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Abstract

The Omicron variant was first reported to the World Health Organization (WHO)

from South Africa on November 24, 2021; this variant is spreading rapidly

worldwide. No study has conducted a spatiotemporal analysis of the morbidity of

Omicron infection at the country level; hence, to explore the spatial transmission of

the Omicron variant among the 220 countries worldwide, we aimed to the analyze

its spatial autocorrelation and to conduct a multiple linear regression to investigate

the underlying factors associated with the pandemic. This study was an ecological

study. Data on the number of confirmed cases were extracted from the WHO

website. The spatiotemporal characteristic was described in a thematic map. The

Global Moran Index (Moran's I) was used to detect the spatial autocorrelation, while

the local indicators of spatial association (LISA) were used to analyze the local spatial

correlation characteristics. The joinpoint regression model was used to explore the

change in the trend of the Omicron incidence over time. The association between

the morbidity of Omicron and influencing factors were analyzed using multiple linear

regression. This study was an ecological study. Data on the number of confirmed

cases were extracted from theWHO website. The spatiotemporal characteristic was

described in a thematic map. The Global Moran Index (Moran's I) was used to detect

the spatial autocorrelation, while the LISA were used to analyze the local spatial

correlation characteristics. The joinpoint regression model was used to explore the

change in the trend of the Omicron incidence over time. The association between

the morbidity of Omicron and influencing factors were analyzed using multiple linear

regression. The value of Moran's I was positive (Moran's I = 0.061, Z‐score = 3.772,

p = 0.007), indicating a spatial correlation of the morbidity of Omicron at the country

level. From November 26, 2021 to February 26, 2022; the morbidity showed

obvious spatial clustering. Hotspot clustering was observed mostly in Europe

(locations in High–High category: 24). Coldspot clustering was observed mostly in

Africa and Asia (locations in Low−Low category: 32). The result of joinpoint

regression showed an increasing trend from December 21, 2021 to January 26,

2022. Results of the multiple linear regression analysis demonstrated that the

morbidity of Omicron was strongly positively correlated with income support
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(coefficient = 1.905, 95% confidence interval [CI]: 1.354–2.456, p < 0.001) and

strongly negatively correlated with close public transport (coefficient = −1.591, 95%

CI: −2.461 to −0.721, p = 0.001). Omicron outbreaks exhibited spatial clustering at

the country level worldwide; the countries with higher disease morbidity could

impact the other countries that are surrounded by and close to it. The locations with

High–High clustering category, which referred to the countries with higher disease

morbidity, were mainly observed in Europe, and its adjoining country also showed

high spatial clustering. The morbidity of Omicron increased from December 21,

2021 to January 26, 2022. The higher morbidity of Omicron was associated with the

economic and policy interventions implemented; hence, to deal with the epidemic,

the prevention and control measures should be strengthened in all aspects.
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1 | INTRODUCTION

An unknown type of pneumonia broke out in December 2019, which

was known as the coronavirus disease 2019 (COVID‐19). The

International Committee on Classification of Viruses identified the

virus as severe acute respiratory syndrome coronavirus 2 (SARS‐

CoV‐2).1 Omicron was the SARS‐CoV‐2 variant (B.1.1.529) that was

first reported to theWorld Health Organization (WHO) from South

Africa on November 24, 2021; the WHO regarded B.1.1.529 as a

variant of concern (VOC) and designated it as Omicron on

November 26, 2021.2 The daily COVID‐19 case numbers rapidly

increased in South Africa, and it quickly spread in neighboring

countries.3 The number of patients with confirmed Omicron

infection has significantly increased worldwide. The VOC is

spreading rapidly and has crossed many borders worldwide; it is

more contagious than the other variants of SARS‐CoV‐2.4

Therefore, it is important to monitor the spread of the disease

systematically, predict new outbreaks early, and identify the

temporal and spatial changes of COVID‐19 transmission.

Tong et al.5 analyzed the spatiotemporal spread of Omicron in

nine provinces in South Africa; they observed that the spatiotemporal

spread was relatively slow during the first stage and following the

emergence of the Omicron variant in Gauteng; after implementing

the prevention and control measures, the transmission of the Omicron

infection was controlled. Wang et al. analyzed the COVID‐19 confirmed

case data, Baidu migration index data, air pollutants, meteorological

data, and government response strictness index data using the global

and local spatial autocorrelation analysis, spatiotemporal scanning

statistics, and Spearman's rank correlation. Results showed that the

distribution of COVID‐19 cases in China tended to stabilize over time,

with spatial correlation and prominent clustering regions; the specific

months with high incidence of COVID‐19 were January to March, and

the area with the highest aggregation risk was Hubei Province.6 Gupta

et al. analyzed the spatial autocorrelation, hotspot clustering, and spatial

regression in the urban zones of India. Results suggested that the

autocorrelation initially increased over time; hotspot clustering was

observed in western Maharashtra, eastern Tamil Nadu, Gujarat, and

around Kolkata. Urbanization and transit mediums, especially rail and

aviation, were positively correlated with higher incidence of infections.7

These scholars not only explored the abovementioned countries and

regions, they also analyzed three cities in the United States, Minas

Gerais State in southeastern Brazil, and Italy in Europe.8–10

VOC has become a public health threat worldwide; its

pathogenic characteristics and the epidemic have caused a public

health burden. This study aimed to investigate the global spatio-

temporal characteristics and relative influencing factors of the novel

Omicron variant of SARS‐CoV‐2. Although many studies have shown

the spatiotemporal distribution of COVID‐19, they explored the

transmission of COVID‐19 in only a few countries, some states,

provinces, or urban cities. In this study, the countries worldwide were

analyzed, and every country was used as a unit of analysis. The local

indicators of spatial association (LISA) clustering map was used for

identifying the clustering areas to improve the public health

messaging and intervention strategies implemented in these areas.

The morbidity of Omicron infection and the influencing factors were

analyzed to elucidate the potential factors related to the higher

morbidity at the country level. This will help identify the regions that

require appropriate intervention strategies.

2 | MATERIALS AND METHODS

2.1 | Data source

The number of confirmed cases in each country worldwide was

obtained from the WHO COVID‐19 Dashboard (https://covid19.

who.int/info/) on February 26, 2022.11 We filtered the data of

confirmed cases from November 26, 2021 to February 26, 2022
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since the declaration of the Omicron variant as a VOC by the WHO,

which contributed to the rapid increase in the number of COVID

cases. The population of each country, territory, and area were

downloaded from the United Nations website (https://population.un.

org/wpp/). Data on the responses policy were collected from the Our

World in Data website.12

The cartographic base of the country, territory, and area was

obtained from GADM website (http://www.gadm.org/), including the

longitude and latitude of 220 countries, territories, and areas. In the

following, we were uniformly called country, territory and area as

location.

2.2 | Statistical analyses

2.2.1 | Handling of missing values and multiple
linear regression analysis

Multiple linear regression was performed to explore the factors that

influence the morbidity of Omicron, control the confounding factors,

and evaluate the independent effects of multiple independent

variables on dependent variables. The multiple imputation method

was used to handle the missing values in the data, which were

included in the multiple linear regression analysis using STATA

(version 16.1). The status of missing values are shown in Table 1.

At first, the missing data were set as an mi data set, and then their

attributes were modified to determine which variables contain

missing values and which of them contain complete values. Then,

10 imputations were created for each missing value, producing 10

copies of the data set, each of which had missing values imputed

using “switching regression,” an iterative multivariable regression

technique. Each data set had missing values suitably imputed, and

each complete data set was analyzed independently using the

regression model. Estimates of the parameters of interest were

averaged across the 10 copies to provide a single estimate based on

the Rubin's rule.13,14

2.3 | Spatial analysis

In this ecological study, an exploratory analysis of the global spatial and

temporal distribution of Omicron cases from November 26, 2021 to

February 26, 2022 was conducted. The country was adopted as units of

analysis, and the distribution of cases by area was evaluated. The

database of cases contained information from 237 locations. The data of

17 locations did not match the geographical database. A total of 220

locations were analyzed, and 32 locations were defined as missing values.

Morbidity was used to depict the influence of Omicron infection

in healthy people, which was calculated as the total number of cases

in each period divided by the population then multiplied by 10 000.

TABLE 1 Status of missing value
Variablesa Range of values Missing value (n) N Percentage

Stringency index 2.78–93.52 7270 23 047 31.54

Containment index 14.29–84.52 7270 23 047 31.54

Restriction gatherings 0–4 7255 23 047 31.48

Facial coverings 0–4 7266 23 047 31.53

Cancel public events 0–2 7243 23 047 31.43

Workplace closures 0–3 7243 23 047 31.43

Testing policy 0–3 7303 23 047 31.69

Contact tracing 0–2 7268 23 047 31.54

School closures 0–3 7231 23 047 31.38

Stay home requirements 0–3 7267 23 047 31.53

Income support 0–2 7281 23 047 31.59

Debt relief 0–2 7303 23 047 31.69

Public information campaigns 0–2 7282 23 047 31.60

Restrictions internal movements 0–2 7261 23 047 31.51

Vaccination policy 0–5 7268 23 047 31.54

Close public transport 0–2 7238 23 047 31.41

International travel controls 0–4 7270 23 047 31.54

Abbreviations: n, number of missing values; N, total number of observation.
aStringency index and containment index were assigned as continuous variables, while the other
variables were assigned as ordinal variables.
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The distribution of morbidity in each country was determined using

the QGIS software (version 3.16.4) to present the cartographic data

and construct the thematic maps.

Spatial autocorrelation analysis was conducted using the GeoDa

software (version 1.18.0; GeoDa Center). To assess for spatial

clustering of Omicron cases at the country level, an inverse distance

contiguity matrix was created. The distance was measured using

Euclidean distance and was expressed in degrees. The threshold

value was 31.865, which is the minimum value to indicate the

absence of neighborless observations (isolates).

To analyze the spatial autocorrelation, the values of the Global

Moran Index (Moran's I) and LISA were calculated. Moran's I was

used to measure the relationship between the same attributes of

adjacent spatial units, with the values ranging from −1 to 1. Positive

values indicate a positive spatial correlation; that is, the closer their

spatial positions, more similar their attributes. A negative value

indicates a negative spatial correlation, the nearer the spatial

locations, the more different their attributes. Values that are close

to 1 indicate a stronger spatial autocorrelation. A value of 0 indicates

the absence of a spatial autocorrelation.15,16 LISA was used to assess

the influence of individual locations on the magnitude of the global

statistic and to identify the “outliers.” The spatial patterns in the LISA

cluster map were divided into five categories: High–High (hotspot),

Low–Low (coldspot), Low–High, High–Low, and Not Significant. The

High–High and Low–Low locations indicated spatial clustering of

similar values, that is, high values (or low values) surrounded by high

(or low) neighboring values. Both High–High and Low–Low locations

denoted a positive spatial autocorrelation, implying a spatial

homogeneity. The Low–High and High–Low locations were regarded

as spatial outliers, indicating a spatial association of dissimilar values.

Low–High was defined as low values surrounded by high neighboring

values, while High–Low was defined as high values surrounded by

low values. Low–High and High–Low represent a negative spatial

autocorrelation, thus implying a spatial heterogeneity.16,17

2.4 | Temporal analysis

Joinpoint regression model was used to divided a long‐term trend line

into segments, and each segment was described with continuous

linearity. Linear models can only describe or predict one trend, and time

series models also have several limitations. By contrast, the joinpoint

regression model was a better choice for determining the trend of

disease. It was used to calculate the daily percent change (DPC) to

characterize the trends in disease rates over time; the rates were

assumed to change at a constant percentage of the rate of the previous

day. In recent years, more and more researchers have conducted

analyses to determine the trend of the COVID‐19 outbreak.18 The

global‐level morbidity was calculated by dividing the total number of

cases every day in all 220 locations by the population in all 220 locations

then multiplying the quotient by one million. Then, the data were

imported into the Joinpoint Regression Program 4.9.1.0 (https://

surveillance.cancer.gov/joinpoint/, accessed on June 26, 2022), with

the crude rate as dependent variable and the independent variable as

daily number of cases. Assignment 0–92 corresponded to the date from

November 26, 2021 to February 26, 2022 and the option of log‐

transformed was selected Yes. The rest option was in default (Grid

Search method and Monte Carlo mutation test for joinpoint analysis,

estimating the parameter and selected model).

3 | RESULTS

3.1 | Spatial and temporal distribution

The morbidity of COVID‐19 was classified into the following

categories: 0–0, 0–10, 10–20, 20–30, 30–40, 40–50, and 50–259

(per 10 000 people) and missing value.

Figure 1 shows the distribution of morbidity from November 26,

2021 to February 26, 2022; in Europe, 129 locations were in the

0–10 category, while 5 were in the 50–259 category. The morbidity

rate in these locations was analyzed, and results showed that Faroe

Islands had the highest morbidity, followed by Réunion, Guam, Latvia

and Israel (258.887, 181.568, 91.838, 56.765, and 54.799, respec-

tively). Meanwhile, 49 locations, in Africa were in the 0–0 category,

while 23 locations from different continents were in the 10–20

category. A total of 6, 3, and 5 locations were under the 20–30,

30–40, and 40–50 categories, respectively.

3.2 | Spatial autocorrelation

The Moran's I was positive (Moran's I = 0.061, Z‐score = 3.772,

p= 0.007) during the period, indicating a persistent positive spatial

correlation and a spatial clustering in majority of the Omicron cases in

each location, not randomly distributed. The closer the value of Moran's

I to 1 or −1, the stronger the spatial autocorrelation. Geography could

influence the transmission of Omicron; the morbidity in each location

was correlated with the geospatial location of the adjacent country.

Figure 2 shows the LISA cluster map of morbidity. Hotspot

clustering was relatively high in the western European countries, and

a total of 24 countries were categorized as High–High. The Faroe

Islands ranked first in terms of morbidity (High–High category); its

trend of new cases swiftly increased since the emergence of the

Omicron variant. This finding suggested that the Omicron variant is

strongly contagious. The Low–Low category was mainly observed in

southern Africa and some locations in Asia (total locations: 32). The

Low–High and High–Low categories were observed in Europe and

Asia (11 and 3, respectively). The corresponding categories of all

mentioned locations are shown in Table 2.

3.3 | Changes in the trend of Omicron outbreak

Figure 3 shows the changes in the trend of the Omicron cases; then,

the number of cases in the two periods has eventually declined
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(Figure 3). From November 26, 2021 to December 21, 2021, the

morbidity of Omicron showed a nonsignificant DPC of +0.8% (95%

confidence interval [CI]: −1.0 to 2.6, p = 0.386), followed by a daily

significant increase of +8.1% (95% CI: 5.6–10.7, p < 0.001) from

December 21, 2021 to January 7, 2022, a DPC of +1.7% (95% CI:

0.3–3.1, p = 0.015) from January 7, 2022 to January 26, 2022, and a

significant decrease of −2.9% (95% CI: −3.5 to −2.2, p < 0.001) from

January 26, 2022 to February 26, 2022 (Table 3). The global

morbidity reached the peak on January 26, 2022, which corresponds

to the DPC three period.

3.4 | Multiple linear regression

Results of the multiple linear regression analysis showed that close public

transport was strongly negatively correlated with the morbidity of

F IGURE 1 Global spatial distribution of Omicron morbidity from November 26, 2021 to February 26, 2022

F IGURE 2 Local indicators of spatial association cluster map of the Omicron morbidity from November 26, 2021 to February 26, 2022
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Omicron, followed by facial coverings, stay home requirements, cancel

public events, restrictions internal movements, international travel

controls, school closures, testing policy, and debt relief. The morbidity

was positively associated with income support, workplace closures, and

containment index (Table 4).

4 | DISCUSSION

As reported in the WHO COVID‐19 Dashboard (https://covid19.

who.int/info/) on February 26, 2022, COVID‐19 quickly spread

worldwide since the emergence of the Omicron variant. This study

investigated the association between the novel Omicron variant and

its influencing factors by conducting a spatiotemporal analysis.

We noted that the morbidity of daily new confirmed cases was

negatively correlated with close public transport, facial coverings,

stay home requirements, cancel public events, restrictions internal

movements, international travel controls, school closures, testing

policy, and debt relief. The more enhanced the level of these

responses policy, the lower the morbidity. Fowler et al.19 elucidated

that stay‐at‐home orders might have reduced the number of

confirmed cases in the United States. Another study also showed a

similar result, when the first COVID‐19 case was reported in Wuhan,

China and resulted in a higher morbidity, due to population mobility,

which was partially explained by the intracity movement of the

people who provided public services to fight the epidemic.20 Thus,

strengthening the preventive measures such as implementation of

stay at home requirements, closure of public transports, international

travel controls, school closures, and cancellation of public events can

reduce the morbidity.

Positive correlations were observed between Omicron morbidity

and income support, workplace closures, and containment index.

Feng et al.21 found that the number of confirmed cases was positively

correlated with gross domestic product in LiaoNing and Jilin, China.

Marcos César Ferreira also found that the population most vulnerable

to COVID‐19 were those living in the districts with lower salaries and

slum areas in the São Paulo municipality, Brazil.19 Madden et al.22

found a similar result in Ireland; that is, the higher the deprivation

index and the larger the population density, the higher the morbidity.

However, the stay at home index (an indicator of population mobility)

was negatively associated with morbidity. Another study showed that

the most deprived areas, the region with the lowest employment rate,

and higher housing density were associated with higher morbidity.23

From November 26, 2021 to December 21, 2021, since the

emergence of the Omicron variant, the morbidity rate increased

slowly. From December 21, 2021 to January 26, 2022, it swiftly

reached the peak in just 1 month, demonstrating that the Omicron

variant spread rapidly within a short period of time. Desingu et al.24

also found a similar trend in three regions (South Africa, Europe, and

North America) from November 29, 2021 to January 3, 2022. It may

be caused by mutations in the spike (S) protein receptor‐binding

domain; thus, the Omicron variant was considered to be significantly

more infectious.25 Finally, it showed a decreasing incidence,

suggesting that the response policy and preventive measures

implemented worldwide since January 26, 2022 were effective.

The graph of the joinpoint regression analysis showed that morbidity

changed within 7 days, suggesting that the transmission pattern of

Omicron was based on a 7‐day cycle.

Our analysis demonstrated a spatial autocorrelation worldwide;

the risk of Omicron infection differed significantly, and spatial

TABLE 2 Location of LISA map classified into four categories

High–High Low–Low Low–High High–Low

Andorra Angola Albania Mongolia

Belgium American Samoa Austria Sint Maarten

Switzerland Bangladesh Bosnia and

Herzegovina

Réunion

Denmark Central African

Republic

Czechia

Spain Ivory Coast Germany

France Cameroon The United

Kingdom

Faroe Islands Democratic Republic

of the Congo

Italy

Gibraltar Congo Lithuania

Croatia Cook Islands Morocco

Hungary Ethiopia Serbia

Isle of Man Gabon Sweden

Ireland Ghana

Iceland Equatorial Guinea

Liechtenstein India

Luxembourg Lao People's

Democratic

Republic

Monaco Liberia

Montenegro Sri Lanka

Netherlands Myanmar

Norway Namibia

Poland Nigeria

Portugal Niue

San Marino Nepal

Slovakia French Polynesia

Slovenia Rwanda

South Sudan

Togo

Tokelau

Tonga

Uganda

Vanuatu

Wallis and Futuna

Samoa

Abbreviation: LISA, local indicators of spatial association.
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clustering varied greatly across continents. The global morbidity of

Omicron showed spatiotemporal clustering patterns from November

26, 2021 to February 26, 2022 as reported in our study. The finding

demonstrated that Europe was the continent that possessed the

most number of locations under High–High category, and most of the

locations showing spatial clustering were observed in western

countries of Europe.

Chu et al.26 analyzed the cross‐country COVID‐19 pandemic in

Europe; results showed the highest level of connectedness among

European countries, reflecting the severe outbreak of COVID‐19, in late

March and early April 2020, and the first wave of the pandemic

subsided in May 2020. Shariati et al. conducted a hotspot analysis and a

spatial autocorrelation analysis of the cumulative incidence rate in all

countries at the end of March and April 2020. Results demonstrated

High‐High clusters in the southern, northern, and western Europe.27

The LISA cluster map showed that Africa and Asia had Low–Low

clusters; some countries with low morbidity were also surround by

countries with low morbidity. The probable cause of this phenome-

non is that these countries implemented effective prevention and

control measures. Rampal et al. collected country‐specific policy

documents, official government media statements, mainstream news

portals, global statistics databases, and the latest published literature

available from January to October 2020, and analyzed the situational

and epidemiological trend of six South‐East Asian countries

(Malaysia, Singapore, Thailand, Philippines, Indonesia, and Myanmar).

Results showed that the primary strategies for preventing virus

transmission were observing good hygiene practices, maintaining

social distancing, implementation appropriate airborne precautions,

contact tracing, early detection, and isolation.28 The countries under

the Hotspot category should implement these measures to strictly

control the spread of the disease.

This study showed the spatial distribution of the morbidity of

Omicron and the morbidity rate in every location worldwide. The

disease became more and more serious over time; not only one

country was influenced by the disease, but other countries

surrounded by those with high morbidity were also affected. Salehi

et al.29 developed a useful online interactive dashboard (https://

mahdisalehi.shinyapps.io/Covid19Dashboard/) that visualize and

follow the confirmed cases of COVID‐19 in real‐time; the dashboard

showed that the number of confirmed cases and deaths due to

COVID‐19 were remained high. The highest risk was observed in

Europe; in Asia, the morbidity was reportedly low.

Although many scholars have investigated the aforementioned

factors related to the morbidity of COVID‐19, either they analyzed

the question locally or they did not cope with this topic from a

geospatial perspective. Our study collected data from various

countries worldwide to explore the association between Omicron

response policies and morbidity of Omicron; furthermore, the study

investigated the morbidity pattern from November 26, 2021 to

February 26, 2022.

F IGURE 3 Trend of Omicron morbidity (per million) per day, November 26, 2021 to February 26, 2022

TABLE 3 Result of joinpoint regression model

Date DPC (95% CI) t p

World

2021/11/26–2021/12/21 0.8 (−1.0 to 2.6) 0.9 0.386

2021/12/21–2022/1/7 8.1 (5.6–10.7) 6.6 <0.001

2022/1/7–2022/1/26 1.7 (0.3–3.1) 2.5 0.015

2022/1/26–2022/02/26 −2.9 (−3.5 to −2.2) −8.6 <0.001

Abbreviations: CI, confidence interval; DPC, daily percent change.
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This study has some limitations. Morbidity was analyzed based

on the reported COVID‐19 cases by the WHO. There were delays in

data reporting, and data on the influencing variables had missing

values; hence, we adopted multiple interpolation methods to address

this issue. However, it may also cause deviations in the results.

5 | CONCLUSION

According to the country level distribution of Omicron from

November 26, 2021 to February 26, 2022, the morbidity observed

in the different locations worldwide was a clear situation; Europe was

most impacted, followed by North America, South America, Oceania,

Asia, and Africa. Hence, stricter prevention and control measures

should be implemented.

The morbidity gradually increased, and the difference was not

statistically significant in the first month since the emergence of the

Omicron variant. The morbidity rapidly increased from December 21,

2021 to January 26, 2022, with the Omicron infection spreading

quickly worldwide during this period. After taking effective measures,

the morbidity started to decrease in January 26, 2022.

The result of Moran's I showed that morbidity had a positive

spatial correlation at the country level during the period, thus

suggesting the clustering of morbidity worldwide. The disease could

transmit among the locations, and the morbidity in each location

could impact the surrounding locations. Therefore, the epidemic

should not only be managed by one country. Others, especially the

surrounding countries, should also be provided with assistance.

The LISA cluster map showed a strong clustering of Omicron

incidence in Europe and a Low–Low category in Africa. Outlier,

Low–High, and High–Low categories were most observed in the

countries in Europe, while the Not Significant category mostly

observed in the countries in North America Oceania, and Asia.

The morbidity of Omicron is was strongly negatively correlated

with variable close public transport and strongly positively correlated

with income support; this finding may indicate that the economic and

policy interventions have a significant impact on morbidity. We

should pay more attention to the relative prevention measures for

preventing and controlling the transmission of disease. To better

cope with the spread of disease, we should not ignore the

spatiotemporal characteristics of the disease.
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TABLE 4 Multiple linear regression
analysis between morbidity of Omicron
and influencing factors

Variables Coefficient SE t p 95% CI

Stringency index −0.053 0.088 −0.61 0.547 −0.231 to 0.124

Containment index 0.358 0.100 3.57 0.001 0.155–0.561

Restriction gatherings −0.149 0.207 −0.72 0.474 −0.558 to 0.261

Facial coverings −1.571 0.293 −5.36 <0.001 −2.168 to −0.974

Cancel public events −1.275 0.512 −2.49 0.016 −2.300 to −0.250

Workplace closures 1.050 0.410 2.56 0.016 0.209 to 1.890

Testing policy −0.825 0.329 −2.51 0.014 −1.478 to −0.171

Contact tracing −0.243 0.518 −0.47 0.643 −1.301 to 0.815

School closures −0.883 0.302 −2.92 0.006 −1.493 to −0.273

Stay home requirements −1.485 0.404 −3.68 0.001 −2.321 to −0.649

Income support 1.905 0.278 6.85 <0.001 1.354–2.456

Debt relief −0.633 0.246 −2.57 0.012 −1.124 to −0.143

Public information campaigns 0.077 0.791 0.10 0.923 −1.533 to 1.688

Restrictions internal movements −1.271 0.406 −3.13 0.004 −2.104 to −0.438

Vaccination policy 0.354 0.284 1.25 0.219 −0.219 to 0.928

Close public transport −1.591 0.435 −3.65 0.001 −2.461 to −0.721

International travel controls −0.988 0.285 −3.47 0.002 −1.568 to −0.408

Abbreviations: CI, confidence interval; SE, standard error.
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