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Abstract: Metakaolin-based geopolymers possess excellent corrosion and high-temperature resis-
tance, which are advantageous compared to ordinary Portland cement. The addition of slag in
metakaolin-based geopolymers is a promising approach to improve their mechanical properties.
Thus, this study investigated the effect of slag content on the strength and shrinkage properties of
metakaolin-based geopolymers. Increasing the slag content and Na2O content was beneficial to the
reaction of alkali-activated metakaolin-based geopolymers, thereby improving their compressive
strength and density. After 56 days of aging, a maximum compressive strength of 86.1 MPa was
achieved for a metakaolin-based geopolymer with a slag content of 50 mass%. When the Na2O con-
tent was 12%, the compressive strength of the metakaolin geopolymers with a slag content of 30%
was 42.36% higher than those with a Na2O content of 8%. However, as the slag and alkali contents
increased, the reaction rate of the metakaolin-based geopolymers increased, which significantly
decreased the porosity, increased the shrinkage, and decreased the volumetric stability of the system.
In this paper, in-depth study of the volume stability of alkali-activated metakaolin-based geopolymers
plays an important role in further understanding, controlling, and utilizing the deformation behavior
of geopolymers.

Keywords: alkali-activated metakaolin-based geopolymer; slag content; Na2O content; compressive
strength; volume stability

1. Introduction

Geopolymers are Si–O–Al network-based dense cementitious materials that are formed
by the ionic and covalent bonding between active silicate materials (such as metakaolin and
fly ash) under the catalysis of alkali activators (such as caustic soda and alkali-containing
silicates) [1,2]. Alkali-activated metakaolin-based geopolymers are a new type of cementi-
tious material with a zeolite-like structure formed by metakaolin under an alkali activator
with a typical Si/Al ratio of 1:3. Compared with ordinary Portland cement, alkali-activated
metakaolin-based geopolymers are more environmentally friendly with excellent corro-
sion and high-temperature resistance [2–5]. However, their widespread application in
civil engineering is limited due to several disadvantages, such as a long setting time, low
early compressive strength, large shrinkage during drying, and potential cracking risks [6].
Accordingly, methods for improving the compressive strength and volume stability of
metakaolin-based geopolymers have attracted global research attention.

To date, scholars have achieved satisfactory results by studying the effect of room-
temperature curing [7], increasing the curing temperature [8,9], changing the sodium silicate
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modulus (SiO2/Na2O molar ratio) [10], and adding aggregates [11], among other cemen-
titious materials (such as fly ash) [12] on the compressive strength and other properties of
metakaolin-based geopolymers. Among these, slag is often used to improve the proper-
ties of metakaolin-based geopolymers. Alkali-activated slag-based cementitious materials
have the advantages of fast setting and hardening, good early strength [13], and excellent
corrosion resistance [14]. The combination of slag and metakaolin can increase the Ca and
Si contents in the geopolymer system, which is conducive to the formation of sodium silicate
aluminate hydrate (N-A-S-H) and calcium aluminosilicate hydrate (C-A-S-H) hydration prod-
ucts. These two hydration products are interwoven, which increases the compactness of the
metakaolin-based geopolymer structure, thereby improving the compressive strength of the
system [15].

During setting and hardening, metakaolin-based geopolymers exhibit shrinkage de-
formation [16]. The shrinkage testing and theoretical research are more complex than
investigating the mechanical properties of metakaolin-based geopolymers. Numerous stud-
ies have found that the mixture ratio (alkali activator content [17,18], slag content [18], fly
ash content [19], and water–binder ratio [20]), curing method [17,21], and additives) signifi-
cantly influences the volume stability of metakaolin-based geopolymers [22]. Fu et al. [23]
reported that metakaolin can coarsen the pore structure of hardened slag, thereby reducing
autogenous and drying shrinkage. In addition, increasing the activator concentration
and silica modulus increased the autogenous and drying shrinkage of alkali-activated
metakaolin-containing slag systems. Si et al. [24] found that the mechanical properties of
the metakaolin-based geopolymer sample can be improved by introducing a small amount
of glass powder (5–10 wt.%). The added glass powder reduced the water loss rate of
the samples under the drying conditions, thereby reducing the drying shrinkage at early
ages. Wang et al. [25] studied the effect of the silane coupling agent on the properties of
the metakaolin base polymer, and found that the addition of the appropriate amount of
silane coupling agent could reduce the shrinkage of the sample at high temperatures. In
particular, when the sample with 0.2 wt.% silane coupling agent was exposed to 200 ◦C,
the compressive strength reached 65.1 MPa, which was 10.2% higher than that of pure
metakaolin base polymer. Dumitru et al. [26] studied the coal-ash base polymer with
phosphoric-acid-activated tailings synthesized at room temperature. The acid-activated
geopolymers exhibited similar behavior to that of alkali-activated geopolymers during heat-
ing. Ribeiro et al. [27] found that increasing the solid–liquid ratio reduced the shrinkage of
red mud + metakaolin-based geopolymer concrete. Castel et al. [28] found that after 1 day
of aging at 40 ◦C, the drying shrinkage of low-calcium fly ash geopolymers doped with
slag was 1920 µε, where µε is the unrestrained axial length change per unit length. When
the drying temperature was increased to 80 ◦C, the drying shrinkage decreased to 400 µε.
However, the effect of curing temperature on the drying shrinkage was obviously reduced
after 3 days. In addition to the effect of temperature, increasing the curing humidity can
reduce the drying shrinkage. When the relative humidity was increased from 50% to 99%,
the drying shrinkage decreased by 3.8 times [29]. Further, after adding 8 wt.% shrinkage
additive to a slag-based geopolymer concrete, the drying shrinkage decreased from 420
to 190 µε [30]. Fang et al. [31] hypothesized that the autogenous shrinkage of geopoly-
mers is caused by the continuous recombination and rearrangement of the aluminosilicate
gel structure.

Although the strength and volume stability of metakaolin-based geopolymers have
been extensively studied, to date, only a few studies have studied both these properties.
Therefore, in this study, the strength and volume stability of metakaolin-based geopolymers
were studied according to the slag and Na2O content (mass fraction). To clarify the influence
of the slag and Na2O content on the compressive strength and shrinkage performance of
alkali-activated metakaolin-based geopolymers, the hydration products and pore structure
were studied through Fourier transform infrared spectroscopy (FT-IR), scanning electron
microscopy (SEM), and mercury intrusion porosimetry (MIP). The findings of this study
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provide a theoretical basis for the preparation of metakaolin-based geopolymers materials
with good volume stability.

2. Materials and Methods
2.1. Raw Materials
2.1.1. Metakaolin and Slag

In this study, metakaolin, which is the amorphous aluminum silicate formed from
ultrafine kaolin calcined at 600–900 ◦C, and blast furnace slag, hereafter referred to as “slag,”
were sourced from Hohhot Mongolia Chaopai Co., Ltd. (Hohhot, China), and Ningxia Iron
and Steel Group (Zhongwei, China), respectively. The main chemical components of these
materials are listed in Table 1, and their particle size distribution is shown in Figure 1.

Table 1. Chemical composition of the metakaolin and slag used in this study.

Material
Mass Fraction (%)

K2O Na2O SO3 SiO2 Fe2O3 Al2O3 MgO CaO

Metakaolin 0.44 0.41 - 49.78 0.93 34.63 2.58 -
Slag 0.61 0.52 0.24 29.68 3.75 13.46 6.62 36.54

Materials 2022, 15, x FOR PEER REVIEW 3 of 18 
 

 

scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The find-

ings of this study provide a theoretical basis for the preparation of metakaolin-based ge-

opolymers materials with good volume stability. 

2. Materials and Methods 

2.1. Raw Materials 

2.1.1. Metakaolin and Slag 

In this study, metakaolin, which is the amorphous aluminum silicate formed from 

ultrafine kaolin calcined at 600–900 °C, and blast furnace slag, hereafter referred to as 

“slag,” were sourced from Hohhot Mongolia Chaopai Co., Ltd. (Hohhot, China), and 

Ningxia Iron and Steel Group (Zhongwei, China), respectively. The main chemical com-

ponents of these materials are listed in Table 1, and their particle size distribution is shown 

in Figure 1. 

Table 1. Chemical composition of the metakaolin and slag used in this study. 

Material 
Mass Fraction (%) 

K2O Na2O SO3 SiO2 Fe2O3 Al2O3 MgO CaO 

Metakaolin 0.44 0.41 - 49.78 0.93 34.63 2.58 - 

Slag 0.61 0.52 0.24 29.68 3.75 13.46 6.62 36.54 

 

Figure 1. Cumulative particle size distribution of the metakaolin and slag used in this study. 

2.1.2. Experimental Sand 

Standard sand produced by Xiamen Aisiou Standard Sand Co., Ltd., Xiamen, China, 

was used to prepare the geopolymers following the GB/T 17671-1999 Cement Mortar 

Strength Test Method specification [32], and the size range of the standard sand was 0.25–

0.5 mm. The specific gravity, which is the ratio of the density of the substance at its fully 

dense state to that at the standard atmospheric pressure and pure H2O at 3.98 °C (999.972 

kg/m3), and the fineness modulus, which is a dimensionless indicator of the thickness and 

grain diameter, of the sand were 1.41 and 2.3, respectively. 

2.1.3. Alkali Activator 

A sodium silicate solution (waterglass; modulus (SiO2/Na2O molar ratio) of 3.38; con-

taining 28.25 wt.% SiO2, 8.63 wt.% Na2O, and 63.12 wt.% H2O) obtained from Shandong 

Quansheng Chemical Technology Co., Ltd., Weifang, China, was used in the study. So-

dium hydroxide in its flake form (purity: 98%) was produced by Chengdu Puhe Chemical 

Co., Ltd., Deyang, China. Deionized water was used in the study. 
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2.1.2. Experimental Sand

Standard sand produced by Xiamen Aisiou Standard Sand Co., Ltd., Xiamen, China, was
used to prepare the geopolymers following the GB/T 17671-1999 Cement Mortar Strength
Test Method specification [32], and the size range of the standard sand was 0.25–0.5 mm. The
specific gravity, which is the ratio of the density of the substance at its fully dense state to
that at the standard atmospheric pressure and pure H2O at 3.98 ◦C (999.972 kg/m3), and the
fineness modulus, which is a dimensionless indicator of the thickness and grain diameter, of
the sand were 1.41 and 2.3, respectively.

2.1.3. Alkali Activator

A sodium silicate solution (waterglass; modulus (SiO2/Na2O molar ratio) of 3.38; con-
taining 28.25 wt.% SiO2, 8.63 wt.% Na2O, and 63.12 wt.% H2O) obtained from Shandong
Quansheng Chemical Technology Co., Ltd., Weifang, China, was used in the study. Sodium
hydroxide in its flake form (purity: 98%) was produced by Chengdu Puhe Chemical Co., Ltd.,
Deyang, China. Deionized water was used in the study.
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2.2. Sample Preparation

The activators used in this study were prepared by blending sodium hydroxide, wa-
terglass solution, and deionized water 24 h before the sample manufacturing. A constant
water-to-binder (where water refers to the deionized water and binder is metakaolin + slag)
mass ratio of 0.45 was adopted for preparing the pastes. To investigate the effect of slag, the
total Na2O content in sodium silicate and sodium hydroxide and modulus (SiO2/Na2O molar
ratio) in the activator were kept constant at 10 and 1.5 mass% of the binder, respectively. In
addition, two activators with 8 and 12 mass% Na2O with a modulus of 1.5, which exhibited a
good activation efficiency on alkali-activated metakaolin-based geopolymers according to a
previous study [23], were prepared to study the effects of the activator. The binder–sand ratio
(wt.%) was set to 1:2. Table 2 shows the mixture proportion of the samples.

Table 2. Mixture proportions of the alkali-activated metakaolin-based geopolymers.

Paste Sample

Mortar Specimen Metakaolin (mass%) Slag (mass%) Modulus Na2O (mass%) Water-to Binder Ratio

S0-10 100 0

1.5

10

0.45

S10-10 90 10 10
S30-10 70 30 10
S50-10 50 50 10
S30-8 70 30 8

S30-12 70 30 12

Mortar Sample

Mortar Specimen Metakaolin (g) Slag (g) Standard Sand (g) Na2O (g) Water (g)

S0-10 33.3 0 66.7 3.3

15.0

S10-10 29.7 3.3 66.7 3.3
S30-10 23.3 10.0 66.7 3.3
S50-10 16.7 16.6 66.7 3.3
S30-8 23.3 10.0 66.7 2.7

S30-12 23.3 10.0 66.7 4.0

Notes: Binder refers to metakaolin + slag, which is equal to 100%. Na2O content is the proportion of Na2O to the
binder. Water refers to deionized water, not the water from the activators. In sample S30-10, S30 refers to the slag
content of 30% and 10 refers to the alkali content of 10%.

The mortar strength tests of the geopolymers were carried out according to ISO GB/T
17671-1999 [32]. For the preparation of the alkali-activated metakaolin-based geopolymer paste,
metakaolin and slag were placed in a mixing pot and mixed for 1 min. Subsequently, the
activator was added and stirred for 2 min until a uniform mixture was obtained. For the
preparation of the mortar, an additional time of 2 min was needed when standard sand was
added. The mortar was then cast into steel molds with the dimensions of 4 cm × 4 cm × 4 cm
and 4 cm × 4 cm × 16 cm, and covered with a plastic film for 24 h. The samples were
demolded and placed in a standard curing chamber with a constant temperature of 20 ± 2 ◦C
and relative humidity of >95% until the tests.

2.3. Test Methods
2.3.1. Test Design

The design idea and implementation steps of the experiment conducted in this study
are shown in Figure 2.

2.3.2. Mechanical Properties

The mortar strength tests of the geopolymers were carried out according to ISO GB/T
17671-1999 [32]. The geopolymer mortar samples were stirred and poured into a steel mold
with the dimensions of 4 cm × 4 cm × 4 cm and vibrated to discharge the bubbles. The
bubbles were placed in a standard curing box and maintained at a temperature of 20 ± 2 ◦C
and relative humidity of >90% for 24 h. The resulting paste was removed from the mold
and maintained until the desired test age. The compressive strength of the cured samples
was obtained using a computer-controlled constant-stress pressure testing machine.
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Figure 2. Test process flowchart.

2.3.3. Shrinkage Performance

The mortar drying shrinkage tests of the geopolymers were conducted according to
JC/T 603-2004 [33]. A 4 cm × 4 cm × 16 cm test mold was used (the detailed process
is shown in Section 2.2). After molding, the specimen was placed in a standard curing
environment, maintained for 24 h, and removed from the mold. The specimen was then
allowed to cure at a relative humidity of 80% and temperature of 25 ◦C until reaching
the desired test age. The test results were taken as the average of three measurements on
separate specimens.

The autogenous shrinkage tests were conducted using a CABR-ZES non-contact
bellow according to ASTMC 1698-2009 (2014) [34]. The inner diameter and length of the
bellows were 29 and 430 mm, respectively. The prepared metakaolin-slag mixed paste was
loaded into the bellows, and the bubbles inside the paste were eliminated by vibration.
Subsequently, the bellows were sealed with plastic plugs to prevent water loss. Finally, the
bellows were placed on a special support to store the sample at a constant temperature
of 23 ± 1 ◦C. Automatic measurements and sampling were carried out at 1-min intervals.
Three samples were tested in parallel, and the average values were used to calculate the
autogenous shrinkage value.

The chemical shrinkage tests were carried out according to ASTM-C1608 [35], fol-
lowing the sealed container absolute volume method in a water bath with a constant
temperature of 23 ◦C. The stirred paste was poured into a 250-mL wide-mouthed bottle.
The height of the paste was approximately 2 cm. Subsequently, the wide-mouthed bottle
was filled with water and sealed using a rubber plug with a capillary measurement tube,
which has a measurement range of 2 mL. The chemical shrinkage was determined by
measuring the liquid level height in the capillary tube.

2.3.4. Microstructural Analysis

The geopolymer paste samples were prepared according to the proportions in Table 2.
After reaching the desired test age, the samples were crushed and placed in ethanol for
3 days to terminate hydration. Subsequently, the samples were dried in a vacuum drying
chamber at 60 ◦C for 24 h. Finally, the FT-IR, SEM, and MIP pore structure analyses were
conducted. FT-IR was performed using a Tensor 27 infrared spectrometer (Bruker Corp.,
Billerica, MA, USA; test range: 4000–400 cm−1; resolution: 2 cm−1). The pore structure was
analyzed using an AutoPore IV 9510 automated mercury porosimeter (Micromeritics Inst.
Corp., Norcross, GA, USA; measuring range: 5 nm to 0.34 mm). Finally, the micromorphol-
ogy was examined using a Quanta 200 scanning electron microscope (FEI Co., Hillsboro,
OR, USA; resolution: 5 nm; magnification: 20–10,000×).
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3. Results and Discussion
3.1. Compressive Strength

Figure 3a shows the effect of the slag content on the compressive strength of the alkali-
activated metakaolin-based geopolymer test blocks. After 56 days of aging, the geopolymer
block with 50 mass% slag had the highest compressive strength of 86.1 MPa. Compared
to the blocks with 30, 10, and 0 mass% slag, the block with 50 mass% slag exhibited an
improved compressive strength by 0.73%, 14.29%, and 22.80%, respectively. As the slag
content increased, the compressive strength of the geopolymer blocks increased, consistent
with the conclusions of Paulo et al. [36]. This is attributed to the increase in the introduced
CaO content with the slag content, and the easier dissociation and dissolution of the Ca–O
bonds than the Si–O and Al–O bonds in alkaline environments. Thus, the large CaO content
increased the Ca2+ concentration in the paste, which enhanced the dissolution rate and
degree of the aluminosilicate minerals in the system and accelerated the hydration reaction.
After introducing slag into the metakaolin system, the reaction products were coexisting
N-A-S-H and C-A-S-H gels, which were interwoven and intergrown, thereby filling the
gaps between the different reaction phases and unreacted particles. This improved the pore
size distribution, reduced the system porosity, and increased the density and uniformity of
the structure. Consequently, increasing the slag content is conducive to the improvement
of the compressive strength of the geopolymer test block. However, Cui et al. [10,11]
obtained a different conclusion. Cui studied the influence of different slag contents (0, 20,
40, 60, 80 and 100 mass%) on the compressive strength of metakaolin-based geopolymer. It
was found that the compressive strength of metakaolin-based geopolymer with 40% slag
content was the greatest at 28 days.
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The compressive strength of the metakaolin-based geopolymers with 50 mass% slag
was not significantly different from that of the geopolymers with 30 mass% slag. Therefore,
in the following discussion, the metakaolin-based geopolymers with 30 mass% slag were se-
lected for the analysis. Figure 3b shows the effects of the Na2O content on the compressive
strength of the alkali-activated metakaolin-based geopolymer test blocks. For the samples
with the same curing time, the compressive strength increased as the Na2O content in-
creased. After 3 and 56 days of curing, the compressive strength of the S30-12 geopolymers
was 82.42% and 42.36% higher, respectively, than that of the S30-8 geopolymers at the same
age. As the curing time increased, the strength of the geopolymers increased rapidly and
gradually, consistent with the results of previous studies [37,38]. This is ascribed to the
increased Na2O content, and dissolution rate of Ca, Si, and Al, which are conducive to
the reconstruction and reaction of metakaolin-based geopolymers, thereby increasing the
compressive strength.
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3.2. Drying Shrinkage

Figure 4a shows the effect of the slag content on the drying shrinkage of the alkali-
activated metakaolin-based geopolymer specimens. For all specimens, the drying shrinkage
increased rapidly in the first 28 days of aging, and then gradually stabilized. As the
slag content increased, the drying shrinkage of the geopolymers increased. At 28 days
of aging, the drying shrinkages of the S0-10, S10-10, S30-10, and S50-10 geopolymers
were 282.47, 441.41, 672.69, and 890.08 × 10−6, respectively. After 180 days of aging, the
shrinkage of the specimen with 0 mass% slag was 24.74%, 50.19%, and 64.78% lower than
that of the specimens with 10, 30, and 50 mass% slag, respectively. Thus, the shrinkage
of the slag system is significantly higher than that of the metakaolin system, which is
consistent with the results of Fu et al. [14,23,39]. These findings are ascribed to the increase
in Ca2+ as the slag content increased because Ca2+ promotes the formation of C-A-S-H
gel, which has viscoelastic/viscoplastic behavior and low creep modulus. Furthermore,
the combination of the alkali ions reduces the regularity of the accumulation structure,
making the geopolymers more prone to collapse and redistribution during drying [14,40].
Consequently, the associated drying shrinkage is larger with a higher slag content.
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ing to the (a) slag and (b) Na2O content.

Figure 4b shows the similar drying shrinkage behaviors of the metakaolin-based
geopolymer specimens with different Na2O contents. A large amount of shrinkage occurred
in the initial 28 days of aging, after which the shrinkage rate decreased until reaching an
approximately constant degree of shrinkage. After 180 days of aging, mortars S30-8,
S30-10, and S30-12 had the drying shrinkage values of 334.17 × 10−6, 783.13 × 10−6, and
1081.67 × 10−6, respectively. The shrinkage increased significantly as the Na2O content
increased, which is consistent with the results of Li et al. [41]. The Na2O content greatly
affects the proportion and morphology of the generated C-A-S-H and N-A-S-H gels [36].
A high Na2O content is not conducive to slag hydration, whereas a low Na2O content
hinders metakaolin hydration. With a suitable Na2O content, the generated C-A-S-H gel
is interwoven with the N-A-S-H network structure, which increases the density of the
matrix and reduces shrinkage. When the Na2O content was high (it was 12%) a fast
hydration reaction was noted, resulting in the precipitation of the gel at an early stage,
which hindered the subsequent hydration reaction, and consequently, increased the porosity
and shrinkage [42]. When the Na2O content was 8 mass%, the geopolymers exhibited good
volume stability.

Notably, the drying shrinkage curves of the metakaolin-based geopolymers are com-
posed of the expansion during initial curing and followed by shrinkage, which is consistent
with the results of Yang et al. [19]. This early-stage expansion can be attributed to the water
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vapor in the curing box, which cannot be fully maintained in the specimen because of the
restrictions of the steel mold for the first 24 h. After demolding, the test block came in full
contact with the water vapor, resulting in a more prominent hydration reaction, thereby
increasing the specimen length.

3.3. Autogenous Shrinkage

Figure 5a shows the effect of the slag content on the autogenous shrinkage behavior
of the alkali-activated metakaolin-based geopolymer specimens. Different slag contents
resulted in different autogenous shrinkage behaviors. The expansion behavior and strain
of mortars S10-10 and S0-10 increased gradually. When the slag content was more than
10 mass%, shrinkage was noted. However, these results are inconsistent with those of
previous studies [43,44]. Most studies have concluded that the autogenous shrinkage
of geopolymers increases as the slag content increases. Conversely, in this study, the
autogenous shrinkage was only noted with a large slag content. When the slag content was
small, the geopolymers expanded. Therefore, it is important to study the effects of the slag
content on the autogenous shrinkage of alkali-activated metakaolin-based geopolymers for
further utilization of metakaolin-based geopolymers.
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This discrepancy can be ascribed to the low slag content (0 and 10 mass%). In the
alkali excitation process, the alkali reacts with the metakaolin and slag particles, which
decreases the ion concentration in the pore solution, thereby increasing the internal relative
humidity and expansion of the specimen. As the zeolite-like hydration products generated
by the metakaolin hydration reaction have a three-dimensional network structure, the
specimen expands with their formation [45]. Palumbo and Melo Neto et al. [46,47] noted
the early expansion of metakaolin-based geopolymers. Yang [19] found that with an
increase in age, the autogenous shrinkage behavior of a metakaolin-based geopolymer
paste with a water–binder ratio of 0.5 was divided into the autogenous expansion during
initial curing and subsequent shrinkage strain. Moreover, as the metakaolin content
increased, the geopolymer paste expansion became more prominent. When the metakaolin
content was 100 mass%, the geopolymer paste exhibited autogenous expansion in the first
28 days of curing, after which the paste began to shrink. When the metakaolin content
was 90%, the geopolymer paste expanded because of the autogenous shrinkage in the first
14 days of curing and gradually shrank thereafter. Consequently, as the metakaolin content
decreased, the initial expansion stage of the metakaolin-based geopolymer paste shortened,
and the later shrinkage stage increased. Similarly, Francesca et al. [48] studied the early
volume change in metakaolin-based geopolymers. A metakaolin-based geopolymer with
a Si/Al ratio of 1.435 expanded in the first 35 days of curing, whereas a geopolymer
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with a Si/Al ratio of 1.75 expanded in the first 17 days only, and shrank thereafter. A
geopolymer with a Si/Al ratio of 1.99 expanded during aging for 1–2 days and shrank
after. The shrinkage increased as the curing age increased. These results are related to
the zeolite-like three-dimensional network structure generated by the hydration reaction
of the metakaolin-based geopolymers. Additionally, the low geopolymers formed in the
early stage greatly influenced the volume expansion [45], consistent with the results of
Wild et al. [49]. Melo Neto et al. [47] hypothesized that early polymerization would drive
water in the pores to areas with significant water shortage, which would increase the local
humidity, decrease the capillary pressure, and start specimen expansion. Herein, when
the slag content was increased from 30 to 50 mass%, the extent of autogenous shrinkage
increased, consistent with the results of previous studies [7,50]. This occurs because the
microstructure of the hydration phase is more sensitive to slag content changes at high
slag contents, and the structural densification increases the effective stress caused by the
capillary pressure in the saturated pores, thereby promoting autogenous shrinkage.

Figure 5b shows the effect of the Na2O content on the autogenous shrinkage of the
alkali-activated metakaolin-based geopolymer specimens. As the Na2O content increased,
the extent of autogenous shrinkage of the geopolymers (largest to smallest) is as follows:
S30-12 > S30-10 > S30-8. At 14 days of aging, the autogenous shrinkage of the geopolymers
with 12 mass% Na2O was 121.32% and 29.41% higher than that of that of specimens
with 10 and 8 mass% Na2O, respectively. As the Na2O content increased, the extent of
autogenous shrinkage increased because of the increased hydration rate of the geopolymers.
As the hydration progressed, the degree of paste hydration increased, the capillaries formed
became thinner, the relative humidity decreased, and the surface tension of the pore solution
increased, resulting in the increased autogenous shrinkage [37,51]. However, as the curing
age increased, the extent of late shrinkage decreased gradually. The largest shrinkage rate
for the geopolymer was obtained at 2–3 days. Thereafter, the shrinkage rate decreased
gradually. With the Na2O contents of 8, 10, and 12 mass%, the autogenous shrinkage
ratio after 14 days decreased by 27.73%, 24.3%, and 23.98%, respectively, compared with
that after 3 days. According to previous studies, metakaolin-based geopolymer pastes
undergo pore water discharge after molding [52], which mitigates autogenous shrinkage.
Metakaolin can promote the crystallinity of the clinocalcite phase, which also plays a role
in limiting shrinkage [53].

3.4. Chemical Shrinkage

Figure 6a shows the effect of the slag content on the chemical shrinkage of the alkali-
activated metakaolin-based geopolymer specimens. During curing, the geopolymer paste
expanded at 0–12 h and shrank after 12 h. Thereafter, the extent of chemical shrinkage
greatly increased until 14 days and subsequently stabilized. The chemical shrinkage of
the geopolymers (largest to smallest) is as follows: S50-10 > S30-10 > S10-10 > S0-10. At
24 h, the chemical shrinkage of the S50-10, S30-10, S10-10, and S0-10 geopolymers were
0.017, 0.011, 0.010, and 0.0033 mL/g, respectively. At 28 days of aging, mortars S50-10,
S30-10, S10-10, and S0-10 had the chemical shrinkage values of 0.13, 0.065, 0.055, and
0.029 mL/g, respectively. Compared to geopolymers S0-10, the chemical shrinkage of
the S50-10, S30-10, and S10-10 geopolymers increased by 348.28%, 124.14%, and 89.66%,
respectively. Thus, as the slag content increased, the extent of chemical shrinkage increased
gradually. These results are consistent with those presented in Section 3.2, that is, the
addition of slag promoted shrinkage. As the slag addition promotes the alkali-activated
metakaolin reaction and affects the formation of the reaction products, more C-A-S-H gels
are formed with increased slag content, thereby increasing chemical shrinkage.
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Figure 6. Chemical shrinkage of the alkali-activated metakaolin-based geopolymer specimens according
to the (a) slag and (b) Na2O content. The insets show the chemical shrinkage in the first 24 h.

In the first 24 h of curing, the geopolymer paste underwent three stages of volumetric
changes, namely, contraction, expansion, and contraction, which are consistent with the
results of Li et al. [53]. In the contraction stage, chemical shrinkage occurred due to
the dissolution of the metakaolin slag to form monomers or small oligomers. In the
subsequent expansion stage, chemical expansion occurred owing to the formation of
zeolite-like and aluminum-rich products. In the final contraction stage, the aluminum-
rich products recombined with silicate oligomers to form an amorphous silicon-rich gel,
resulting in chemical shrinkage. When a sample solidifies under sealed or wet conditions,
the metakaolin system expands within a certain curing age [54,55]. Notably, this expansion
cannot be explained by the ordinary Portland cement theory, which is usually attributed to
ettringite formation or water-absorption-induced expansion.

Figure 6b shows the effect of the Na2O content on the chemical shrinkage of the
alkali-activated metakaolin-based geopolymer specimens. Increasing the Na2O content
had a significant impact on the early chemical shrinkage. A large amount of shrinkage
was noted in the first 14 days of aging. Thereafter, the Na2O content had minimal impact
on the chemical shrinkage. At 28 days of aging, the chemical shrinkage values of the
S30-8, S30-10, and S30-12 geopolymers were 0.058, 0.065, and 0.068 mL/g, respectively. The
chemical shrinkage of the S30-12 geopolymer was 16.55% and 3.63% higher than those of
the S30-10 and S30-8 geopolymers, respectively. Thus, chemical shrinkage increased with
the increase in Na2O content because of the increased dissolution rate of metakaolin slag
in a more alkaline environment. These findings correspond well with conclusion drawn
in Section 3.2.

The pore structure also affects the geopolymer paste shrinkage [43,56]. Therefore,
the drying, autogenous, and chemical shrinkage of the geopolymer pastes were further
explored by microscopic analysis, as discussed in the subsequent sections.

3.5. FT-IR Analysis

Figure 7a shows the FT-IR spectra of the metakaolin-based geopolymers with different
slag contents after 56 days of curing. The spectra contain five clear vibration peaks at
451, 704–718, 865, 1002–1036, and 1645–1650 cm−1. The wavenumber of the peaks at 451,
704–718, and 865 cm−1, which correspond to the symmetrical vibration of the Si–O–Si
functional groups, are inversely proportional to the slag content. This is attributed to the
increased consumption of SiO2 in the metakaolin-based geopolymers with the increased
addition of slag. In addition to generating N-A-S-H gel, the consumed SiO2 may also react
with the Ca2+ ions in the slag to generate calcium-silicate-hydrate (C-S-H) gel.
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the (a) slag and (b) Na2O content.

The peak at 1002–1036 cm−1 represents the vibration of the asymmetric T–O–Si
(T = Si or Al) functional groups. As the slag content increased from 0 to 50 mass%, the band
wavenumber decreased from 1036 to 1002 cm−1 because of the promoted alkali-activated
metakaolin reaction with the addition of slag. This increased the amount of C-S-H gel
in the reaction product and improved the compressive strength of the geopolymers (see
Section 3.1). Additionally, the intensities of the bands at 704–718 and 865 cm−1, which
correspond to the bending vibration of the Al–O–Si bonds, decreased as the slag content
increased, which can be related to the slag addition [44,52]. Finally, the wavenumber of the
peak at 1645–1650 cm−1, which represents the stretching vibration of the H–C–H groups,
was inversely proportional to the slag content. This is attributed to the increased water
consumption in the paste and promoted the formation of the C-S-H gel as the slag content
increased. As the C-S-H gel lost water easily, the vibration peak was weakened. Moreover,
the sample shrinkage increased with the slag content, as shown in Sections 3.2–3.4.

Figure 7b shows the FT-IR spectra of the metakaolin-based geopolymers with different
Na2O contents after 56 days of curing. The Na2O content had a minimal effect on the vibration
peaks of the geopolymers, suggesting similar functional groups. When the Na2O content
increased from 8 to 12 mass%, the T–O–Si vibration peak at 1011–1016 cm−1 downshifted,
which indicates that the Al substitution rate of Si was higher in a more alkaline environment,
that is, the extent of the metakaolin reaction was higher. This confirms that more alkaline
environments promote the metakaolin reaction. Therefore, with 8–12 mass% Na2O, the
compressive strength of the geopolymers increased as the Na2O content increased. A sharp
peak was noted at approximately 1385 cm−1, which is attributed to the stretching vibration of
O–C–O, with its intensity increasing as the Na2O content increased. This peak is particularly
pronounced for the S30-12 mortar because of the reaction of the excess alkali with CO2 in air
to form carbonates at high Na2O contents [57].

3.6. SEM Analysis

Figure 8a,b show the morphologies of the metakaolin-based geopolymer specimens
with 0 and 50 mass% slag, respectively. The addition of slag resulted in a dense structure
after alkali activation. The pure metakaolin-based geopolymers are a flocculated cementi-
tious material with a relatively loose structure, mainly in a block structure (Figure 8a). In
contrast, the metakaolin-based geopolymers with 50 mass% slag have a dense structure
without layers. This demonstrates that the addition of slag results in tighter packing of the
constituent particles. The slag and metakaolin particles have different sizes. After adding
slag into the metakaolin-based geopolymers, the slag has a certain filling effect on the
metakaolin-based geopolymers. Two minerals (slag and metakaolin) were doped together,
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and the particles were tightly packed, which reduced the size and number of macropores. A
dense and refined effect on the pores of the metakaolin-based geopolymers and an increased
density of the hardened structure were noted. With the addition of slag, a large amount
of amorphous C-S-H gel was generated after alkali stimulation, which filled the gaps in
the formed three-dimensional network structure. This is conducive to the enhancement
of the density and compressive strength of the metakaolin-based geopolymers. However,
the slag addition also resulted in a large number of microcracks in the metakaolin-based
geopolymers, as shown in Figure 8b, which increased the shrinkage degree.
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Figure 8. SEM images of the alkali-activated metakaolin-based geopolymer specimens with a slag
content of (a) 0 mass% and (b) 50 mass%.

3.7. MIP Analysis

To further elaborate the influence of the slag and Na2O contents on the pore structure
of the metakaolin-based geopolymers, the pore size distribution is shown in Table 3. Based
on previous research [58], pores can be classified as: gel pores (<10 nm), transitional
pores (10–100 nm), capillary pores (100–1000 nm), and macropores (>1000 nm). Figure 9a
shows the effective improvement in the pore size distribution of the metakaolin-based
geopolymers with the addition of slag. The pure metakaolin-based geopolymers have large
pores (10–100 nm) and a large total pore volume. As the slag content increased, the pore
size decreased gradually. With the addition of 50 mass% slag, pores with diameters of less
than 10 nm account for the majority of pores (56.60%); however, because of their small size,
they only occupy a small volume of the entire geopolymer. Owing to the different particle
sizes of slag and metakaolin, combining them effectively reduced the number of pores by
improving particle packing. In addition, the hydration products of slag and metakaolin
can fuse together to effectively reduce the number of macropores. Consequently, the
addition of slag significantly reduced the porosity of the geopolymers. As the slag content
increased, the geopolymer porosity, which refers to the percentage of the pore volume
in bulk geopolymer materials to the total volume of materials under natural conditions,
decreased linearly because of the close packing of the slag and metakaolin particles. The
geopolymer without slag has a porosity of 31.45%. When the slag content was 50 mass%,
the geopolymer porosity was only 14.22%, which was 54.79% lower than that without slag,
and the structural densification degree of the geopolymers significantly improved. These
findings are consistent with those reported by Zhu et al. [10]. In addition, this finding
can be ascribed to the increased fraction of gel pores with diameters of <10 nm with the
slag content, which indicates that more C-A-S-H gels are generated in the system. These
C-A-S-H gels undergo pronounced shrinkage, resulting in increased system shrinkage.
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Table 3. Pore size distribution of the metakaolin-based geopolymers.

Sample Porosity (%)
Average Pore

Diameter (nm)
Pore Size Distribution (%)

<10 nm 10–100 nm 100–1000 nm >1000 nm

S0-10 31.45 11.87 10.35 87.13 0.86 1.67
S10-10 30.32 10.49 28.75 68.17 0.61 2.47
S30-10 26.06 10.43 32.92 63.69 0.82 2.57
S50-10 14.22 9.08 56.60 37.22 2.00 4.18
S30-8 26.32 10.70 29.11 66.63 0.77 3.49

S30-12 20.00 10.01 44.75 45.71 1.54 8.00
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Figure 9. MIP spectra of the alkali-activated metakaolin-based geopolymer specimens according to
the (a) slag and (b) Na2O content.

Figure 9b and Table 3 show that the addition of alkali can effectively improve the
geopolymer pore size distribution, whereby the pore size decreased as the Na2O content
increases. When the Na2O content was 12 mass%, the geopolymer porosity was 24.01%
lower than that when the Na2O content was 8 mass%. Thus, increasing the Na2O content
reduced the total geopolymer pore volume owing to the increased reaction degree of the
geopolymer under more alkaline conditions. In addition, the highly alkaline environment
promoted the dissolution and decomposition of metakaolin and slag particles, resulting in
the refinement of the synthetic gel pores, increased fraction of gel pores, increased capillary
tension, and increased geopolymer shrinkage.

3.8. Relationship between the Drying Shrinkage and Pore Structure Characteristics of the
Metakaolin-Based Geopolymers

The shrinkage behavior of the geopolymers is directly related to their pore structure.
Figure 10a,b show the effects of different slag and Na2O contents, respectively, on the
180-day drying shrinkage and pore structure of the alkali-activated metakaolin-based
geopolymer specimens, including the porosity, average pore size, total pore volume, and
median pore size. The drying shrinkage and pore structure parameters in Figure 10a,b are
defined as the ratio of the corresponding values of the samples to those of S0-10 and S30-8,
respectively. As the slag content increased, the drying shrinkage of the metakaolin-based
geopolymers increased, whereas the porosity, average pore size, total pore volume, and
median pore size decreased. This shows that slag addition reduced the porosity, refined
the pore structure, and increased the drying shrinkage. A lower porosity increased the
capillary stress in the polymer pore network, thereby increasing the shrinkage strain. As
metakaolin has a higher water demand than that of slag, the metakaolin-based geopolymer
paste has a higher viscosity, and more pores are introduced during mixing [41]. Therefore,
as the slag content increased, the porosity of the paste decreased, and the pore curvature
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increased, resulting in a decrease in the water loss of the paste. As drying shrinkage is
sensitive to water loss, the drying shrinkage increased.
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Figure 10b shows that the drying shrinkage of the metakaolin-based geopolymers
increased with the Na2O content, whereas the average pore size, total pore volume, and
median pore size decreased. In addition, increasing the activator concentration had a
similar effect to increasing the slag content. Increasing the Na2O content increased the
drying shrinkage of the metakaolin-based geopolymers and decreased the values of
the characteristic pore structure parameters. As increasing the Na2O content refined
the pore structure of the metakaolin samples containing 30 mass% slag, the pore size
refinement [50,56] significantly increased the capillary tension, and consequently, the
drying shrinkage. Ma and Ye [59] studied alkali-activated fly ash materials and obtained
similar results. The alkali-activated paste with higher sodium silicate and silica contents
had a finer pore structure and shrinkage. Ye et al. [14] hypothesized that the activator
concentration affects the elastic modulus of alkali-activated slag, thereby affecting its
drying behavior. Therefore, in this study, the Na2O content had a major impact on
the mechanical properties and drying shrinkage of the geopolymers. Combined with
previous research, the effects of the Na2O content on metakaolin geopolymers is also
applicable to other geopolymers [23].

4. Conclusions

In this study, the effects of slag and Na2O content on the strength and volume stability
of alkali-activated metakaolin-based geopolymers were investigated. Based on the results
and discussion, the following conclusions can be drawn.

(1) When slag content was 0–50 mass%, the compressive strength of alkali-activated
metakaolin-based geopolymers increased with the increases in the slag content. The
compressive strength of the metakaolin geopolymer without slag was 70.1 MPa when
the curing time was 56 days. When the slag content was 50 mass%, the maximum
compressive strength of the metakaolin geopolymer was 86.1 MPa, which was 22.80%
higher than that without the slag content. Similarly, the compressive strength in-
creased with the Na2O content. The compressive strength of the geopolymers with
12 mass% Na2O was 42.36% higher than that of the geopolymers with 8 mass% Na2O.

(2) When the slag content was 0–50 mass%, as the slag content increased, the drying, auto-
genous, and chemical shrinkage of the alkali-activated metakaolin-based geopolymers
increased. When the Na2O content increased from 8 to 12 mass%, the drying, autoge-
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nous, and chemical shrinkage of the alkali-activated metakaolin-based geopolymers
with 30 mass% slag increased.

(3) The slag addition enhanced the formation of the hydration products of the alkali-
activated metakaolin and produced a denser gel structure. Thus, a higher Na2O
content was conducive to the dissolution and decomposition of metakaolin and slag
particles, thereby promoting the formation of reaction products.

(4) Slag can noticeably improve the pore size distribution of the alkali-activated metakaolin-
based geopolymers. As the slag content increased, the porosity of alkali-activated
metakaolin-based geopolymers decreased and the gel pores increased, resulting in the
increased contraction of the geopolymer. Similarly, the increase in the Na2O content
reduced the porosity of the alkali-activated metakaolin-based geopolymers, refined the
gel pores, and increased the shrinkage of geopolymers.

(5) In this paper, the in-depth study on strength and shrinkage of alkali-activated metakaolin-
based geopolymers is of great significance for further understanding and utilization
of metakaolin-based geopolymers. However, this paper only studied the effects of
four levels of slag content (0, 10, 30 and 50%) and three levels of Na2O content (8, 10
and 12%) on metakaolin-based geopolymers, which was not enough to draw more
conclusions. In the follow-up study, the effects of more slag content and Na2O content
on the compressive strength and shrinkage of metakaolin-based geopolymers should
also be considered.
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