated cytotoxicity pathways,

permutation testing suggested only moderate association of these

models with rheumatoid arthritis. While permutation testing of the

model derived from the first pathway resulted in a significant p-

value for RA vs. 58C comparison (p,7.361024) and a borderline

p-value for RA vs. NBS comparison (p,3.3661023), the p-values

resulting from permutation testing of the model from the second

pathway were borderline for RA vs. 58C comparison

(p,2.6361023) and significant for RA vs. NBS comparison

(p,08.561024) respectively.

The successful model from the T-cell receptor signaling pathway

yielded statistically borderline fitness values when comparing RA

against 58C and NBS (p,5.8361028 and p,8.0361028 re-

spectively). Once again the comparison between the two control

groups had a non-significant p-value. In permutation testing, the

original case-control p-values appeared to be of borderline

statistical significance for both the RA vs. 58C comparison

(p,1.1161023) and the RA vs. NBS comparison

(p,1.6161023). We suggest the model derived from this pathway

may also be in moderate association with RA.

Finally, the successful models derived from the Fc epsilon RI

signaling, Fc gamma R-mediated phagocytosis and regulation of autophagy

pathways are not considered to be in association with RA because

they did not produce significant fitness p-values and the p-values

resulting from the corresponding permutation tests were non-

significant as well.

Negative Control Pathways
On all pathways in the negative control set, the method failed to

produce a model capable of classifying cases and controls with

a statistically significant fitness p-value. In addition, the results of

all permutation tests were non-significant (p-values .0.00104) (see

Table 3). In three cases namely insulin signaling, oxidative phosphor-

ylation and spliceosome pathways the fitness p-values related to the

selected successful models were closer to the significance threshold

than those of other control pathways. However, the fact that

neither of their corresponding permutation tests was statistically

significant confirms the poor goodness-of-fit of these models in

discriminating cases from controls. These results are consistent

Table 4. The p-values associated with the comparison of the RA and CTR groups and NARAC-A and NARAC-C using the successful
models derived from pathways under consideration.

Pathway RA vs. CTR NARAC-A vs. NARAC-C

Fitness Randomization-test Fitness Randomization-test

Test Pathways

Antigen Processing and Presentation 8.17610217 ,1025 1.47610 217 ,1025

B-cell Receptor Signaling 8.31610218 ,1025 4.5461025 .0.05

Chemokine Signaling 1.44610213 ,1025 6.4761028 0.03463

Complement and Coagulation Cascades 3.11610228 ,1025 7.17610225 ,1025

Cytokine-Cytokine Receptor Interaction 5.51610230 ,1025 6.3461025 .0.05

Fc Epsilon RI Signaling 2.7361026 .0.05 7.5261027 .0.05

Fc Gamma R-mediated Phagocytosis 9.09610210 361024 5.65610217 ,1025

Intestinal Immune Network for IgA Production 5.99610219 ,1025 1.41610217 ,1025

Leukocyte Trans-endothelial Migration 4.61610225 ,1025 4.4461029 0.00310

Natural Killer Cell Mediated Cytotoxicity 7.37610213 ,1025 5.1561029 0.00793

Phagosome 2.34610223 ,1025 0.00532 .0.05

Regulation of Autophagy 0.00172 .0.05 9.9961025 .0.05

T-cell Receptor Signaling 2.90610210 2 61025 5.85610215 ,1025

Toll-like Receptor Signaling 2.96610218 ,1025 1.9661024 .0.05

Control Pathways

Cardiac Muscle Contraction 0.00405 .0.05 4.4461025 .0.05

Gap Junction 7.7261025 0.04995 0.01804 .0.05

Glycolysis/Gluconeogenesis 0.00025 .0.05 3.5161025 .0.05

Insulin Signaling 2.3761026 0.00860 0.00186 .0.05

Nucleotide Excision Repair 7.0161025 .0.05 0.01216 .0.05

Oxidative Phosphorylation 1.7261029 0.00460 2.7761026 .0.05

Purine Metabolism 0.04224 .0.05 .0.05 .0.05

Pyrimidine Metabolism 0.00371 .0.05 0.00034 .0.05

Renin Angiotensin System 0.00216 .0.05 0.00248 .0.05

Spliceosome 1.0961026 0.02772 5.7861026 .0.05

According to Bonferroni’s correction, a fitness p-value,6.94461029 and a randomization test p-value,0.00208 were considered significant. The p-values of the models
showing significant association with rheumatoid arthritis comparing RA vs. CTR are in bold. Of these 12 pathways, five were replicated in NARAC dataset at the
significance level of 0.00208 and three were replicated at the significance level of 0.05. The p-values of these replicated models are also in bold.
doi:10.1371/journal.pone.0044162.t004
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with our prior expectation that these negative control pathways

may not be relevant to the pathogenesis of rheumatoid arthritis,

and do not therefore lead to a significant separation of the case

and control groups.

Overall, these results indicate that the final models generated by

KBAS are not just simple classifiers capable of learning the

differences between two arbitrary groups of individuals. Instead,

their classification power is a function of the biological relevance of

criterion used to select the initial sets of SNPs: SNP sets derived

form pathways that are more biologically relevant to the trait of

interest will lead to more accurate and powerful models. This

feature is specially important when one aims to test and rank

alternative hypotheses about the trait under consideration.

RA vs. CTR
We further evaluated the reproducibility of the observed

associations by comparing the RA group versus the pooled

population of the two control groups, here called CTR, using the

successful models retrieved by GA. All the eleven models showing

strong or moderate association with RA in the previous step along

with model related to the Fc gamma R-mediated phagocytosis pathway

were statistically associated to rheumatoid arthritis (see Table 4) in

this analysis. Complete details regarding the RA vs. CTR analysis

are provided in Results S1.

Table S2 shows the list of selected SNPs in the successful models

derived from pathways displaying strong or moderate association

with RA, the genes and chromosomes they belong to, their

positions on their respective chromosome, and their functional

roles. The number of SNPs in the successful models ranged from

three to eight, which in all cases is less than 1% of the total number

of SNPs in the corresponding initial SNP-sets (see Table 1). This

indicates that KBAS was able to efficiently cope with the

complexity of a very large multi-dimensional search space.

Out of 72 total SNPs in these 12 models, two of them lie within

the MHC region on 6p21 (chr 6: 29,910,021–33,498,585) which is

a known hot spot for several autoimmune disorders. rs9272346 is

a promoter SNP related to the HLA-DQA1 gene which was

previously shown to be associated with juvenile chronic arthritis

[48]. On the other hand rs2072633, located in an intron of the

CFB gene, is neither associated with RA based on previous

findings nor in LD with other RA-associated SNPs according to

the HapMap LD data (International HapMap Project: http://

hapmap.ncbi.nlm.nih.gov).

None of the other SNPs present in the successful models or the

genes to which these SNPs belong is among RA-associated loci in

previously published genome-wide association studies. There is

also no evidence of linkage-disequilibrium between theses SNPs

and other RA-associated SNPs according to the HapMap LD

data. This indicates that the results generated by KBAS are not

simply a rediscovery of strongly associated individual SNPs.

Instead, our method is able to elucidate the joint contribution of

previously unknown sets of SNPs to the genetic architecture of

rheumatoid arthritis.

As seen in Table S2, the final models for seven of the tested

pathways contained pairs of SNPs on the same chromosome.

SNPs in these pairs are not in linkage disequilibrium with each

other according to HapMap LD data. This shows that there is no

redundancy in the selected SNPs, and therefore all the SNPs

identified by the method were retained in their respective

successful models.

Multiple Logistic Regression Analysis
To evaluate the impact of the twelve successful models

previously concluded to be in association with RA on the risk of

being affected by the disease, and to investigate potential

interactions among them, a multiple logistic regression model

was fitted by regressing the disease state on the score variables

produced by comparing RA vs. CTR using each of these twelve

models, along with their pairwise interaction terms (66 terms).

The multivariate model obtained from the stepwise selection

procedure contained the score variables related to all twelve

pathways except for those related to the Antigen processing and

presentation and Phagosome pathways. Moreover, the interaction

terms of the interaction between the cytokine-cytokine receptor

interaction and leukocyte trans-endothelial migration pathways and

between the cytokine-cytokine receptor interaction and T-cell receptor

signaling pathways were also kept in the fitted regression model.

The fitted regression model had overall model p-values

smaller than 1024, and the covariates of the included terms

were statistically significant with p-values smaller than 0.0028.

All covariates were positively correlated with the disease

susceptibility with odds ratios between 1.652 and 2.859, except

for the two aforementioned interaction terms which were

negatively correlated with odds ratios of 0.266 and 0.182

respectively. The c-statistics for the model was 0.687 and the p-

value of Hosmer-Lemeshow test for the fitted model was non-

significant (p.0.05), indicating model’s goodness-of-fit. Table 5

summarizes these results.

Replication of the Results
To test if the detected significant association between the twelve

immune system related pathways and RA can be generalized to

other cohorts, the scores related to each of theses successful models

were calculated in the NARAC dataset, and their distributions

were compared between case (NARAC-A) and control (NARAC-

C) groups. After performing 100,000 rounds of permutation

testing over each of the models, the significance of the primary

fitness p-value was determined and used as the replication criteria.

The significance thresholds for interpreting the results were the

same as used for the RA vs. CTR analysis.

As seen in Table 4, five out of the 12 immune-system related

pathways showing moderate or strong association with RA in

WTCCC dataset were replicated with fitness p-values ranging

from 5.85610215 to 7.17610225 and permutation test p-values

less than 1025. In addition, three models derived from chemokine

signaling, leukocyte trans-endothelial migration and natural killer cell

mediated cytotoxicity pathways resulted in permutation test p-values

of 0.03463, 0.0031 and 0.00793 respectively, and therefore can

be considered replicated at the significance level of 0.05. None

of the models derived from the remaining 16 pathways gave rise

to a significant p-value in the permutation tests. Due to the

different genotyping platforms, a number of SNPs present in the

successful models were replaced by new ones to conduct the

replication study, as explained in Method Evaluation section.

Table S3 summarizes the list of the original and substituted

SNPs present in the eight replicated models. The substituted

SNPs are in the range of 39 bps to 23,342 bps away from the

original ones.

Simple Logistic Regression Analysis and Disease Risk-
Score Class Diagram
The disease state was also regressed on the overall score variable

computed based on the all 44 SNPs present in the replicated

models, to evaluate the applicability of this single score variable in

predicting the disease risk. Further details are provided in Results

S1 and Tables S4 and S5.

To illustrate how an increase in the value of the overall score

variable influences the risk of disease development, the range of
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values corresponding to each overall score variable was discretized

into 12 bins, and for each bin the posterior probability of being

affected was calculated. As shown in Figure 2, for both case-

control comparisons the risk of development of rheumatoid

arthritis increases as the score takes larger values. Comparing

RA vs. CTR, this risk ranges from around 18% when the score

class is lowest to around 75% when the score class is highest. For

model related to the NARAC-A vs. NARAC-C comparison’s

model, the disease risk rises from around 2% for the lowest score

class to around 75% for the highest score class. This indicates that

the scores obtained from the total set of these 44 SNPs can be used

as a predictor to estimate the probability by which an individual

may develop the disease.

Analysis of the Crohn’s Disease (CD) Dataset
The applicability of the KBAS method to other diseases was

tested in Crohn’s disease (CD) using the same set of 24 pathways

used for RA analysis. Detailed results are provided in Results S2.

As seen in Tables S6, S7 and S8, successful models derived from

nine pathways demonstrated evidence of association with Crohn’s

disease. Eight out these nine pathways were also in association

with RA in the WTCCC dataset, and six of them were also among

the pathways replicated in the NARAC dataset. Two SNPs out of

the 57 SNPs included in these models (see Table S9) are in linkage

disequilibrium with two previously detected CD-associated SNPs.

None of the other SNPs are among or in linkage disequilibrium

with 71 known loci linked to CD previously [15]. The successful

multi-SNP models included in the fitted regression model had

Table 5. Multivariate regression of disease-state on the score variables derived from the successful models showing strong or
moderate association with rheumatoid arthritis (comparing RA vs. CTR).

Test of Overall Model

Test Chi-square df P-value

Likelihood Ratio Test 529.5161 12 ,0.0001

Score Test 497.9300 12 ,0.0001

Wald Test 451.4576 12 ,0.0001

Test of Parameters

Parameter Parameter
Estimate

Standard
Error

Wald’s Chi-
square

df P-value Odds Ratio Estimates

Point Estimate 95% Confidence
Interval

Intercept -0.3790 0.0312 147.7942 1 ,0.0001 - - -

Pathway 1 0.5020 0.1304 14.8224 1 0.0001 1.652 1.279 2.133

Pathway 2 0.6809 0.1516 20.1816 1 ,0.0001 1.976 1.468 2.659

Pathway 3 0.8802 0.0990 79.0971 1 ,0.0001 2.411 1.986 2.928

Pathway 4 0.7601 0.0984 59.6341 1 ,0.0001 2.139 1.763 2.594

Pathway 5 1.0191 0.1973 26.6887 1 ,0.0001 2.771 1.882 4.078

Pathway 6 0.7184 0.1224 34.4668 1 ,0.0001 2.051 1.614 2.607

Pathway 7 0.6218 0.1108 31.4872 1 ,0.0001 1.862 1.499 2.314

Pathway8 1.0506 0.1575 44.5086 1 ,0.0001 2.859 2.100 3.893

Pathway 9 0.5614 0.1840 9.3069 1 0.0023 1.753 1.222 2.514

Pathway 10 0.5519 0.1274 18.7555 1 ,0.0001 1.737 1.353 2.229

Pathway 4 * Pathway 7 -1.3250 0.3206 17.0822 1 ,0.0001 0.266 0.142 0.498

Pathway 4 * Pathway 9 -1.7018 0.5694 8.9334 1 0.0028 0.182 0.060 0.557

Goodness-of-fit Test

Test Chi-square df P-value

Hosmer - Lemeshow Test 6.9178 8 0.5455

Pathway 1: B-cell Receptor Signaling Pathway.
Pathway 2: Chemokine Signaling Pathway.
Pathway 3: Complement and Coagulation Cascades Pathway.
Pathway 4: Cytokine -Cytokine Receptor Interaction Pathway.
Pathway 5: Fc Gamma R-mediated Phagocytosis Pathway.
Pathway 6: Intestinal Immune Network for IgA Production Pathway.
Pathway 7: Leukocyte Trans-endothelial Migration Pathway.
Pathway 8: Natural Killer Cell Mediated Cytotoxicity Pathway.
Pathway 9: T-cell Receptor Signaling Pathway.
Pathway 10: Toll-like Receptor Signaling Pathway.
doi:10.1371/journal.pone.0044162.t005
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odds ratios ranging from of 2.320 to 2.741 (see Table S10). Table

S11 summarizes the results of a simple logistic regression analysis

obtained by regressing disease state (CD vs. CTR) on the overall

score variable derived from the entire set of 57 SNPs present in the

nine CD-associated models. Table S12 provides a comparative

summary of the observed disease-pathway associations analyzing

RA and CD using WTCCC and NARAC datasets. Figure 3

illustrates the Disease risk-Score class diagram for the CD vs. CTR

comparison.

Discussion

The method we presented in this paper provides a framework

for extending genome-wide association studies to situations in

which a phenotype is caused by a number of concurrent genetic

factors. Its main purpose is to measure how well a multi-SNP

model is able to classify case and control subjects for which

genotype data are available. Biologically, multi-SNP models may

implicate cases in which functional relationships exist among

genetic factors of interest. These relationships might be for

instance in the form of interaction among functionally redundant

elements or physically interacting biomolecules, or of the

concurrent occurrence of two or more hypomorphic mutations

in different steps of a particular pathway [49,50]. To capture these

effects KBAS uses Genetic Algorithms, a powerful search method

able to navigate through an extensive search space consisting of

potential combinations of markers and to refine them by removing

markers that show limited contribution to the trait under

consideration. Instead of examining each marker individually,

our method allows the user to define models consisting of a set of

markers, to integrate the markers’ genotypes into a score variable

and to evaluate the model’s ability to correctly classify cases and

controls on the basis of the distribution of the score variable values.

Multi-SNP models that define a score variable over loci they

contain are able to take into account the joint effects of loci

individually conferring small risks to the phenotype under

investigation, and the different combinations of trait influencing

loci which is of considerable importance in capturing the genetic

heterogeneity underlying a complex trait. For example we can

imagine a case in which a hypothetical phenotype is produced by

concurrent mutations in any two out of three loci involved in

a particular pathway (e.g. loci A, B and C). Therefore, subjects

having mutations in loci A and B show the same phenotype as

subjects having mutations in loci A and C or loci B and C. This

can be formally described using the following logical statement: [A

AND B] OR [A AND C] OR [B and C]. However, since the main

effect of each individual locus is small, subjects harboring single

mutations do not develop the phenotype. Defining a score variable

results in integrating small association signals arising from

individual risk loci into an overall association signal capturing

the joint effects of contributing loci. Moreover, since the score

variable is computed independently on each subject, different

combinations of loci can contribute to the same score variable

distribution in parallel to each other, leading to a more accurate

representation of the differences of case and control groups.

Since KBAS employs a Genetic Algorithm-based search engine,

it enjoys high flexibility and efficiency in searching through an

extremely large solution space. On the other hand, like with any

other method relying on heuristic search algorithms, this does not

ensure that the successful models are the absolute best ones. Our

method is instead meant to be used in a hypothesis-based fashion:

Figure 2. Disease risk-Score class diagram for RA vs. CTR and NARAC-A vs. NARAC-C comparisons. For each comparison overall score
variable derived from the entire set of 44 SNPs present in the eight replicated RA-associated models was discretized into 12 bins, and for each bin the
posterior probability of being affected by disease was calculated based on Bayes formula.
doi:10.1371/journal.pone.0044162.g002
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its purpose is not to discover the ‘‘best’’ set of markers that explains

a phenotype; something that is computationally unfeasible since it

would require testing all possible combinations of a given number

of markers; but to confirm or invalidate the hypothesis that a user-

provided set of markers is associated with the phenotype. The

method does not require or stipulate a specific way of selecting

markers: if the provided set does not contain a sufficient number of

‘‘relevant’’ ones, the algorithm will simply fail to find an

appropriate combination of markers, and will report that the

corresponding hypothesis is not supported by the available data.

This is clearly observed using the two sets of pathways we

selected for this study, the first one containing pathways known to

be relevant to the immune system, and the second one containing

pathways unrelated to the immune system, used as negative

controls. For instance, while on the first set of pathways KBAS was

able to produce multiple replicated RA-associated models with

remarkable classifying efficacy, none of the pathways in the second

set gave rise to a successful model capable of significantly

separating cases from controls (see Tables 2, 3 and 4).

In addition, our method provides researcher with a way to

prioritize the successful models derived from different pathways in

order to evaluate which pathway is more likely to be related to the

pathogenesis of the disease of interest. For example comparing RA

vs. CTR (see Table 4), the complement and coagulation cascade pathway

seems to be of higher relevance to the process of development of

rheumatoid arthritis compared to T-cell receptor signaling pathway.

Also, among the significant models for the CD vs. CTR

comparison (see Table S8), the B-cell receptor signaling, cytokine-

cytokine receptor interaction and T-cell receptor signaling pathways show

high association with the Crohn’s disease, while for example the

association of the antigen processing and presentation pathway seems to

be of lower importance compared to the three aforementioned

pathways.

Another application of our method is to compare the

contribution of specific pathways to different traits of interest.

Although several pathways were labeled as associated with

rheumatoid arthritis and Crohn’s disease in our analysis, each

provides a different contribution to the diseases under investiga-

tion. For example comparing the two successful models derived

from the complement and coagulation cascade pathway through the

analysis of RA and CD datasets, RA-associated model has

a smaller p-value than the CD-associated model, while the reverse

is true for the two models derived from T-cell receptor signaling

pathway (see Tables 4 and S8).

There are clear benefits to having SNPs selection be guided by

preexisting biological knowledge. This choice maximizes the

chance of including SNPs that are functionally related with the

phenotype of interest, and makes it more likely that the results, if

positive, may have an explicit biological interpretation. If the

algorithm identifies a model with high case/control separation

performance, it can be directly used to formulate a biological

explanation for the observed phenotype. For example, this could

involve identifying the genes containing the SNPs within the

model or in LD with them, and making them high-priority

candidates for further experimental analysis.

The observed significant associations between immune system

related multi-SNP models and the diseases under investigation is

consistent with previously revealed aspects of their pathogenesis as

autoimmune diseases [1,39,43,45]. The fact that a number of RA-

associated models were replicated in another population of the

same ancestry makes them a potential predictor which can be used

to estimate the risk of disease development in individuals of

Caucasian ancestry. As shown in the Disease risk-Score class

diagrams, although the risk of disease development rises parallel

to the increase in the score variable value, the disease risk in the

lowest and highest classes, constituting extreme portions of the

score-class spectrum, are not 0 or 100% respectively. This is

Figure 3. Disease risk-Score class diagram for CD vs. CTR. The overall score variable derived from the entire set of 57 SNPs present in the nine
significant CD-associated models was discretized into 12 bins, and for each bin the posterior probability of being affected by disease was calculated
based on Bayes formula.
doi:10.1371/journal.pone.0044162.g003
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consistent with the definition of complex diseases and indicates

that there are still further genetic and non-genetic risk factors

contributing to the RA and CD, which remain to be discovered.

Although we tested it using SNPs genotype data, KBAS can be

applied to any kind of polymorphic genetic marker, provided that

its alleles can be converted into numeric values in a way that

consistently assigns values to different types of alleles (e.g. wild-type

and mutant alleles). KBAS will then use the score variable

obtained by combining these values to classify study subjects as

affected or unaffected.
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