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In recent years, neural stem cell transplantation has received widespread attention as a
new treatment method for supplementing specific cells damaged by disease, such as
neurodegenerative diseases. A number of studies have proved that the transplantation
of neural stem cells in multiple organs has an important therapeutic effect on activation
and regeneration of cells, and restore damaged neurons. This article describes the
methods for inducing the differentiation of endogenous and exogenous stem cells, the
implantation operation and regulation of exogenous stem cells after implanted into the
inner ear, and it elaborates the relevant signal pathways of stem cells in the inner ear, as
well as the clinical application of various new materials. At present, stem cell therapy still
has limitations, but the role of this technology in the treatment of hearing diseases has
been widely recognized. With the development of related research, stem cell therapy
will play a greater role in the treatment of diseases related to the inner ear.
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INTRODUCTION

Hearing disabilities have become one of the most common sensory disabilities in the world,
but there is still no effective treatment for deafness (Wilson et al., 2017). Hearing loss can be
classified as conductive hearing loss or SNHL according to the site of damage. The damage site for
conductive hearing loss is mainly in the outer ear and middle ear, while the damage site for SNHL
is mainly in the inner ear and auditory nerve (Weissman, 1996). At present, the treatment of SNHL
mainly involves injections or oral drugs. In addition, local hormone injections, hyperbaric oxygen
chamber rehabilitation, hearing aids, cochlear implantation, etc., can also be used in treatment
(Chandrasekhar et al., 2019). The efficacy of treatment for patients in the acute phase is about
50%–70% (Tucci et al., 2002; Jeyakumar et al., 2006; Stachler et al., 2012). For patients who have
not received effective treatment for more than 72 h after the onset of symptoms, the probability of
hearing improvement will be greatly reduced. Some experts believe that the best time for initiating
treatment should be within 48 h following the first aural symptoms (Ojha et al., 2020). However,
even if the patient receives effective treatment in the acute phase, his hearing cannot be perfectly
restored to the level before the illness (Stachler et al., 2012). Therefore, stem cell therapy may be an
effective treatment for SNHL.
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Inner ear hair cells and spiral ganglion neurons play a key
role in the transmission of peripheral auditory signals (Nayagam
et al., 2011; Moser and Starr, 2016). After exposure to the
mechanical pressure of sound waves, the inner ear hair cells
release neurotransmitters to the spiral ganglion cells, which
then transmit signals to the auditory center. SNHL (SNHL) is
caused by damage to the inner ear, auditory nerve, or central
auditory pathway (Dufner-Almeida et al., 2019). The main
factors that cause SNHL are damage to hair cells, damage to or
loss of synapses between neurons and hair cells, and neuronal
degeneration (Waqas et al., 2018). The loss of outer hair cells
affects the function of the cochlear amplifier; the loss of inner
hair cells or their synapses inhibits the encoding of sound signals;
and the loss of spiral ganglia affects the encoding or conduction
of sound signals (Moser et al., 2013). Therefore, the damage
to the two kinds of inner ear nerve cells can cause permanent
hearing loss (Lang, 2016). Previous studies have shown that non-
mammalian vertebrates can regenerate hair cells in the cochlea
and vestibular system after the hair cells are damaged to restore
auditory function (Corwin and Cotanche, 1988). However, adult
mammals have no regenerative ability for damaged hair cells, so
hearing loss is permanent (Corwin and Cotanche, 1988; Brigande
and Heller, 2009; Warchol, 2011). At present, the use of stem
cells to induce differentiation to replace damaged hair cells is
regarded as the most feasible treatment for regenerating hair
cells. In addition, the loss of spiral ganglia, which are important
to receiving incoming signals in the auditory system, is also
irreversible. The loss of spiral neurons permanently damages the
afferent pathways of auditory signals and causes SNHL (Shi and
Edge, 2013). Therefore, implanting neural stem cells into the
inner ear to regenerate spiral neurons and synaptic connections
is also a potential way to restore hearing (Géléoc and Holt, 2014).

THE ROLE OF NEURAL STEM CELLS IN
OTHER NEURODEGENERATIVE
DISEASE TREATMENT

Neural stem cells have strong proliferation and differentiation
potential and can be specifically induced to differentiate
into various nerve cells, such as neurons, astrocytes, and
oligodendrocytes (Vieira et al., 2018). Therefore, neural stem
cells are used as a potential solution for supplementing specific
cells damaged by disease, such as neurodegenerative diseases,
spinal injuries, and so on. Neural stem cells can be divided into
autologous neural stem cells and allogeneic neural stem cells
according to their sources. According to their different stages
of growth and different tissue sources, neural stem cells can be
divided into embryonic stem cell-derived neural stem cells, adult
neural stem cells, and non-neural tissue-derived neural stem cells
(Yi and Dong, 2010; Trounson and McDonald, 2015). At present,
the therapeutic mechanisms of neural stem cells are mainly
divided into three types: (1) neural stem cells gather at the injury
site, proliferate, and differentiate into specific cells to restore the
functions of the original tissues or organs; (2) neural stem cells
secrete relevant nutritional factors to promote the recovery and
regeneration of damaged cells; (3) neural stem cells establish or

improve synaptic connections between neuronal cells and restore
nerve conduction pathways.

A number of studies have reported that cell replacement
therapy (CRT) using neural stem cells has made significant
progress in neurodegenerative diseases such as Parkinson’s
disease and Huntington’s disease (Choi and Hong, 2017;
Marsh and Blurton-Jones, 2017). Generating specific neurons to
function by implanting neural stem cells has become the focus
of current research in the treatment of Parkinson’s disease. For
example, newborn neurons are used to replace dopaminergic
neurons in the striatum and participate in the reconstruction of
the nervous system (Lindvall, 2015; Bjorklund and Parmar, 2020).
Zhu et al. found that stem cells also have great potential in the
treatment of amyotrophic lateral sclerosis (ALS) (Zhu and Lu,
2020). Implanted neural stem cells survive well in a damaged
spinal cord. They not only replace lost motor neurons, but also act
as a neuronal relay to establish connections between regenerating
axons, and between their own axons and host axons so as to
rebuild the body’s innervation of voluntary muscles (Zhu and Lu,
2020). The main pathological feature of Alzheimer’s disease (AD)
is that amyloid β (Aβ) plaques accumulate in the degenerated
neurons of the aging brain. Protein plaques are mainly composed
of Aβ fibrils that phosphorylate tau protein and neurofibrillary
tangles (NFTs). To treat AD, the implantation of neural stem
cells restores damaged neurons, reduces Aβ accumulation, and
ameliorates the microenvironment (Li et al., 2014; Han et al.,
2020; Hayashi et al., 2020). Neural stem cell implantation also
reduces brain damage in adult ischemic stroke and neonatal
ischemic hypoxic encephalopathy through a variety of protective
mechanisms such as immune regulation and neuroprotection.
Endogenous neural stem cells can proliferate, differentiate, and
repair brain damage under the stimulation of brain-derived
neurotrophic factor (BDNF), NGF, EPO, etc. (Huang and Zhang,
2019). It is also reported that neural stem cell therapy is also
used in the treatment of hemorrhagic encephalopathy (Gao
et al., 2018), glioblastoma multiforme (Miska and Lesniak, 2015),
multiple sclerosis (Xiao et al., 2018), and other diseases.

THE ROLE OF NEURAL STEM CELLS IN
HEARING REGENERATION

During the embryonic development of mammals, as the
expression of BMP changes, the non-neuroectoderm (NNE) at
the junction of the neural tube and the ectoderm thickens,
forming the pre-placodal ectoderm (PPE). Pre-placodal ectoderm
forms the auditory placode at the front of the embryo.
Under the induction of FGF (fibroblast growth factors) and
Wnt released from the mesenchyme and neural tubes, the
auditory placode is recessed and squeezed from the surface
of the ectoderm to form an auditory vesicle. Then the
SOX2-positive cell subset in the auditory vesicle up-regulates
the pre-neural transcription factor bHLH and forms neuron
precursor cells, which are separated from the auditory vesicle
to form the cochlear-vestibular ganglion. The cells in the
auditory vesicle form the sensory and non-sensory parts of
the inner ear through proliferation, remodeling, and apoptosis
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(Roccio and Edge, 2019). The cochlear precursor cells in the
organ of Corti have the ability to differentiate into neurospheres
after birth (Zhai et al., 2005; Wang et al., 2006). Among
these cells, Lgr5, Lgr6, Abcg2, EPCAM, and CD271 positive
cells can proliferate and then differentiate into hair cells and
supporting cells under the positive regulation of EGF (epidermal
growth factor), IGF (insulin-like growth factor-1), bFGF (basic
fibroblast growth factor), Wnt, Shh, and the negative regulation
of p27Kip1. Atoh1, Shh, and the Notch pathways play an
important regulatory role in the differentiation of precursor cells
into hair cells. Nestin and Sox2-positive neural stem cells derived
from spiral ganglia proliferate and differentiate into neurons and
astrocytes under the control of EGF, IGF, bFGF, LIF (leukemia
inhibitory factor), and other pathways (Xia et al., 2019). In this
process, BDNF, GDNF (glial cell-derived neurotrophic factor), NT-
3 (neurotrophic factor-3), RA (valproic acid), FA (ferulic acid) and
other factors play an important regulatory role (Xia et al., 2019).

In recent years, many scientists around the world have
explored the application of neural stem cell therapy in the inner
ear and have achieved many inspiring results. The main direction
is to induce the regeneration of auditory hair cells and spiral
ganglion cells to replace damaged cells and attempt to treat SNHL
(Matsui et al., 2005; Nacher-Soler et al., 2019; Liu et al., 2020).
Neural stem cells in the inner ear can differentiate into auditory
neurons, hair cells, and supporting cells. Therefore, after the inner
ear is damaged by noise, neural stem cells can make up for the
damaged cells, meanwhile reduce the apoptosis of spiral ganglion
cells (Xu et al., 2016). Iguchi et al. found that the effectiveness
of cochlear implantation (CI) relies on residual spiral ganglion
cells, and neural stem cells can differentiate into glial cells and
neuronal cells after CI. GDNF and BDNF can nourish spiral
ganglion cells to enhance hearing improvement after CI (Iguchi
et al., 2003). The application of stem cell therapy in the inner
ear mainly includes two aspects: stimulating the proliferation and
differentiation of endogenous stem cells in the inner ear and
implanting exogenous stem cells (Figure 1).

Application of Endogenous Stem Cells in
Hearing Regeneration
Studies have reported that there are inner ear stem cells in
the cochlea and vestibule, which are distributed in the greater
epithelial ridge (GER), lesser epithelial ridge (LER), organ of
Corti, vestibular sensory epithelium, and semicircular canals (Liu
et al., 2014). The inner ear stem cells in the mouse cochlea
can be isolated in the first week after birth, while the stem
cells in the vestibule can be isolated even 4 months after birth
(Oshima et al., 2007; Kanzaki et al., 2020). Inner ear stem
cells are regulated by a variety of transcription factors and
can differentiate into sensory precursor cells, neural precursor
cells, and non-sensory cells (Kiernan et al., 2005; Raft et al.,
2007). Genes such as Jagged1 (Daudet and Lewis, 2005), Notch1
(Liu et al., 2012), Sox2 (Neves et al., 2007), BMP-4 (Cole
et al., 2000), FGF (Schimmang, 2007), IGF-1 (Aburto et al.,
2012), Atoh1, Jagged2, and Delta1 (Morrison et al., 1999) play
important regulatory roles in the differentiation and development
of inner ear stem cells into hair cells. In addition, Brn3c

(Xiang et al., 1997), Espin (Zheng et al., 2000), and Myosin VI,
VIIA, and XV (Steel and Kros, 2001; Udovichenko et al., 2002)
are important for the survival of hair cells, and TGF-α promotes
the transdifferentiation of supporting cells into hair cells (Liu
et al., 2014). Neural stem cells in the inner ear also have the
potential to replace damaged cells, and these neural stem cells
may be derived from residual spiral ganglion cells (Oshima et al.,
2007, 2009). Previous audiology-related studies have found that
the number of remaining spiral ganglion neurons has an effect on
speech recognition after CI (Seyyedi et al., 2014).

The research on the differentiation of inner ear precursor
cells (such as stem cells or supporting cells) into hair cells
was first carried out in non-mammalians. Researchers found
that after the inner ear hair cells of non-mammals such as
birds, fish, and amphibians are damaged, the supporting cells
directly or indirectly transdifferentiate into hair cells (Bodson
et al., 2010; Wang et al., 2015; Kanzaki, 2018). There are two
ways to regenerate hair cells from inner ear supporting cells:
re-entering the cell cycle, and transdifferentiation (Chen et al.,
2019). In addition, Lagarde et al. found that when the organ
of Corti in newborn mice is not fully mature, two types of
supporting cells, inner border cells and inner finger cells, can
be effectively replenished after loss, thereby maintaining normal
hearing in mice (Mellado Lagarde et al., 2014). Cox et al. found
that when the cochlear hair cells of newborn mice are lost,
supporting cells can regenerate hair cells through mitosis and
transdifferentiation, although most of the regenerated hair cells
are gradually lost with an extension of development time (Cox
et al., 2014). These prove that when the cochlea of newborn mice
is damaged, it can activate its ability to regenerate hair cells. It
is known that the current technical methods for inducing the
regeneration of supporting cells into hair cells mainly include
gene editing and drug treatment (Géléoc and Holt, 2014). In
2005, Izumikawa et al. used adenoviral vectors to transfect the
Atoh1 gene into the inner ear for the first time. Atoh1 can
achieve partial hearing recovery and improvement after deafness
by encoding HLH transcription factors and the key factors
related to hair cell development (Izumikawa et al., 2005). Akil
et al. used adeno-associated virus type 1 (AAV1) to deliver
the VGLUT3 gene to the inner ears of VGLUT3 knockout
mice and found that the morphology of the ribbon synapses
between the inner hair cells was restored. Within 2 weeks, the
examined result of mouse auditory brainstem response (ABR)
threshold returned to normal level, and the startle reflex was
partially relieved (Akil et al., 2012). At present, the application of
genetic engineering in the treatment of deafness still has many
limitations. For example, the research of Masahiko Izumikawa
et al. failed to restore hearing in all experimental animals
(Izumikawa et al., 2005). The VGLUT3 mutation studied by
Akil et al. is also not common in humans, so it does not have
broad representative significance (Akil et al., 2012). However, the
value and potential of therapy through the gene introduction of
viral vectors have been reflected in many studies. In addition,
other gene therapy methods such as the introduction of siRNA,
knockout of dominant genes, systemic injection of antisense
oligonucleotides, and plasmid introduction into intrauterine
embryos also show good therapeutic effects and can be used as
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FIGURE 1 | Mechanism of neural stem cell transplantation for the treatment of hearing loss.

potential therapeutic methods (Muller and Barr-Gillespie, 2015).
It has been confirmed that some genes in the signaling pathways
related to the regeneration of inner ear hair cells play important
regulatory roles, such as Atoh1 (Bermingham et al., 1999; Chonko
et al., 2013), p27Kip1 (Chai et al., 2011), pRb (Sage et al.,
2006), Foxg1 (Ding et al., 2020), Wnt (Bengoa-Vergniory and
Kypta, 2015), Notch (Kiernan, 2013), Hedgehog (Zhao et al.,
2006), Ephrin, Six1, Pou4f3, and Gfi1 (Menendez et al., 2020;
Zhang et al., 2020a). White et al. found that down-regulating the
expression of the cell cycle inhibitor P27Kip1 enabled some of the
supporting cells in the inner ear to re-enter the cell cycle and
generate hair cells (White et al., 2006). Mizutari et al. injected
γ-secretase inhibitors locally in mice with noise-induced hearing
loss to inhibit the expression of Notch and increase the level of
Atoh1. They found that the transdifferentiation of supporting
cells into hair cells occurred in the inner ears of mice, resulting
in an increase in the number of hair cells (Mizutari et al.,
2013). Menendez et al. combined the four transcription factors
Six1, Atoh1, Pou4f3, and Gfi1 to convert mouse embryonic
fibroblasts, adult mouse tail fibroblasts and postnatal mouse
supporting cells into induced hair cell-like cells (Menendez et al.,
2020). Foxg1 can affect the proliferation of inner ear neural
progenitor cells by regulating the expression of genes related
to the cell cycle and Notch signaling pathway. Zhang et al.
found that knockout Foxg1 can promote the transdifferentiation
of supporting cells to hair cells (Zhang et al., 2020b). Sage
et al. found that pRb plays an important role in the maturation
and survival of auditory hair cells. When the expression of
pRb is deleted, the vestibular hair cells and supporting cells of
postnatal mice still divide and proliferate (Sage et al., 2006).

Although the hair cells regenerated in this way cannot fully
restore the number of cells before the injury, and the hearing
improvement is limited (only about 10 dB), this study confirmed
the feasibility of regenerating hair cells through the regulation
of the cell cycle by drugs, and also promoted the application of
more cell cycle regulators in the future (Mizutari et al., 2013;
Géléoc and Holt, 2014; Kanzaki et al., 2020).

Recent studies have shown that microRNA is also a potential
gene therapy tool. It not only affects the development of the
cochlea and hair cells, but also regulates the proliferation and
differentiation of inner ear stem cells, which is very important
for the regeneration of inner ear hair cells (Wu et al., 2020). Jiang
et al. found that regulating the expression of miR-124 in inner ear
neural stem cells in spiral ganglia can change the expression of
tropomyosin receptor kinase B (TrkB) and cell division cycle 42
(Cdc42), and it promotes the neuronal differentiation and neurite
outgrowth of inner ear neural stem cells (Jiang et al., 2016).
At present, many studies have tried to use the regulatory role
of microRNA in cell proliferation and differentiation to repair
and regenerate inner ear hair cells, thereby treating hearing loss
(Chen et al., 2018; Zhou et al., 2018).

Application of Exogenous Stem Cells in
Hearing Regeneration
Due to the limited number of existing stem cells in the inner
ear, and because the mechanism of inner ear cell renewal is still
unclear, many researchers have tried to repair inner ear cells by
implanting neural stem cells (Waqas et al., 2020). Clarke et al.
found that neural stem cells have the potential to differentiate into
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functional auditory neurons (Clarke et al., 2000). The reported
sources of neural stem cells implanted in the inner ear include
dorsal root ganglion cells, neural precursor cells, the stem cells
or precursor cells isolated from the inner ear, immortalized
auditory neuroblasts, embryonic stem cells and their derived
neural stem cells, and bone marrow stromal cells treated with Shh
and retinoic acid (Lang et al., 2008). Michael et al. developed an
organoid culture system in vitro based on the in vivo embryonic
development system (Perny et al., 2017). They first activated
BMP and inhibited TGF-β to induce mouse embryonic stem
cells (mESCs) to generate non-neuroectoderm, while avoiding
the induction of mesoderm, and then inhibited BMP and
activated FGF2 to further induce the generation of pre-placodal
ectode (PPE) and otic placode. Spiral ganglia were stratified and
differentiated in a serum-free 2D Matrigel matrix. The tissues
were treated with BDNF and NT-3 for 15 days in vitro, and
were finally differentiated into mature spiral ganglia with a clear
morphology and normal function (Perny et al., 2017). Karl R.
Koehler et al. used the quickly aggregated serum-free embryonic
body method (SFEBq) to culture mouse embryonic neural stem
cells, and regulated the expression of BMP, TGF-β, and FGF at
different time points, so that the cell population formed non-
neuroectoderm, PPE, and otic placode epithelial cells. The signal
pathways related to the differentiation of the inner ear sensory
epithelial cells were then are activated, such as the Wnt, Notch,
Hippo, Shh, and MAPK pathways (Bengoa-Vergniory and Kypta,
2015; Ouyang et al., 2020; Susanto et al., 2020), resulting in a large
number of hair cells with special function and structure that could
sense mechanical pressure (Koehler et al., 2013; Jiao et al., 2017;
Xia et al., 2019). In addition, nerve growth factor (NGF) plays an
important role in the survival and differentiation of neural stem
cells. A medium containing NGF has a large number of neural
stem cells with high differentiation potential (Han et al., 2017).

METHOD AND FUNCTION EVALUATION
OF NEURAL STEM CELL IMPLANTATION
IN THE INNER EAR

Implanting stem cells into the inner ear can select proper
pathway from perilymph, endolymph, cochlear axis, auditory
nerve, cochlear lateral wall, and so on (Zhu et al., 2018). The
perilymph path includes round window and external semicircular
canal injection, and the endolymph path is through membranous
cochlear duct injection (Liu et al., 2016). Zhang et al. cultivated
neural stem cells for a period of time, and then injected them
into the cochlea through the cochlear sidewall, allowing them
to migrate to the area of the cochlea axis where the spiral
ganglia were distributed (Zhang et al., 2013). This method is
effective, precise, and incurs a minimal level of trauma. Due to
the special structure of the cochlea, invasive cochlear surgery
may cause severe hearing loss (Bogaerts et al., 2008). Therefore,
when neural stem cells are implanted, different methods should
be selected according to the treatment conditions and treatment
purposes (Figure 1).

It is necessary to test the function of neural stem cells
after implantation from the perspective of histology and

function. Histological detection indicators mainly include the
differentiation of neural stem cells, the neurotrophic factors
secreted by neural stem cells, and the formation of neural
networks such as the extension of axons and the establishment
of synaptic connections between neurons. Functional detection
indicators mainly include the improvement in the hearing level
of the implanted object, whether symptoms such as tinnitus
are alleviated, and whether the effect of hearing devices such
as cochlear implants has been enhanced. To determine whether
neural stem cells are successfully differentiated into target
cells after implantation in the inner ear, detection is mainly
based on morphology, protein expression, and genetic markers.
For example, detection may be based on detecting specific
expression genes (MYO7A, BRN3A, and ATHO1), auditory
receptors, mechanical energy to electrical energy conversion, and
hair cell electrophysiological activity to determine whether the
newly generated hair cells after stem cell implantation have the
characteristics of normal hair cells (Ottersen et al., 1998; Gale
et al., 2001; Griesinger et al., 2002; Prosser et al., 2008; Beurg
et al., 2009). The BrdU detection of cell proliferation, microscopic
detection of morphology, and detection of synaptic protein
expression, as well as electrophysiological detection and other
methods can determine whether the implanted newly generated
cells have successfully differentiated into spiral ganglion cells
(Li et al., 2016).

APPLICATION OF NEW MATERIALS
RELATED TO NEURAL STEM CELLS IN
THE TREATMENT OF AUDITORY
DISEASES

In recent years, many researchers have developed more new
technologies and materials in the process of using neural
stem cells to treat auditory diseases, and these technologies
have promoted the clinical application of neural stem cells
(Figure 2). As a material with excellent stability, biocompatibility,
conductivity, ductility, elasticity, and mechanical strength,
graphene is often used in tissue engineering research. When
graphene was used as a nanocomposite carrier or scaffold
material for neural stem cells, researchers found that graphene
materials could promote the proliferation and differentiation of
neural stem cells and the directional growth of neuronal axons,
and ultimately formed biologically functional tissue (Shin et al.,
2016; Yang et al., 2018; Han et al., 2019). When neural stem
cells were cultured on a graphene substrate, the cell membrane
potential parameters did not change, but when neural stem
cells proliferated and differentiated, the resting potential of
the cells increased negatively, and the amplitude of the action
potential increased. In addition, the differentiation of neural stem
cells accelerated, and the expression of synaptic proteins and
synaptic activity increased, which showed that graphene could
accelerate the development and maturation of neural stem cells
(Guo et al., 2016). In addition to graphene, artificial photonic
crystal materials also promote the growth of neural stem cells
due to their special topological properties and electrical signal
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FIGURE 2 | Application of new materials and new substrates in neural stem cell transplantation.

stimulation (Yang et al., 2013; Ankam et al., 2015). Besides these
new materials, anisotropic inverse opal is a material that regulates
the behavior of neural stem cells by changing their surface
morphology. Compared with isotropic inverse opal, special 3D
(3-dimensional) porous structure of anisotropic inverse opal can
make neural stem cell spheres have stronger proliferation ability,
more orderly cell arrangement, better directional differentiation,
and a significantly higher dendritic complexity index (DCI) (Xia
et al., 2020). The use of a 3D culture system can simulate
the inner ear microenvironment and promote the complete
formation of stem cells into a functional structure of the inner
ear (Chang et al., 2020). When neural stem cells are implanted
in the inner ear to treat auditory diseases, different materials
can be selected according to different treatment requirements
(Figure 2). To date, extensive research has been carried out on
the main processes of neural stem cell acquisition, implantation,
and postoperative inner ear functional recovery. However, there
are still unresolved problems related to tumorigenicity, targeted
growth, and cell survival rate after implantation. Therefore,
more precise and effective optimization of treatment methods is
needed in the future.

CONCLUSION

At present, great progress has been made in the research on
endogenous and exogenous neural stem cells in the treatment
of auditory diseases. A large number of studies have covered
the acquisition, induction, and implantation of neural stem cells,
and the restoration of auditory function after implantation.
Neural stem cells are implanted into the inner ear to replace
and supplement hair cells or spiral ganglion cells, to promote

the renewal and proliferation of residual cells and to restore or
rebuild the neuron network, so as to achieve the recovery of
auditory function (Figure 1). This is a valuable and promising
treatment method for auditory diseases. However, there are
still unknown factors in the inner ear implantation of neural
stem cells, such as tumorigenicity and immune rejection.
Moreover, functional recovery after implantation has not reached
a satisfactory level for clinical application. In the future, research
on inner ear stem cells will discover new materials and regulatory
genes or proteins, which will promote the clinical application of
neural stem cells.
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