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Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion.
Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues,
which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially
serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of
pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression.
Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways
may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation
in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic
dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored
as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of
randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging
framework of precision psychiatry is warranted.
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Introduction

The endoplasmic reticulum (ER) is a cell organelle that plays
an indispensable role in protein synthesis, folding and sorting,
as well as the delivery of proteins to their ultimate cellular
destination. This role is facilitated by the presence of a multi-
tude of chaperone proteins capable of binding to hydrophobic
areas of newly synthesised, but as yet unfolded, proteins to
facilitate optimal protein folding and prevent protein–protein
aggregation. Under physiological conditions, protein folding
and function are also facilitated byN-linked glycosylation and
the formation of disulphide bonds by reaction mechanisms
favoured by the highly oxidative environment of the ER [1, 2].

However, in pathophysiological circumstances, the accu-
mulation of misfolded or unfolded proteins may ensue [2, 3].
Several mechanisms may contribute to the accumulation of
unfolded proteins, including an excessive biosynthesis of re-
active oxygen species (ROS), a lowered efficiency of cellular
anti-oxidant defences [2, 4], as well as disturbances in calcium
homoeostasis [2, 3]. In addition, in diseases like amyloidosis
and Huntington’s disease the accumulation of misfolded pro-
teins appears to be a pivotal pathophysiological event. In such
circumstances, the ER initially elicits an adaptive or protective
response described as the unfolded protein response (UPR)
aimed at restoring homoeostasis within the organelle and the
cell through the re-establishment of protein homeostasis
[5–7]. Nevertheless, in some pathophysiological situations,
the homeostatic capacity of the ER and the UPRmay not meet
cellular demands and may even become detrimental (vide in-
fra), a condition referred to as ER stress. While severe and
prolonged ER stress may trigger apoptotic cell death [8, 9],
there is an accumulating body of evidence supporting the
proposition that sub-lethal ER stress and the consequent
chronic upregulation of the UPR are involved in the patho-
genesis and pathophysiology of several diseases [10–12].
Figure 1 summarises the effects of upregulation of the UPR.

Exemplars of such illnesses include Alzheimer’s disease
[13, 14], Parkinson’s disease [15, 16], multiple sclerosis [17,
18] and amyotrophic lateral sclerosis [19, 20]. More recently,
a putative role of ER stress for psychiatric disorders in which
neuroprogression may occur, including bipolar disorder [12,
21, 22], major depressive disorder [23, 24] and schizophrenia,
[25] has been disputed. It is noteworthy that the chronic up-
regulation of the UPRmay lead to the development of chronic
inflammation [26, 27], oxidative stress [11, 28, 29] and mul-
tiple dimensions of mitochondrial dysfunction [30–33] and
that these elements appear to be shared factors involved in
the pathogenesis and pathophysiology of neurodegenerative
and neuroprogressive disease, although disease-specific ele-
ments also seem to be involved [34–39]. There is also some
evidence to suggest that the detrimental effects of ER stress
and chronic UPR upregulation could be Bdruggable^ and
hence inhibition of pathways involved in the UPR may confer

neuroprotection. For example, there are reports demonstrating
that inhibition of ER stress pathways could protect against
neuronal injury [40–42].

Thus, this review has two overarching aims: first, to detail
putative pathways whereby activation of the UPR may insti-
gate or exacerbate chronic inflammation, oxidative/nitrosative
stress and multiple dimensions of mitochondrial dysfunction
that are observed across neuroprogressive illnesses and, sec-
ond, to examine therapeutic options targeting ER stress and
the UPR as nove l neuro the rapeu t i c t a rge t s fo r
neuroprogressive diseases. Initially, processes stemming from
ER stress and UPR activation which may lead to the initiation
or exacerbation of chronic neuroinflammation will be critical-
ly examined before moving on to a consideration of putative
pathways leading to the initiation or exacerbation of oxidative
and nitrosative stress, and multiple dimensions of mitochon-
drial dysfunction.

ER Stress, Activation of the UPR
and the Development of Chronic
Inflammation

Processes Involved in the Activation of the UPR

During the UPR, a triad of ER transmembrane protein receptors
referred to as protein kinase RNA-like endoplasmic reticulum
kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and
activating transcription factor 6 (ATF6), whose activity is neg-
atively regulated by the master ER chaperone GRP78, act as
sensors to detect misfolded/mutant proteins [43, 44]. However,
in an environment of ER stress, GRP78 binds to the exposed
hydrophobic domains of unfolded or misfolded proteins lead-
ing to their dissociation from PERK, ATF6 and IRE1α, thus
activating these ER signalling pathways [43]. Once activated,
each of these receptors may undergo oligomerisation and other

Fig. 1 Effects of the upregulation of the UPR
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conformational changes, thus inducing highly specific down-
stream signalling cascades [44, 45].

Activation of PERK and the Development of Chronic
Inflammation

PERK phosphorylates eukaryotic translation initiation factor-
2α (eIF2α) leading to an inhibition of general protein transla-
tion and promotion of the preferential translation of transcrip-
tion factor ATF4 [7, 46]. ATF4 in turn translocates to the
nucleus whereupon it induces the transcription of additional
UPR target genes and, in an environment of extreme ER
stress, ATF4 targets the promoter of the gene that encodes
the transcription factor CHOP, which plays a major role in
the instigation of apoptotic cell death [47] (see [48] for a
review).

Activation of PERK leads to upregulation of the
JAK1/STAT3 signalling axis and subsequent increments in
the transcription and translation of IL-6 and oncostatin, thus
forming a feed-forward loop driving escalating levels of in-
flammation [49]. It is noteworthy that activation of PERK in
astrocytes, and subsequent paracrine activation of microglia,
is now recognised as a relevant mechanism in the initiation
and perpetuation of neuroinflammation [49]. PERK activation
leads to phosphorylation of eIF2α, which also suppresses the
translation of IκB, resulting in translocation of the cytosolic
transcription factor NF-κB to the nucleus, whereupon it may
induce the expression of genes involved in instigating and
regulating inflammatory pathways [50]. Furthermore, PERK
may also regulate cellular redox homoeostasis via the activa-
tion of nuclear factor erythroid 2-related factor 2 (Nrf2) and
the subsequent upregulation of reduced glutathione [51–53]. It
is also noteworthy that PERK-activated ATF4 also regulates
the cellular redox state and may also act independently of
PERK to induce the production of pro-inflammatory cyto-
kines [50].

Activation of ATF6 and the Development of Chronic
Inflammation

Upregulation of monomeric ATF6 also exerts a range of com-
plex, broadly pro-inflammatory effects via the upregulation of
NF-κB via mechanisms involving activation of the CREB and
PI3K/Akt/mTOR signalling pathways [50, 54]. The upregula-
tion of this UPR pathway also exerts direct effects on inflam-
mation via the upregulation of toll-like receptor activity on
macrophages [55].

Activation of IRE1α and the Development of Chronic
Inflammation

IRE1α functions both as a kinase and as an endonuclease,
which is activated via a process of oligomerisation in the

absence of GRP78 inhibition. Evidence suggests that this en-
zyme could play a major role in regulating the splicing of
several mRNAs and its activity is an indispensable player in
the translation and activation of transcription factor X-box
binding protein-1 (XBP-1) [56, 57]. XBP-1, in turn, increases
the transcription of several UPR target genes including the one
encoding GRP78 [58, 59]. The activated IRE1α can also form
a multiprotein complex with apoptosis signal-regulating ki-
nase 1 (ASK1), resulting in the upregulation of various intra-
cellular signalling systems such as c-Jun N-terminal kinase
(JNK) [60], p38/MAPK [61, 62], NF-κB [63, 64], glycogen
synthase kinase 3 (GSK-3) [65, 66], mammalian target of
rapamycin (mTOR) [67, 68] and the phosphatidylinositol 3-
kinase/protein kinase B/mTOR (PI3K/AKT/mTOR) pathway
[69–71]. These pathways also play a major role in determining
the balance between cell survival and cell death, generally
promoting cell survival in an environment of chronic oxida-
tive stress. Yet it is important to note that their effects on cell
survival are pleiotropic, and activation of these pathways may
also drive cellular death in other circumstances, particularly
when ER stress is severe [72, 73]. The net effect of these
signalling systems is somewhat unpredictable as they engage
in a complex pattern of mutual cross-talk with the UPR and
each other, and their relative activities appear to influence the
balance between cell proliferation and cell death [74–76].
Figure 2 illustrates the actions of the UPR.

For example, the UPR activates GSK-3, possibly via a
route involving increased autophagy of the inactive kinase
phosphorylated at serine 219 [65]. This kinase in turn also
appears to play a role in the regulation of the UPR by influenc-
ing the phosphorylation status of CHOP and caspase-3 [66,
77]. There is also evidence of a bidirectional feedback be-
tween UPR activity and levels of mTOR signalling [78–80].
Similarly, the activation of NF-κB by the UPR also acts to
reduce ER stress by accelerating the clearance of misfolded
proteins via the modulation of autophagic activity [72].
Readers interested in a detailed consideration of the mecha-
nisms enabling and regulating such Bcross-talk^, and how
such communication leads to variations in biochemical and
immunological profiles over time, are referred to previous
scholarly reviews [81, 82]. Importantly, from the perspective
of the aims of this paper, changes in the activity of p38/
MAPK, JNK, NF-κB, mTOR, GSK-3 and PI3K/AKT have
pivotal roles in instigating and/or modulating inflammatory
and immune pathways and the activity of peripheral mononu-
clear blood cells such as macrophages [83–87].

Several research teams have adduced data demonstrating
that p38/MAPK is a major player in the promotion and regu-
lation of inflammatory and immune responses in general and
that the upregulation of p38/MAPK is a pivotal driver of pro-
inflammatory cytokine transcription and translation [88].
Phosphorylation of NF-κB and a range of other transcription
factors, such as myocyte enhancer factor-2 (MEF-2), as a
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result of upregulated p38/MAPK activity induces transcrip-
tional activation of tumour necrosis factor-α (TNF-α), IL-6
and other pro-inflammatory cytokines [83, 89]. Similarly,
there is copious evidence that activation of JNK signalling
plays a major role in cytokine production and the subsequent
development of inflammation [84, 90].

The NF-κB pathway also regulates the production of
pro-inflammatory cytokines and several other processes
driving the inflammatory response, such as leukocyte re-
cruitment and the survival of peripheral mononuclear
blood cells, which are important contributors to the in-
flammatory response [91, 92]. Furthermore, the complex
bidirectional signalling between pro-inflammatory cyto-
kines (notably TNF-α) allows for the development of a
self-amplifying inflammatory response [93, 94]. However,
it should be noted that the anti-apoptotic activity of
NF-κB may protect cells against the ravages of inflamma-
tion and in certain circumstances the pro-apoptotic prop-
erties of this signalling system can also contribute to the
resolution of inflammation by contributing to the immu-
nologically silent destruction of infiltrating leucocytes and
macrophages [91].

The activity of GSK-3 influences the balance between the
production of pro- and anti-inflammatory cytokines, T cell
differentiation, toll-like receptor responses and the prolifera-
tion and activity of transcription factors which are known to
play a regulatory role in the duration and magnitude of the
immune response, such as signal transducer and activator of
transcription (STAT), nuclear factor of activated T cells
(NFAT), T-box transcription factor (Tbet) and NF-κB
[95–97]. A recent review further illustrates the immunoregu-
latory role of GSK [98]. Much of this regulatory activity oc-
curs in concert with mTOR and PI3K/AKT pathways [99].
These interactions are complex but are essentially connected
with the role of mTOR as a metabolic sensor and its capacity
to integrate metabolic and immune processes, thereby

regulating the activation and proliferation of T cells, B cells
and antigen presenting cells. Readers interested in a detailed
consideration of the processes involved are invited to consult
the work of Powell et al. [100] and Weichhart et al. [85]. It
should also be noted that the PI3K/AKT/mTOR signalling
axis has a broadly restraining effect on the development of
chronic inflammation by limiting the production of type 1
interferons, while increasing the production of IL-10, and
hence, its downregulation during chronic UPR activation
may contribute to the development and perpetuation of an
inflammatory state [86].

Given the above data, accumulating evidence supporting
an association between the chronic upregulation of the UPR
and the development of chronic inflammation is perhaps
unsurprising [26, 65, 70, 101]. It is also noteworthy that
the chronic upregulation of pro-inflammatory cytokines in
tandem with upregulation of NF-κB and p38/MAPK may
enhance the biosynthesis of ROS and nitric oxide (NO), and
thus may promote or otherwise aggravate oxidative and
nitrosative stress [87, 102–104], and hence provides a
mechanism for the development of chronic oxidative stress
accompanying acute or chronic upregulation of the UPR
[11, 28, 105]. Moreover, the complex interplay of NF-κB,
p38/MAPK and ROS may lead to a self-amplifying pattern
of redox dyshomoeostasis [106–108]. However, there are a
number of other mechanisms which may also contribute to
the development of oxidative and nitrosative stress follow-
ing ER stress and over-activation of the UPR which seem
underdiscussed, and we will now turn to a consideration of
these factors.

UPR Activation and the Development
of Oxidative and Nitrosative Stress

Mechanisms Involved in the Development of Chronic
Oxidative and Nitrosative Stress

ER stress and the subsequent activation of the UPR may
lead to an increased production of ROS and subsequently
to oxidative stress via a number of mechanisms other than
the upregulation of MAPK and NF-κB [105]. Such mech-
anisms involve an upregulation of protein disulphide
isomerase (PDI) resulting in the activation of NADPH
oxidase isomers, notably NOX-2 and NOX-4 [109], and
the upregulation of oxidative protein folding in the ER,
which rivals mitochondrial respiration as a source of cel-
lular ROS [110, 111]. Other factors involved in the devel-
opment of oxidative stress in such circumstances include
the oxidation of reduced glutathione (GSH), an increased
S-nitrosylation of proteins and an increase in Ca2+ efflux
from the ER into the mitochondria [28, 112].

Fig. 2 Actions of the UPR
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Upregulation of PDI and Activation of NADPHOxidase
Isoforms

The development of ER stress and activation of the UPR may
lead to upregulation of PDI [113–116]. This is an important
event in the context of the development of oxidative stress, as
PDI is associated with NOX isoforms and acts as a redox-
sensitive protein which regulates their activation [10, 109,
117]. The change in cellular redox status Bsensed^ by PDI
thus may activate NOX-2 and NOX-4 [10, 118, 119], leading
to the production of superoxide ions [120, 121].

The effects of PDI in activating NOX enzymes appear to be
of pathophysiological relevance since these enzymes are a
major source of ROS in several cell types [122, 123], and
ROS production by NOX isoforms may even exceed mito-
chondria as the prime source of ROS in some cell types
[124]. However, while ROS production within mitochondria
stems from the integral architecture and membrane organisa-
tion, NOX signalling is dependent on multiple protein inter-
actions and post-translational modifications leading to the as-
sembly of a functional NOX complex and the subsequent
trafficking to specific subcellular locations [122, 123]. The
assembly of subunits and the translocation NOX enzymes to
sites of activity appears to be met by the chaperone rather than
the isomerase activity of PDI via hydrophobic rather than
electrostatic or covalent associations [109, 125].
Nevertheless, both the chaperone and isomerase activities of
PDI are required to fulfil its role in the oxidative folding of
proteins within the ER [126].

Upregulation of PDI and Increased Rate of ROS
and RNS Production from Oxidative Protein Folding

The ER contains numerous molecules whose task is to ensure
that proteins secreted from the organelle have acquired the
prerequisite post-translational modifications and the correct
conformation [127]. One important process involved in ensur-
ing optimal protein folding is the acquisition of disulphide
bonds. The interaction between PDI and oxidoreductin-1α
(Ero1α) is probably the most important vehicle for oxidative
protein folding in the ER [128, 129]. Hence PDI has the ca-
pacity to supply, isomerise or, in some circumstances, reduce
disulphide bonds in target proteins [130], while its activity is
dependent upon the existence of two distinct remote active
sites which are directly or indirectly oxidised by Ero1α to
form disulphide bridges [130–132]. Such oxidation provokes
a conformational change allowing for the entry of unfolded
protein substrates in the reduced state [133, 134]. Once in situ,
key thiol groups on these proteins are oxidised to form di-
sulphide bridges, resulting in the reduction of PDI; these target
proteins then Breceive^ disulphide bonds from PDI; Ero1α
then re-oxidises the reduced PDI and transfers electrons from
the reduced PDI to molecular oxygen, which is subsequently

reduced to hydrogen peroxide (H2O2) [135, 136], thus
resulting in the re-oxidation of the oxidoreductase [128,
137]. The capacity of Ero1α to reduce molecular oxygen is
dependent on the existence of a helical structure containing
flavin adenine dinucleotide (FAD) sealed by a disulphide
bridge between Cys(208)-Cys(241). This Bseal^ may be
disrupted via the formation of a mixed disulphide bridge be-
tween PDI and one of these cysteines, which underpins the
capacity of this chaperone to regulate the activity of its co-
oxidoreductase [135, 136]. In addition, Ero1α activity in the
ER is upregulated by the UPR and hence H2O2 levels may
increase as a result of ER stress [135, 136]. Initially, such
upregulation may have an adaptive purpose as the glutathione
peroxidase isoform GPx7 may utilise H2O2 to accelerate the
oxidative folding of substrates in vivo [65]. Briefly, evidence
suggests that H2O2 oxidises the Cys57 residue of GPx7 to
produce sulfonic acid, which in turn may react with its
Cys86 to form a disulphide bond. Both the disulphide and
the sulfonic acid forms of GPx7 may oxidise PDI to catalyse
oxidative folding [138]. However, the accumulation of ROS
and reactive nitrogen species (RNS) following activation of
the ER [139, 140] leads to S-nitrosylation and the subsequent
inactivation of PDI, thus leading to a loss of its chaperone and
isomerase activities [140–142]. This loss of activity may have
meaningful pathophysiological consequences; the accumula-
tion of misfolded proteins within the ER may further enhance
the UPR, leading to self-amplifying increases in inflammation
as well as oxidative and nitrosative stress [143, 144].
Importantly, such increases in ROS and RNS may also pro-
mote ER stress, which leads to an increase in Ca2+ efflux from
the ER into mitochondria [28, 112] which is enabled by tubu-
lar channels tethering the organelles described as mitochon-
drial associated molecular membranes (MAMs) [5, 145]; an
increase in Ca2+ within the mitochondria may ultimately lead
to the development of multiple dimensions of mitochondrial
dysfunction as discussed below.

ER Stress, UPR Activation and Mitochondrial
Dysfunction

Initial Increase in Mitochondrial Respiration

The ER and mitochondria are physically connected by highly
specialised structures referred to as MAMs. These molecules
act as a conduit for the exchange of proteins, lipids, a range of
metabolites, various signalling molecules and most important-
ly Ca2+, and this complex cascade of events appears to influ-
ence the balance between cell death and survival [5, 146]. The
architecture of a MAM is highly complex and contains a wide
array of structural, functional and regulatory proteins, such as
the GTPase activating protein for Rab32 [147, 148]. The ino-
sitol trisphosphate receptor (IP3R) and the voltage-dependent

Mol Neurobiol (2018) 55:8765–8787 8769



anion channels (VDACs) are among the most important mol-
ecules for enabling and regulating ER–mitochondria Ca2+

transfer, and are located in the ER and mitochondrial sides
of MAMs, respectively, and may complex with the chaperone
GRP75, thus forming a channel connecting the two organelles
and enabling mutual exchange between membrane and lumi-
nal components [149, 150]. Mitofusin 2 (Mfn2) is another
important protein present on the ER and mitochondrial sur-
faces, which plays an indispensable role in ER–mitochondria
tethering as well as in the modulation of inter-mitochondrial
contacts [5, 151, 152]. The composition of MAMs adapts in
response to multiple internal and external stimuli [153, 154],
while the formation or dissolution of contact areas between
mitochondria and the ER is further regulated by other aspects
of organelle dynamics [5, 148, 154]. Importantly, in the adap-
tive phase of ER stress, there is an increased number of phys-
ical contacts between the ER and mitochondrial networks at
the perinuclear regions enabling increased transfer of Ca2+

from the ER into the mitochondria [5, 43, 146, 155].
An increase in Ca2+ uptake by the mitochondria may in-

crease transmembrane potential and ATP production aimed at
promoting cellular survival as part of an adaptive response to
ER stress [156]. Such an increase in energy production is
accompanied by increases in the production of mitochondrial
proteases such as LON, which are induced by the activation of
the PERK pathway, which in turn regulates the structural in-
tegrity and assembly of cytochrome c oxidase (COX) [157,
158]. In this scenario, elevated expression of LON protease
may increase mitochondrial performance by stimulating the
assembly and increasing stabilisation of COX II [157, 158].
However, elevated calcium levels may also increase the pro-
duction of ATP and ROS [159–161], leading to the activation
of mitochondrial nitric oxide synthase (mtNOS) [162, 163],
and the production of NO, leading to the inhibition of mito-
chondrial function via a number of direct and indirect mech-
anisms including the reversible S-nitrosylation of key struc-
tural and functional mitochondrial proteins and enzymes
[163–165].

Figure 3 summarises the effects of ER stress.

Elevated Levels of NO and Mitochondrial Function

The nitrosylation of mitochondrial structural proteins and en-
zymes may play a major role in the redox-based regulation of
mitochondrial respiration [166, 167]. While nitrosylation in
response to modest increases in NO levels may initially act
as a defence mechanism aimed at maintaining protein struc-
ture and function [168–170], further increases in this RNS
may lead to the inhibitory nitrosylation of crucial functional
enzymes such as complex I of the electron transport chain
[165, 171]. Furthermore, the inhibition of complex I by S-
nitrosylation is another initially cytoprotective response,
which also leads to decreased ATP production and defects in

energy homoeostasis over time [169, 170]. Persistently elevat-
ed cellular concentrations of NO may also lead to the inhibi-
tory nitrosylation of crucial functional cysteine thiols of COX
and complex II of the electron transport chain, thus leading to
chronically suppressed activity of the former and transiently
reduced activity of the latter [172, 173]. Such inhibition may
ultimately impair oxidative phosphorylation and hence de-
crease ATP production and GSH levels within the organelle
[173–175]. Furthermore, the prolonged inhibition of COX
activity also provokes an increase in ATP production via gly-
colysis in a wide range of cell types as a defensive response
aimed at preventing apoptosis or necrosis [176–178].
Importantly, the inhibition of complex III and complex IV
by S-nitrosylation may further increase the production of
ROS [179, 180], which combined with reduced ATP genera-
tion may contribute to the release Ca2+ from the ER
[181–183], which may further decrease the biosynthesis of
ATP and also increase the generation of ROS in a positive
feedback loop [110, 184]. This process is of relevance, as an
increased production of ROS may increase the misfolding of
mitochondrial proteins, which coupled with impaired oxida-
tive phosphorylation and ATP production may trigger another
response aimed at restoring mitochondrial homoeostasis,
namely the mitochondrial unfolded protein response
(mtUPR) [185–188]. Thus, in the section below, we also dis-
cuss the putative pathophysiological relevance of the mtUPR.

Impaired Mitochondrial Performance Following
Activation of the mtUPR

The mtUPR is a multidimensional transcriptional response
initiated and maintained by retrograde mitochondrial-to-
nuclear signalling following increases in protein misfolding
in the mitochondrial matrix and inner membrane space and/
or decreased efficiency of protein importation into mitochon-
dria aimed at restoring mitochondrial function and preventing
organellar death [189–192].

Fig. 3 Effects of ER stress
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The initiation of the mtUPR is mediated by sensory quality
control proteases with LON or ClpCP being the prime activa-
tors in the matrix [191] and the mitochondrial serine protease
HTRA2 playing the same role at the inner membrane space
[193–195]. Interestingly, the initial upregulation of HTRA2 is
provoked by an overproduction of ROS and the subsequent
phosphorylation of Akt, which in turn activates the oestrogen
receptor in the outer mitochondrial membrane leading to up-
regulation of the transcription factor nuclear respiratory factor
1 (NRF-1) and ultimately leading to increased mitochondrial
production of HTRA-2 [193]. This is an illustrative example
of retrograde mitochondrion to nucleus signalling and is sim-
ilar in principle to the retrograde ER to nucleus signalling that
facilitates the UPR response (reviewed in [196]). Another ex-
ample involves the upregulation of CHOP, which is an indis-
pensable player in the regulation of mitochondrial proteases
and chaperones, in an attempt to restore intra-mitochondrial
protein folding homoeostasis [197, 198]. However, despite
recent evidence suggesting that signals of protein unfolding
within mitochondria are transduced to the nucleus via activa-
tion of c-Jun, JNK and the activator protein 1 (AP-1) [64,
191], thus sharing some characteristics with the ER UPR,
the precise details underpinning this mechanism remain to
be elucidated [190]. It should also be noted that while there
is some evidence that the factors involved in initiating and
regulating the mtUPR are similar in principle to those that
regulate the ER UPR, there is another regulatory mechanism
governing the mtUPR, namely decreased mitochondrial im-
port efficiency, which is unique to the mtUPR, and some
background information is required to understand its genesis
and implications.

The vast majority of mitochondrial proteins originate from
nuclear DNA and hence must be recruited to the mitochondria
and thereafter imported. In most circumstances, this recruit-
ment is initially achieved via the mitochondrial targeting se-
quence (MTS) [199]. Once in situ at the outer mitochondrial
membrane (OMM), the protein is directed via a myriad of
regulatory processes to either the OMM, the intermembrane
space, the inner mitochondrial membrane (IMM) or the ma-
trix. Importantly, in order to enter the matrix, the protein must
cross the IMM via the translocase of inner membrane complex
(TIM), which requires the optimal activity of chaperones lo-
cated at the matrix as well as physiological tricarboxylic acid
(TCA) cycle and oxidative phosphorylation activities [199,
200]. Hence, mitochondrial protein import efficiency may
provide a proxy measure of diverse aspects of mitochondrial
performance [191, 201, 202]. Importantly, a lowered import of
proteins into the mitochondria leads to the accumulation in the
cytoplasm of proteins normally destined for the organelle [64,
203]. Most such proteins are detected and targeted for
proteasomal degradation [204, 205]. However, in lower ani-
mals, at least one mitochondrial protein, the transcription fac-
tor ATFS-1, which regulates the mtUPR in the worm

Caenorhabditis elegans, has both a MTS, which enables its
mitochondrial import in normal physiological conditions, and
a nuclear localisation sequence (NLS), which enables its trans-
location to the nucleus in conditions of mitochondrial stress
whereupon it activates the mtUPR [187]. There are excellent
reviews detailing this process [190, 203]. Notwithstanding
that evidence of such a transcription factor in mammals is
lacking, Fiorese et al. [206] have recently reported the exis-
tence of ATF5 in mammalian cells which is regulated similar-
ly to ATFS-1 and may induce a similar transcriptional
response.

The mtUPR is activated by a range of stressors other than
the presence of unfolded proteins, which may lead to a de-
crease in mitochondrial protein import efficiency. In addition
to the presence of heavy metals or other substances acting as
DNA adducts, contaminants in sulphide bonds, or otherwise,
such stressors include a depletion of mtDNA [186, 207], high
levels of ROS [185, 186], mitochondrial ribosome impairment
[208, 209], inhibition of mitochondrial proteases and chaper-
ones [186], impaired oxidative phosphorylation and ATP pro-
duction [187, 188] and abnormally high glucose consumption
indicating a switch to the glycolytic pathway as a source of
energy generation [210].

It should be stressed that while one facet of the mtUPR
involves the upregulation of genes aimed at increasing mito-
chondrial proteases as well as chaperones, thereby promoting
protein homoeostasis within the mitochondrial protein folding
environment [186, 211], another facet includes changes in the
transcription patterns of genes governing cellular metabolism
[190]. In particular, the mtUPRmay increase the expression of
genes governing the rate of glycolysis and the catabolism of
amino acids with a concomitant suppression of genes enabling
the optimal performance of the TCA cycle and oxidative
phosphorylation [212, 213].

Therefore, while aimed at relieving mitochondrial stress
and ensuring cellular survival, the over- or chronic activa-
tion of the mtUPR may also compromise mitochondrial
function and oxidative phosphorylation, thus favouring a
switch to aerobic glycolysis as the predominant source of
ATP [212, 213]. These changes in cellular metabolism pro-
voked by the activation of the mtUPR could be of interest
given data demonstrating that such a response may be reg-
ulated by NAD+ and sirtuin (SIRT) deacetylases [193, 209,
213], which are capable of sensing and stimulating metabol-
ic activity by increasing mitochondrial performance via a
number of different routes (reviewed by Morris et al.
[214]). Importantly, SIRT-1 is inactivated in an environment
of nitro-oxidative stress [215] and such inactivation may
up-regulate NF-κB [215]. Hence, in a cellular environment
of chronic oxidative stress the normal compensatory re-
sponse to impaired mitochondrial function is negated and
the switch to aerobic glycolysis via NF-κB upregulation is
preferentially operating [216].
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Furthermore, the progressive decline in mitochondrial ATP
production and mitochondrial membrane potential in such cir-
cumstances coupled with an increase in aerobic glycolysis can
activate another very specific mitochondrial quality control
mechanism involving retrograde mitochondrion to nucleus
signalling referred to as mitophagy [217, 218]. Such a physi-
ologically abnormal elevation in the rate of mitophagy has
adverse bioenergetic consequences as this process appears to
play a relevant role in the regulation of energy homoeostasis
and mitochondrial dynamics [219, 220]. It is also noteworthy
that ER stress and the UPR accompanied by increased levels
of Ca2+ and ROS can also exert detrimental effects onmultiple
regulatory processes governing mitochondrial dynamics di-
rectly [221–223].

Key reactions and pathways associated with the mtUPR are
summarised in Fig. 4.

UPR Activation and Impaired Mitochondrial
Dynamics

Background

Accumulating evidence indicates that the balance of activity
between pathways regulating mitophagy and those regulating
mitochondrial dynamics (mitochondrial biogenesis, fusion,
fission and motility) may influence mitochondrial mass, mor-
phology and function and thus the cellular capacity to generate
energy and to adjust energy production in the face of changing
metabolic demands [219, 224, 225]. In particular, changes in
mitochondrial dynamics enable these organelles to maintain a
balance between energy production and changes in energy
demand by generating highly fused networks of mitochondria
or otherwise favouring the formation of more discrete and
isolated organelles [226–228]. In addition, pathways and pro-
teins governing mitochondrial dynamics may regulate energy
supply and distribution at both the whole organism and cellu-
lar levels [229]. Therefore, the targeted manipulation of these
processes may open a relevant therapeutic perspective for
neuroprogressive disorders. Therefore, facets of mitochondri-
al dynamics as well as the pathophysiological influence of the
chronic upregulation of the UPR on these processes will now
be discussed as the final mechanistic section of this paper.

ER Stress and UPR Activation as a Source of Impaired
Mitochondrial Mitophagy

Mitophagy is mediated by the cooperative action of the two
proteins parkin and PINK. There are excellent reviews detail-
ing the processes involved in the delivery and regulation of
mitophagy [203, 219, 225]. Therefore, we provide a brief
description of this process in order to explain the putative
adverse effects of the UPR upon mitophagy.

PINK1 is a serine/threonine kinase that possesses an N-
terminal mitochondria-targeting signal [230] enabling anchor-
age at the IMM. Under physiological conditions, PINK1 is
imported into the mitochondria via TIM and translocase of
outer membrane (TOM) protein complexes and is continuous-
ly degraded by PARL and matrix processing peptidase [230,
231]. However, following the accumulation of unfolded pro-
teins and/or membrane depolarisation, mitochondrial import
efficiency falls and therefore the import of PINK1 to the IMM
is compromised [191, 201, 202]. Following such inhibition,
the enzyme accumulates at the OMM and forms a large 700-
kDa complex with TOM before undergoing activation via
autophosphorylation at two serine residues [232, 233]. This
activation results in the recruitment of inactive cytosolic
parkin onto damaged mitochondria, whereupon the molecule
is activated via PINK1-mediated phosphorylation [234].
Following activation, parkin ubiquinates a myriad of mito-
chondrial substrates as well as itself [235]. These
ubiquitinated residues in turn undergo phosphorylation, which
is affected by PINK1, thereby triggering further cycles of
parkin recruitment in a feed-forward amplification loop
[236, 237]. It should be noted that while this process is a
prerequisite for the development of mitophagy, it is not suffi-
cient in itself to precipitate the phenomenon, and other mech-
anisms also appear to play a role. Readers interested in a
detailed account of such mechanisms are invited to consult
previous work [238–240]. Moreover, mitophagy is also regu-
lated by other processes governing mitochondrial dynamics
[241–243], and an imbalance between mitophagy and mito-
chondrial biogenesis stemming from the activation of the UPR
is now thought to play a relevant role in the pathophysiology
of several neurodegenerative and neuroprogressive illnesses
[225]. This is unsurprising given that the complex cross-talk

Fig. 4 Key reactions and pathways associated with the mtUPR
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between these processes is an essential element in regulating
cellular energy homoeostasis [244, 245]. Importantly, changes
in the rate of mitophagy may deregulate mitochondrial bio-
genesis [219, 246], thus compromising cellular energy
homoeostasis.

UPR Activation and Impaired Mitochondrial
Biogenesis

Under physiological conditions, mitochondrial biogenesis is
regulated by a sophisticated interplay between the coactivator
peroxisome proliferator-activated receptor gamma
coactivator-1 alpha (PGC-1α) and the transcription factors
NRF-2 and SIRT-1, which enable coupling between changes
in cellular metabolism to changes in mitochondrial mass and
number [34, 214, 247]. However, in an environment of ER
stress and UPR activation, elevated levels of NF-κB, MAPK
and PKB/Akt as well as higher NO signalling provoke an
increase in PGC-1α, NRF-1, NRF-2 and SIRT-1, which in
turn induce an increase in mitochondrial biogenesis as a puta-
tive adaptive (i.e. pro-survival) response [248, 249]. However,
with increasing levels of inflammation, and increased levels of
oxidative and nitrosative stress, the upregulation of PGC-1α is
inhibited by TNF-α [104] and the activity of NRF-2, SIRT-1
and NF-κB may be inhibited by S-nitrosylation or over-
oxidation of cysteine residues which normally enable their
function [171, 214], ultimately leading to a chronic state of
decreased mitochondrial biogenesis. The processes governing
mitochondrial biogenesis and those governing mitochondrial
fusion and fission also engage in a complex bidirectional
cross-talk which also plays a role in regulating cellular energy
homoeostasis [250], and hence, impaired mitochondrial bio-
genesis can provoke adverse changes in processes governing
mitochondrial fusion and fission which also have the effect of
dysregulating cellular energy generation. In addition, the mo-
lecular players generating inflammation and oxidative stress
also lead to compromised activity of proteins and pathways
regulating fusion and fission, which may lead to decreased
energy production at cellular and whole organism levels.

UPR Activation and Impaired Activity
of Proteins and Processes Governing Fusion
and Fission

Background

Mitochondrial fusion and fission processes are regulated and
enabled by dynamin family GTPases [251]. Readers interest-
ed in a detailed explanation of the mechanisms underpinning
the actions of these molecular motors are referred to the work
of Ferguson and De Camilli [252]. In mammals, the fusion of
OMMs is mediated by Mfn1 and Mfn2, whereas the fusion of

inner membranes is mediated via the protein optic atrophy 1
(OPA1) [151, 253–256]. We will focus on their role in mito-
chondrial respiration and how their activities may be compro-
mised in an environment of ER stress and chronic activation
of the UPR.

Role of Mitofusins in Energy Production
and Consequences of UPR Upregulation

Mfn2, and to a lesser extent Mfn1, plays pivotal roles in the
regulation of mitochondrial respiration and energy
homoeostasis [228, 257, 258]. This role is perhaps unsurpris-
ing given that Mfn2 is an indispensable player in tethering
mitochondria and ER stress and enabling high fidelity and
rapid calcium signalling cross-talk between the two organelles
in environments of stress and changingmetabolic demands for
energy [259, 260]. While modulation of calcium signalling
appears to be one element underpinning the capacity of
Mfn2 to regulate mitochondrial respiration energy and adap-
tation to increased cellular demands for energy, other mecha-
nisms are clearly involved. Such mechanisms involve the in-
hibition of ROS production and the regulation of glucose
homoeostasis via mechanisms which are not related to effects
on calcium signalling, although the precise details of such
mechanisms remain to be fully delineated [257, 258].
Crucially, the capacity of this enzyme to adapt the production
of ATP by hypothalamic neurones is a major factor in regu-
lating whole body metabolism and whole body energy
homoeostasis [257, 258]. In this context, it is of paramount
importance that the activity of this enzymemay be inhibited in
an environment of chronic inflammation and nitrosative
stress. For example, MAPK upregulation suppresses Mfn2
activity [261] and there is some evidence that this enzyme is
inhibited in an environment in which the production of pro-
inflammatory mediators is elevated [257]. It is also of interest
that the capacity of Mfn2 to stimulate mitochondrial function
is dependent on the activation of the PI3K/Akt pathway.

Role of OPA1 in Energy Generation and Consequences
of UPR Upregulation

There is some evidence to suggest that processing of the mi-
tochondrial dynamin-like GTPase OPA1 is the main regulato-
ry element governing mitochondrial function by modulating
IMM potential [262]. Several research teams investigating the
effects of OPA1 mutants have adduced evidence indicating
that OPA1 activity is an important factor determining the ex-
istence of cellular mitochondria as highly fused networks or a
myriad of fragmented organelles, which affect the supply of
ATP produced by oxidative phosphorylation and influence the
capacity to increase cellular energy output in the face of in-
creased metabolic demands for energy as discussed above
[263, 264]. These observations have been supported by recent
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in vitro data supplied byKao and fellowworkers who reported
that inactivation of OPA1 results in the fragmentation of
established mitochondrial networks as well as a reduction in
oxygen consumption, uncoupling of oxidative phosphoryla-
tion to ATP production and a shift to aerobic glycolysis as the
main mode of energy generation [265].

OPA1 has several other regulatory roles in mitochondrial
function such as maintaining the integrity of the quaternary
structures of electron transport chain enzymes and preventing
depolarisation of the IMM. In addition, OPA1-dependent
stabilisation and remodelling of mitochondrial cristae in-
creases the efficiency of energy production by the electron
transport chain, while also reducing the production of ROS
[266]. OPA1-driven cristae remodelling is another essential
factor enabling cells to meet energy production in the context
of enhanced energy demands [267]. The importance of OPA1
in this domain is further emphasised by the existence of data
demonstrating that its targeted inactivation leads to detrimen-
tal changes in crista morphology and reduces the stability and
performance of the electron transport chain, thereby
compromising oxidative phosphorylation and ATP production
[268, 269].

Other roles include stabilising the association between
cardiolipin and COX, thereby acting as an anti-apoptotic pro-
tein [266, 268–270]. Perhaps predictably, there is experimen-
tal evidence thatOPA1 transcription and translation are upreg-
ulated in an environment of chronic nitro-oxidative stress
[271], which is also supported by data demonstrating that
mitochondrial dynamics in general, and OPA1 levels in par-
ticular, appear to be under the control of the non-canonical
NF-κB pathway [272]. In addition, evidence indicates that
levels of this enzyme are elevated following activation of the
Akt/mTOR pathway [273] and more indirectly by ROS and
Ca2+ and by upregulation of PGC-1α [274]. The involvement
of AKT and NF-κB in the regulation of OPA1 activity is
particularly germane as both molecules are inactivated by S-
nitrosylation in an environment of nitro-oxidative stress
[275–278], and such inactivation may compromise the ability
of mitochondria to cope with elevated cellular requirements
for energy.

The Role of Drp1 in Energy Generation
and the Consequences of UPR Upregulation

The activity of the mitochondrial fission protein Drp1 is reg-
ulated by a plethora of factors such as Ca2+ concentrations,
ROS levels and a range of post-translational modifications
[279–281] (see [282] for a review). Chronically elevated
levels of ROS and RNS lead to changes in Drp1 activity
and/or rates of mitochondrial fission via a number of routes.
One such route involves the inactivation of Drp1 by AMPK,
whose activity is upregulated in an environment of chronically
elevated ROS generation [214, 283, 284]. This is of

importance as there is evidence that inhibition of this
GTPase may disrupt mitochondrial networks, thus leading to
adverse changes in organelle morphology accompanied by a
reduction in Mfn1 and Mfn2 as well as a compromised pro-
teolytic processing of OPA1 isoforms [285] and hence pre-
sents yet another route by which the chronic upregulation of
the UPR could compromise energy generation. It is also note-
worthy that S-nitrosylation of Drp1 in an environment of
chronically upregulated nitro-oxidative stress could increase
the rate of mitochondrial fission [286], thereby creating an
imbalance between fusion and fission which may lead to det-
rimental net alterations in mitochondrial morphology and en-
ergy production [287–289]. The precise mechanisms under-
pinning such an increase in fission rates is still a matter of
ongoing debate. However, it may not be a direct consequence
of nitrosylation-induced increases in the enzymatic activity of
Drp1 [290]. Lastly, mitophagy relies on a synergistic interplay
between parkin and the dynamin family kinase Drp1, with the
fission activity of the latter required to generate small mito-
chondria, thereby enabling efficient engulfment by
autophagosomes [239, 291]. Hence, inhibition of this enzyme
may also lead to disrupted mitophagy, which in turn has the
capacity to dysregulate mitochondrial dynamics, and ultimate-
ly ATP production, further compromising energy generation.

Having reviewed the multiple mechanisms involved in
driving the advent or exacerbation of chronic inflammation,
oxidative stress and mitochondrial dysfunction, we will now
consider possible therapeutic targets for the management of
neuroprogressive and neurodegenerative diseases. Based on
the mechanisms highlighted, it seems reasonable to suggest
that molecules with the capacity to target the mechanisms
driving ER stress and the UPR and to ameliorate the adverse
downstream events following the activation of these path-
ways, would be desirable, and this consideration forms the
basis of the approaches suggested below.

Possible Neurotherapeutic Targets

Melatonin

Recent evidence indicates that melatonin exerts a regulatory
role in the process of mitophagy by stimulating the autophagic
clearance of irreparably damagedmitochondria and increasing
mitochondrial biogenesis, probably by a route involving the
activation of AMPK and SIRT-1 [292–294]. Melatonin ad-
ministration may also restore calcium homoeostasis, mito-
chondrial dynamics and mitochondrial permeability transition
[295–298]. At least partly, those beneficial effects appear to be
related to entry into the organelle, which may be facilitated by
Glut-1 or peptide 1 and 2 transporter proteins located in the
OMM [299, 300].
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Moreover, melatonin may shift the pattern of mitochondrial
dynamics towards a decrease in fission and an increase in
fusion [296, 298, 301]. This activity has been demonstrated
in a wide range of cell types [297, 301]. From a mechanistic
perspective, the weight of evidence suggests that melatonin
may attenuate the translocation of Fis1, Drp1 and Bax from
the cytosol to mitochondria and may also upregulate mito-
chondrial fusion proteins Mfn1, Mfn2 and OPA1 [295, 300,
302, 303].

Melatonin supplementation also exerts multiple protective
effects on mitochondria via a number of different mechanisms
which may mitigate against the development of maladaptive
processes within these organelles which initially stem from
the upregulation of the UPR (i.e. ER stress). Suchmechanisms
include a reduction of mitochondrial oxidative stress [304,
305]; an increased efficiency of ATP production [306, 307];
a reduction in mitochondrial NOS expression [308, 309]; an
amelioration of calcium dyshomoeostasis [310, 311]; the pres-
ervation of mitochondrial membrane potential [307, 312]; and
a reduced release of cytochrome c into the cytosol accompa-
nied by the inhibition of caspase-3 activity [313]. Several
authors have demonstrated protective effects of melatonin
supplementation against damage to mitochondria caused by
a myriad of different insults including, but not limited to,
sepsis [314, 315], ischaemia/reperfusion [316, 317] and chal-
lenge with neurotoxic compounds such as 1-methyl-4-
phenylpyridinium ion (MPP+) [302], β-amyloid peptide (Aβ
25–35) [318, 319], 4-hydroxynonenal [320] and lipopolysac-
charide [309] .

Melatonin therapy also inhibits the DNA binding activity
and activation of NF-κB, with concomitant reductions in
NLRP3 activity and the synthesis of pro-inflammatory cyto-
kines [321–323]. These anti-inflammatory effects are consid-
ered to underpin the promising results obtained from studies
investigating the use of melatonin in animal models of neuro-
degenerative diseases and are the motivation for an increased
focus on the use of the molecule as a therapeutic agent
targeting the pathogenesis and pathophysiology of diseases
such as Alzheimer’s disease and Parkinson’s disease at doses
ranging from 50 to 100 mg daily [305, 324]. In addition, it has
been proposed that melatonin treatment could be useful for
cognitive dysfunction associated with mood disorders [325].
However, evidence remains inconclusive [326].

CoQ10

Converging preclinical and clinical evidence suggest that co-
enzyme Q10 (CoQ10) supplementation may offer therapeutic
benefits in a range of neurodegenerative and neuroprogressive
disorders, at least partly owing to its effects on ER stress and
adverse downstream effects. For example, Yubero-Serrano
et al. [327] reported that supplementation of CoQ10 in tandem
with a Mediterranean diet effectively suppressed the

expression of genes encoding proteins involved in the UPR.
Furthermore, CoQ10 also appeared to exert a positive effect on
mitochondrial dynamics by exerting a direct effect on ATP
production [328], while this therapeutic target may also pre-
serve the structure of mitochondrial cristae, with an accompa-
nying increase in mitochondrial biogenesis [329]. In addition,
CoQ10 may also restore endogenous anti-oxidants, such as
vitamin E [330], and is also an essential player in enabling
the optimal performance of the electron transport chain and
stabilisation of the mitochondrial permeability transition pore
[331] (reviewed by [332]).

There is also a considerable and increasing body of evi-
dence demonstrating beneficial effects of CoQ10 on levels of
pro-inflammatory cytokines andROS,whichmayboth act as
a trigger of the UPR and be effectors of pathology following
activation. For example, the effectiveness of CoQ10 supple-
mentation at a daily dose of 500 mg for 12 weeks reduced
inflammation and oxidative stress in a randomised, double-
blind, placebo-controlled trial involving participants with
relapsing-remitt ing multiple sclerosis [333, 334].
Controlled data demonstrating the ameliorative effects on
inflammation and oxidative stress of CoQ10 supplementa-
tion also extend into other disease areas such as coronary
artery disease, and there is some evidence that such benefits
could be dose related [335]. In addition, evidence suggests
thatCoQ10 supplementation at doses up to300mg/day is safe
and well tolerated [336, 337]. The former research team re-
ported a significant reduction in cardiovascular mortality,
over and above that seen in patients receiving standard treat-
ment, in an elderly population of 445 patients supplemented
with200mgofCoQ10 for 4years [336],while the latter group
of researchers founda significant reduction in cardiovascular
morbidity and mortality in a population of 420 patients with
chronic heart failure supplementedwith 300mgofCoQ10 for
2 years [337]. Human and animal studies have also demon-
strated the potential for increased clinical benefit from the
use of mitochondrial-targeted CoQ10 (MitoQ) where the ac-
tive molecule is covalently attached to the lipophilic tri-
phenylphosphonium cation [300, 338]. This mode of deliv-
ery allows levels of CoQ10 to accumulate within the mito-
chondrial matrix, reaching levels several hundred-fold
higher than can be achieved via supplementation with the
naked coenzyme [338, 339]. Human trials of the use of
MitoQ in the treatment of neurodegenerative diseases have
produced initial evidence of benefitwith particularly encour-
aging results seen in Parkinson’s disease [340, 341]. In addi-
tion, CoQ10 could represent a novel therapeutic target for
cognitive dysfunction associated with mood disorders
[342], and a recent uncontrolled study found potential bene-
fits forCoQ10 as a treatment for bipolar depression in late-life
[343]. Clearly, the field awaits the design of large-scale and
well-designedcontrolled trials testingCoQ10 as a therapeutic
target for mood disorders.
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NAC

Animal and clinical studies have reported beneficial effects of
N-acetylcysteine (NAC) supplementation on levels of ER
stress [344–347]. For example, rats supplemented for
2 months with drinking water containing 600 mg NAC per
litre displayed reduced levels of PDI and GRP78 compared
with rats which did not receive NAC [345]. Similar findings
indicate that NAC supplementation at 100 or 300 mg/kg for
20 weeks promote significant reductions in ROS levels [346,
347]. Moreover, NAC-related benefits upon ER stress appear
to be dose-dependent, with 20 mmol/L of NAC being more
effective than 10 mmol/L in reducing levels of GRP78 and
ROS [348]. It should be noted, however, that NAC is a pleio-
tropic agent and several mechanisms other than direct effects
on the UPR may also contribute to its therapeutic effects
across neurodegenerative and neuroprogressive diseases
[349, 350], while evidence suggests that adjunctive NAC
treatment may mitigate cognitive dysfunction in a range of
such disorders [351].

Conclusions and Future Directions

This review indicates that pathways related to the UPR may
reciprocally interact with immune-inflammatory, neuro-oxi-
dative, neuro-nitrosative, as well as mitochondrial mecha-
nisms, which are thought to play a major shared pathophysi-
ological role across several neuroprogressive and neurodegen-
erative diseases. Therefore, the chronic upregulation of the
UPR may interact with a range of cell death mechanisms
underpinning neurodegeneration and neuroprogression [352]
and hence represents a novel neurotherapeutic target.

Moreover, this review also opens relevant directions for fur-
ther research. First, the involvement of mechanistic pathways
related to the UPR in separate disorders deserves further inves-
tigation. Second, the extent to which effects upon the UPR
could contribute to therapeutic benefits of novel therapeutic
targets (for example, melatonin, CoQ10 and NAC) is a matter
of ongoing research efforts. Lastly, the identification of patients
who could benefit from therapies targeting ER stress pathways,
taking in account the emerging framework of precision psychi-
atry [353], could represent a relevant road of research.
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