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Abstract: The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique
growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have
demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct
actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the
short, highly dynamic bundles near the apex. With the development of imaging techniques over the
last decade, great breakthroughs have been made in understanding the function of actin bundles in
pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the
architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
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1. Introduction

In the sexual reproduction of angiosperms, firstly, the pollen grain hydrates and produces
the pollen tube. Then, it passes through the column and reaches the micropyle via apical growth.
After entering the embryo sac, the pollen tube releases two sperms. Finally, the double fertilization
process is completed [1]. In this process, the polar growth of pollen tubes is a key link in the sexual
reproduction of higher plants. It is of great significance for the reproduction of plants and the evolution
of species.

Early studies have shown that the actin skeleton plays a vitally important role in the tip growth
of pollen tubes [2,3]. The growth of pollen tubes depends on the targeted vesicle transport [4], through
which vesicles containing cell-membrane and cell-wall resources are transported to the apical region.
The vesicles, as well as other organelles, moving back and forth along the main axis of the pollen tube,
are controlled by the myosin-actin filaments system [5–9]. In 1974, Condeelis was the first to discover
a large number of actin filaments in pollen tubes [10]. Since then, researchers have tried various
strategies to explore the microfilament skeleton in pollen tubes. It is now clear that the pollen tube is
characterized by at least three different arrangements of actin filaments, which roughly correspond
to the apex, the sub-apex, and the shank [11]. In the apical region, microfilaments in the form of
short segments are highly dynamic [12,13], while in the subapical region, dense longitudinal actin
bundles with a diverse organization emerge, such as the collar [14,15], mesh [16,17], funnel [3,18],
and fringe [19]. Furthermore, the microfilament structure of this region is highly sensitive and
unstable [20]. In the shank, the microfilaments consist of long, rather thick bundles, which are
parallel to the growth direction of the pollen tube and extend to the base of the subapical region [21].
The material transport in pollen tubes includes both long-distance transport and short-distance
transport. Long-distance transport relies on the microfilament bundles in the pollen tube shank [22,23],
while short-distance transport depends on the short and highly dynamic actin bundles in the subapical
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region [24–26]. A large amount of evidence has shown that the proper organization of these actin
bundles is crucial for pollen tube growth, hence, it is essential to reveal the underlying mechanisms
of assembly and regulation of actin bundles. This article aims to provide a comprehensive survey
covering the distribution, organization, and regulation of actin bundles in pollen tubes.

2. Spatial Distribution of F-actin Bundles in Pollen Tubes

The actin in vivo can be present as either a free monomer called the G-actin (globular) or as part
of a linear polymer microfilament called the F-actin (filamentous) [27]. The G-actin has an asymmetric
structure. Therefore, the F-actin, which is primarily composed of G-actin polymers, is considered
to have an intrinsic polarity. The faster-growing end of the F-actin is called the plus end (barbed
end), which tends more to bind ATP-G-actin, while the slower-growing end is called the minus
end (pointed end), with ADP-G-actin dissociating slowly from the microfilament [28]. A specific
phenomenon, named “treadmilling”, can be observed under certain conditions. During “treadmilling”,
subunit addition and loss are dynamically balanced at the two ends of a filament with actin
filaments assembling at the barbed end and disassembling simultaneously at the pointed end [29].
In cells, the F-actin is directional and highly dynamic, and its assembly is controlled by a variety of
actin-binding proteins [30].

In plant cells, the F-actin has many distinct architectures regulated by a variety of actin-binding
proteins, such as foci, rings, and meshwork [31–34]. One type of architecture concerns the parallel
actin bundles, which have a profound influence on cell shape, division, motility, and signaling [35,36].
Noticeably, actin bundles are present in virtually all plant cells. There are masses of bundled filaments
present in the cortex of epidermal pavement cells of rosette leaves, mature root epidermal cells,
and trichomes [31,32], and almost all plant cell types have a mesh of subcortical actin bundles radiated
from the perinuclear actin basket [31].

The pollen tube is characterized by at least two types of actin bundles, which roughly correspond
to the sub-apex and the shank. In the shank, the long and thick actin bundles are parallel with the
axis of pollen tubes, with some of the bundles even extending close to the subapical area but without
penetrating into the subapical region [19,37,38]. Compared to the bundles in the sub-apex region,
these longitudinal actin bundles in the shank are shown to be less sensitive to actin-depolymerizing
drugs of lower concentration [3,14], suggesting that longitudinal actin cables are relatively stable.
Consistently, in pLat52::Lifeact-GFP transgenic pollen tubes, when tracing the dynamics of individual
actin filaments, the maximal filament length substantially increased and the severing frequency
substantially decreased in comparison to that in the apical region [23]. By replacing the strong Lat52
promoter with the moderately strong Actin 3 promoter, the Baluška group discovered that the thicker
F-actin bundles in pollen tube shanks are stable, but thinner F-actin bundles are dynamic, showing
undulating movements [39]. Furthermore, the bundles of actin filaments in the shank exhibit uniform
polarity with those close to the cell cortex, having their barbed ends oriented towards the tip of the
pollen tube, while those in the cell center have their barbed ends oriented toward the base of the
tube [40]. Myosin, the actin-based motor tracking with the bundles, moves exclusively towards the
plus end of the filament, allowing for the transport of organelles or vesicles from the base to the tip
along the cell cortex [41,42].

The actin organization in the apical domain of lily pollen was clearly revealed in 2005 by the
Hepler group. They confirmed that actin bundles do exist in the sub-apex, and can form a dense
cortical fringe or collar starting about 1–5 µm behind the extreme apex and extending basally for
an additional 5–10 µm [19]. Subsequently, the actin fringe was observed in the sub-apex of pollen
tubes among various species including Arabidopsis, tobacco, and lily [26,33,43,44]. Electron microscopy
studies also showed shorter actin filaments in the sub-apex of pollen tubes, organized in closely
packed and longitudinally oriented bundles, with some of them forming curved bundles adjacent to
the cell membrane [39]. By using the advanced spinning disk confocal microscopy, it was recently
clarified that the sub-apex actin structure consists of longitudinally aligned actin bundles at the cortex,
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which corresponds to the previously described actin fringe [19], and the inner fine actin filaments in
the core of the cytoplasm [26]. These short actin bundles in the subapical region are regarded as a kind
of turning point in the tube cell, because most of the larger organelles stop and reverse their movement
in proximity of the actin fringe, while secretary vesicles can usually cross the actin fringe and reach
the apex [11]. Recent research has shown that the short actin bundles at the cortex of the sub-apex
region exhibit uniform polarity with their barbed-end anchoring on the apical membrane [7,45], and,
supposedly, they serve as tracks for the barbed end directed myosin XIs [46], while the internal
fine actin filaments in the sub-apex are involved in regulating the backward movement of vesicles,
presumably by acting as a physical barrier [26].

In summary, the two types of actin bundles, which roughly correspond to the shank and the
sub-apex in pollen tubes, ensure orderly vesicle transport from the base to the tip, thus guaranteeing
rapid tip growth.

3. Molecular Mechanisms Underlying the Formation and Regulation of Actin Bundles in
Pollen Tubes

Proper actin cytoskeleton organization is important for the polarity growth of pollen tubes.
Within the tubes, the assembly and disassembly of the actin filaments are promoted by many
actin-binding proteins (ABPs), including nucleating, depolymerizing, severing, capping, F-actin
stabilizing, and G-actin sequestering proteins [6,9,47]. Among the various ABPs, actin-bundling
proteins trigger the formation of bundles consisting of several parallel actin filaments tightly packed
together, and play essential roles in the pollen tube elongation [35,48]. This article will focus on
six kinds of ABPs in plants, including villins, formins, fimbrins, LIM-domain containing proteins
(LIMs), Crolins, and actin depolymerizing factors (ADFs). A detailed description of their biochemical
properties, cellular localization, and the potential regulatory mechanisms in pollen tubes is given.

3.1. Villins

Plant villins, which contain multiple 15 kDa gelsolin/severin domains, belong to the villin/
gelsolin/fragmin superfamily. In addition to the six gelsolin domains, villin has a head domain at the
C-terminal, providing an additional microfilament binding site [49]. This superfamily can manipulate
microfilaments in multiple ways, including capping, severing, promoting nucleation, and bundling,
some of which are influenced by Ca2+.

In mice, the deletion of villins prevents Ca2+-induced actin fragmentation and disrupts the brush
border, which means that villins are essential for mouse actin rearrangement after stimulation [50].
Mutations of villins in Drosophila induce female sterility and lead to defects of actin bundles in
vegetative cells [51,52].

P-135-ABP and P-115-ABP isolated from lily (Lilium longiflorum) by biochemical fractionation [53,54]
were identified to be the homologues of animal villins [55,56]. The two proteins organize actin filaments
into bundles with uniform polarity [56,57]. And in both cases, the bundling activity was hindered by
Ca2+/ Ca2+-calmodulin (CaM) [56,58]. To explore the role of P-135-ABP and P-115-ABP, researchers
microinjected the corresponding antisera into root hairs. After injection, they found obvious changes,
such as the disappearance of transvacuolar strands and the alteration of cytoplasmic streaming [56,59].
Furthermore, arranging the bundles in the shank region, lily villin also modulates actin dynamics in
the apical region through its capping and severing activities, if there is a relatively high concentration
of Ca2+ [60].

There are five villin-like genes in Arabidopsis, named AtVLN1 to AtVLN5 [61]. Two of them,
AtVLN2 and AtVLN5, are abundant in pollen [62,63]. For AtVLN5, biochemical studies showed
that it retains a whole suite of activities, including filaments bundling, barbed-end capping,
and calcium-dependent severing. The absence of VLN5 does not affect the organization or amount of
filamentous actin in pollen tubes because VLN2 acts in a redundant manner with VLN5 to regulate
actin dynamics in the pollen tube [25,62]. The down-regulation of both VLN2 and VLN5 led to a
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remarkable reduction in the amount of actin filaments in the sub-apex, and the actin cables become
thinner and more disorganized in the shanks. Consistently, the rate of pollen tube growth decreased in
vln2 vln5 [25]. In addition, AtVLN4 is abundant in root hairs and root hairs also perform typical tip
growth. AtVLN4 can bundle microfilaments at a lower Ca2+ concentration, while it severs and caps
microfilaments under a higher concentration of Ca2+. In the atvln4 mutant, the root hairs are shorter
and the actin bundles in the hair cells are fewer in comparison to the wild type [64].

3.2. Formins

Microfilament polymerization is mainly initiated by nucleation factors. There are two classes of
nucleation factors, formin and the Arp2/3 complex. Formin launches linearly arranged microfilaments,
while the Arp2/3 complex forms reticular microfilaments. However, neither the growth of pollen tubes
nor the development of root hairs is dramatically affected in four of arp mutants grown under normal
conditions [65]. Formins, composed of a conserved, proline-rich formin-homology 1 (FH1) domain
and a FH2 domain, are major actin filament nucleation factors in the pollen tube. The FH2 domain is
required for actin filament nucleation, while the FH1 domain recruits profilin–actin complexes to the
assembly machine [66]. Plant formins have capping, severing, and bundling functions in addition to
the core nucleation activity [67]. Moreover, formins have the ability to faithfully track growing barbed
ends to provide a means for the continuous elongation of actin [68].

Unlike other actin bundlers, formins have a large number of homologous variants in the model
plant Arabidopsis. It can be divided into two groups, according to sequence similarity and conservatism.
Group I has a unique N-terminal, which includes a proline-rich, potentially glycosylated extracellular
domain and a transmembrane domain [69]. There are 21 formins in Arabidopsis, including 11 members
(AtFH 1-11) in group I and 10 members (AtFH12-21) in group II [70]. Rice has 11 Class I Formins
(OsFH1, OsFH2, OsFH4, OsFH8-11, OsFH13-16) and 5 Class II Formins (OsFH3, OsFH5, OsFH 6,
OsFH7, OsFH12) [71].

Up to now, several plant formins, including AtFH1, AtFH8, AtFH14, AtFH16, OsFH5, and LlFH1,
have been verified to bundle actin filaments [20,64,72–74]. Furthermore, AtFH1, AtFH3, AtFH5,
and LlFH1 have roles in pollen tubes. AtFH1 is the first plant formin that regulates actin organization
in pollen tubes. The overexpression of AtFH1 has been shown to result in excessive actin cables inside
the tube and to induce membrane curvature at the pollen tube tip, suggesting that AtFH1 is important
for tip-focused cell-membrane expansion in pollen tubes [69]. AtFH3 is another actin nucleation
factor responsible for longitudinal actin cables in pollen tubes. Biochemical analysis revealed that the
FH1FH2 domain of AtFH3 interacts with the barbed end of actin filaments and has actin nucleation
activity in the presence of G-actin or G-actin profilin [75]. Specific down-regulation of AtFH3 lessens
actin polymers in pollen grains and eliminates actin cables in pollen tubes. The disruption of longitude
actin cables alters the reverse fountain streaming pattern in tube cells and, thus, the morphology of
AtFH3-RNAi pollen tube appears abnormal [75]. AtFH5 is an apical membrane-anchored nucleation
factor that initiates major actin filament assembly from the apical membrane. The actin fringe could
not form properly and the pollen tube formed drastic twists and turns with the deletion of this protein,
suggesting that AtFH5 plays important roles in the construction of actin structures in the apical and
subapical regions [7]. In support of this notion, biochemical data revealed that AtFH5 is capable of
nucleating actin assembly from actin monomers or actin monomers bound to profiling [76]. Recently,
LlFH1, the pollen-specific formin in lily, has also been studied. It concentrates at the plasma membrane
and vesicles in the apical region of pollen tubes. The overexpression of LlFH1 induces excessive
actin cables in the tube tip region, and the down-regulation of LlFH1 eliminates the actin fringe [24].
Biochemical assays showed that LlFH1 FH1FH2 first nucleate actin polymerization, but then capped
actin filaments at the barbed end and inhibited elongation [24]. However, in the presence of profilins,
FH1FH2 of LlFH1 accelerates barbed-end elongation rather than inhibiting [24]. Collectively, it is
proposed that LlFH1 and profilin coordinate the interaction between the actin fringe and exocytic
vesicle trafficking during pollen tube growth [24].
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3.3. Fimbrins

Fimbrin, also named plastin, is a well-characterized actin-bundling protein conserved in
eukaryotes. It has been demonstrated that fimbrin is involved in polar growth across different
species. For example, the fission yeast Schizosaccharomyces pombe assembles actin bundles oriented
parallel to the long axis of cells for polarization. When deprived of the fimbrin homologous protein
FIM1, the cells have mild polarity defects with their actin bundles appearing to be qualitatively more
randomly oriented [77]. In Aspergillus nidulans, the disruption of the fimbrin homolog protein FIMA
results in delayed polarity establishment, abnormal hyphal growth, and endocytic defects in apolar
cells [78]. In mammals, it has been shown that the overexpression of plastin3 can repair neuronal
defects associated with spinal muscular atrophy (SMA) disorders, such as axon length and outgrowth
defects, illustrating that plastin3 plays a role in neurite outgrowth during axonal differentiation [79].

Five fimbrin-like genes, FIM1–FIM5, are present in the Arabidopsis genome. Microarray data
predict that AtFIM3, AtFIM4, and AtFIM5 are expressed in pollens, with AtFIM4 and AtFIM5 being
most abundant [80]. Only AtFIM4 and AtFIM5 have been intensively studied. AtFIM5 decorates actin
filaments throughout the pollen tube, especially in the tip region [74]. When knocking out AtFIM5,
researchers observed that the actin fringe was impaired in the apical region and that the longitudinal
actin bundles in the shank were disorganized [81,82]. AtFIM4 is expressed only after pollen grains start
hydrating. Moreover, its expression level is increased gradually with the extension of the pollen tube,
indicating that AtFIM4 may play an important role in the polarity growth of pollen tubes. However,
the mutation of AtFIM4 does not cause obvious phenotypes. In fim4/fim5 double mutants, the length
of the pod and the number of seeds are both remarkably decreased, as a result of the defects of pollen
germination and pollen tube growth. Furthermore, the degree of filamentous bundles inside the
tubes reduces obviously, suggesting that AtFIM4 backs AtFIM5 to organize and maintain normal
actin structures [83].

3.4. LIMs

Plant LIM proteins are a family of actin-bundling proteins with LIM domains interacting directly
with actin filaments [84–87]. Most plant LIM proteins belong to the cystein-rich protein (CRP)
subfamily [88–90] and have two conserved LIM domains and a long inter LIM spacer (40 to 50
amino acids) [91].

By using confocal microscopy, Thomas et al. were the first to show that Nicotiana tabacum WLIM1
is an actin-binding protein in plants [84]. Later, biochemical experiments revealed that NtWLIM2
directly bound to actin filaments and crosslinked the latter into thick actin bundles. The function of
a lily (Lilium longiflorum) pollen-enriched LIM protein, LlLIM1, was also explored. Cytological and
biochemical assays verified that LlLIM1 promoted filamentous actin bundle assembly and protected
F-actin against latrunculin B-mediated depolymerization. Furthermore, its actin-binding affinity is
simultaneously regulated by both pH and Ca2+ [86]. Pollen tubes with overexpressed LlLIM1 showed
retarded pollen germination and tube growth as well as abnormal morphology, such as swollen tubes
and multiple tubes protruding from one pollen grain. These are concurrent with the formation of an
asterisk-shaped F-actin aggregation and abnormal endo-membrane structures in the apical of pollen
tubes [86]. Therefore, LlLIM1 was considered to perform important roles in integrating endomembrane
trafficking and growth in the apical region of pollen tubes where pH and calcium oscillate regularly.

The Arabidopsis genome contains six genes encoding LIM proteins, three of which are
predominantly expressed in pollen: PLIM2a, PLIM2b, and PLIM2c [89,92]. The roles of PLIM2a,
PLIM2b, and PLIM2c have been investigated through RNA interference. The complete suppression
of the three PLIM2s totally disrupted pollen development, producing abortive pollen grains and
rendering the transgenic plants sterile. Their partial suppression arrested pollen tube growth to a lesser
extent, resulting in short and swollen pollen tubes [93]. The knockout of PLIM2a resulted in short
and broadened pollen tubes with defective actin bundles in the shank region [94]. These actin bundle
defects could be rescued by PLIM2a as well as PLIM2b, suggesting a partially redundant function
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between PLIM2a and PLIM2b in organizing actin bundles in the shank [94]. PLIM2b co-localized
with the long actin bundles along the pollen tubes, but was absent in the tip regions [94]. Differently,
PLIM2c interacted with the long actin bundles of the shank region and occasionally decorated a
subapical actin fringe-like structure [87]. Collectively, PLIM2s are important factors for Arabidopsis
pollen development and tube growth [92,93].

3.5. CROLINs

The plant-specific CROLIN family contains one or two predicted actin cross-linking domains.
There are six CROLIN members in Arabidopsis with a homology as high as 71%. CROLINl and
CROLIN2 are specifically expressed in pollen, while CROLIN3-CROLIN6 are expressed in the
vegetative organs. Biochemical analyses showed that CROLIN1 is a novel actin cross-linking protein
with binding and stabilizing activities [95]. Moreover, CROLIN1 can cross-link actin bundles into actin
networks [95]. In the crolin1 mutant, both pollen germination and pollen tube growth are significantly
more likely to show perturbation by Latrunculin B (LatB) treatment. For instance, after treatment with
LatB, the germination rate decreased, the growth rate slowed down, and the pollen malformation rate
increased. These results proved that CROLIN1 engages in pollen germination and polarity growth of
pollen tubes by regulating actin filaments [95].

3.6. ADFs

The ACTIN-DEPOLYMERIZING FACTOR (ADF/cofilin) family is an important class of
low-molecular-weight actin-binding proteins that exists in all eukaryotes [96]. ADF was originally
purified from embryonic chicken brain [97] and was subsequently shown to emerge as a central
regulator of actin turnover in eukaryotes including plants [98–100]. The biochemical activities of
ADF/cofilins have been documented extensively over the past several decades. ADF/cofilin can
bind both ADP- and ATP-loaded G-actin, but it prefers ADP-loaded G-actin and inhibits nucleotide
exchange [101,102]. Therefore, ADF/cofilin was thought to target older actin filaments [103]. Through
its actin filament (AF) severing and pointed end-depolymerizing activities, ADF/cofilin enhances actin
cytoskeleton dynamics [101,104,105].

In lily and tobacco pollen tubes, both green fluorescent protein (GFP)-ADF and immunocytochemistry
with anti-ADF sera decorate actin filaments and show an accumulation of ADF in the cortical cytoplasm
of the subapical region [17,106,107]. In tobacco, the overexpression of NtADF1 resulted in the reduction
of fine, axially-oriented actin cables in the transformed pollen tubes and in the inhibition of pollen tube
growth in a dose-dependent manner [17]. Thus, the proper regulation of actin turnover by NtADF1
is critical for pollen tube growth [17]. When expressed at a moderate level, green fluorescent protein
(GFP)–tagged NtADF1 (GFP-NtADF1) associated predominantly with the subapical actin mesh and
with long actin cables in the shank [17]. In lily pollen tubes, ADF specifically localizes at the actin fringe,
and the modulation of intracellular pH profoundly alters the actin fringe as well as the distribution of
ADF [107]. Cheung et al. used GFP-NtADF1, GFP-LlADF1, and NtPLIM2b-GFP as new actin reporters
to re-confirm that the predominant actin structures in elongating tobacco and lily pollen tubes are actin
cables along the pollen tube shank, and a subapical structure comprising shorter actin cables [108].

There are 11 ADF genes encoded by the Arabidopsis genome, and these genes can be divided
into four subclasses [109]. Subclass I ADFs (AtADF1, AtADF2, AtADF3, AtADF4) are expressed
at a relatively high level in all plant tissues except pollen [108]. Subclass II ADFs (AtADF7,
AtADF8, AtADF10, AtADF11) are expressed specifically in mature pollen and pollen tubes or root
epidermal trichoblast cells and root hairs, and are considered to be involved in a type of highly
polarized growth activity that is regulated by the actin cytoskeleton [109,110]. Subclass III ADFs
(AtADF5, AtADF9) are expressed weakly in vegetative tissues, but were the strongest in fast growing
and/or differentiating cells [109]. Furthermore, subclass III evolved a F-actin-bundling function
from a conserved F-actin-depolymerizing function [96]. The single subclass IV ADF (AtADF6) was
constitutively expressed at moderate levels in all tissues, including pollen [109]. In subclass II, AtADF7
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and AtADF10 are expressed specifically in pollen and pollen tubes [80,109]. Green fluorescent protein
(GFP) fusions of both ADF7 and ADF10 were shown to decorate actin filaments and exhibit distinct
localization patterns within pollen tubes [110]. Biochemical analyses revealed that ADF7 is a typical
ADF that prefers ADP-G-actin over ATP-G-actin [103]. ADF7 inhibits nucleotide exchange on actin
and severs filaments, but its filament severing and depolymerizing activities are less potent than
those of the vegetative ADF1 [103]. ADF7 primarily decorates longitudinal actin cables in the shanks
of pollen tubes [103]. In adf7 pollen tube shanks, the severing frequency and depolymerization
rate of filaments significantly decreased, while their maximum lifetime significantly increased [103].
These results suggest that ADF-mediated severing regulates the turnover of longitudinal actin cables
to promote pollen tube tip growth [103]. On the other hand, ADF10 was associated with filamentous
actin in the developing gametophyte, in particular with the arrays surrounding the apertures of
the mature pollen grain [110]. In the shank of elongating pollen tubes, ADF10 was associated with
thick actin cables [110]. As atypical ADFs, both ADF5 and ADF9 exhibit a surprising ability to
bundle and stabilize actin filaments in vitro [111,112]. The ADF5 and ADF9 expression patterns in
mature pollen cells overlapped. A recent report showed that Arabidopsis ADF5 and ADF9 evolved a
F-actin-bundling (B-type) function from a conserved F-actin-depolymerizing (D-type) function [112].
ADF5 is abundantly expressed in mature pollen, and plays an important role in pollen germination
and pollen tube growth by forming and stabilizing higher-order actin structures [96]. There were
some obvious defects in actin architectures in adf5 pollen, which thus delayed the establishment of
polarity [96]. The actin cytoskeleton in adf5 pollen tubes was hypersensitive to LatB, and the skewness
value was significantly decreased in adf5 pollen grains, indicating that the extent of actin bundling was
decreased due to ADF5 deficiency [96]. Accordingly, the loss of the ADF5 function led to a remarkable
reduction in the length of the pollen tubes and the cytoplasmic streaming velocity in the tube cells
became slower [96]. However, there was no obvious difference in pollen germination, pollen tube
growth, and LatB sensitivity between the adf5adf9 double mutant and the adf5 mutant [96]. These data
suggested that ADF5, but not ADF9, plays an important role in the maintenance and regulation of
actin bundles during pollen germination and pollen tube growth [96].

4. Conclusions

So far, six different actin-binding proteins families have been studied using the model plant
Arabidopsis as a research object. All of them have at least two homologous members in the pollen tube.

Are the homologous members performing the same function? In Figure 1, their role in the
actin bundle construction is depicted. Some variants have redundant functions, such as AtVLN2
and AtVLN5, while others have a distinct cellular distribution, such as AtFH1 and AtFH5. Notably,
the biochemical activities of some homologous members diverge, such as AtFIM4 and AtFIM5. AtFIM4
generates both actin bundles and branched actin filaments, whereas AtFIM5 generates only actin
bundles [113]. Recently, our group has discovered AtFIM5 participating in the formation of actin
bundles in the shank and also the tip, but AtFIM4 only functioned in the shank. Therefore, we propose
that actin bundles in the shank may have different properties from those in the tip.

In the next decade, it is necessary to explore the properties of actin bundles of pollen tubes in
detail, and to uncover how the six actin-binding proteins families corporately function to ensure proper
actin bundle construction in pollen tubes.
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Figure 1. Schematic summary of the intracellular localization and function of actin-binding proteins 

in the Arabidopsis pollen tube. For detailed information regarding the functional characterization of 

each actin-binding proteins (ABP), see the description in the text. 
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