
ll
OPEN ACCESS
Protocol
miRMut: Annotation of mutations in miRNA
genes from human whole-exome or whole-
genome sequencing
Martyna O.

Urbanek-Trzeciak,

Piotr Kozlowski,

Paulina

Galka-Marciniak

murbanek@ibch.poznan.

pl (M.O.U.-T.)

pgalka@ibch.poznan.pl

(P.G.-M.)

Highlights

miRMut is a software

to annotate

mutations in miRNA

genes

miRMut utilizes VCF

or CSV files

generated based on

WGS or WES results

miRMut assigns

different mutation

characteristics and

potential functional

impact
The output is

presented in tabular

and graphical

summaries
Here, we present the miRMut protocol to annotate mutations found in miRNA genes based on

whole-exome sequencing (WES) or whole-genome sequencing (WGS) results. The pipeline

assigns mutation characteristics, including miRNA gene IDs (miRBase andMirGeneDB), mutation

localization within the miRNA precursor structure, potential RNA-binding motif disruption, the

ascription of mutation according to Human Genome Variation Society (HGVS) nomenclature, and

miRNA gene characteristics, such as miRNA gene confidence and miRNA arm balance. The

pipeline includes creating tabular and graphical summaries.
Urbanek-Trzeciak et al., STAR

Protocols 3, 101023

March 18, 2022 ª 2021 The

Author(s).

https://doi.org/10.1016/

j.xpro.2021.101023

mailto:murbanek@ibch.poznan.pl
mailto:murbanek@ibch.poznan.pl
mailto:pgalka@ibch.poznan.pl
https://doi.org/10.1016/j.xpro.2021.101023
https://doi.org/10.1016/j.xpro.2021.101023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.101023&domain=pdf


ll
OPEN ACCESS
Protocol
miRMut: Annotation of mutations in miRNA genes from
human whole-exome or whole-genome sequencing

Martyna O. Urbanek-Trzeciak,1,2,* Piotr Kozlowski,1 and Paulina Galka-Marciniak1,3,*
1Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland

2Technical contact

3Lead contact

*Correspondence: murbanek@ibch.poznan.pl (M.O.U.-T.), pgalka@ibch.poznan.pl (P.G.-M.)
https://doi.org/10.1016/j.xpro.2021.101023
SUMMARY

Here, we present the miRMut protocol to annotate mutations found in miRNA
genes based on whole-exome sequencing (WES) or whole-genome sequencing
(WGS) results. The pipeline assigns mutation characteristics, including miRNA
gene IDs (miRBase andMirGeneDB), mutation localization within the miRNA pre-
cursor structure, potential RNA-binding motif disruption, the ascription of muta-
tion according to Human Genome Variation Society (HGVS) nomenclature, and
miRNA gene characteristics, such as miRNA gene confidence andmiRNA arm bal-
ance. The pipeline includes creating tabular and graphical summaries.
For complete details on the use and execution of this protocol, please refer to
Urbanek-Trzeciak et al. (2020).
BEFORE YOU BEGIN

Most genetic studies and, therefore, developed software have focused on the protein-coding part of

the genome. In recent years, noncoding variants found in promoters, untranslated regions (UTRs), in-

trons, or microRNAs have also started to be recognized as potential disease drivers (Elliott and Lars-

son, 2021; Rheinbay et al., 2020; Tan, 2020). The importance of mutations found in the noncoding

portion of the genome suggests that new tools for annotation need to be developed. miRNA gene

mutation annotation may be used for (i) prioritization of variants detected in miRNA genes and (ii)

analysis of functional variant enrichment, e.g., for identification of positive selection signals or iden-

tification of cancer-driving genes as it is commonly used in protein-coding sequences (based on the

ratio of missense to synonymous mutations ascertained to be more functional and neutral, respec-

tively). There are numerous tools for annotation of coding variants (e.g., ANNOVAR (Annotate Vari-

ation), VEP (Ensembl Variant Effect Predictor), SIFT (Sorting Intolerant From Tolerant), and PMUT

(Predicting pathological MUtations)) (Ejigu and Jung, 2020; Pabinger et al., 2014; Shameer et al.,

2016), but miRMut is, to our knowledge, the first annotation tool for mutations in miRNA genes.

Originally, the pipeline was used utilizing compressed variant call format (VCF.GZ) files from The

Cancer Genome Atlas (TCGA) project containing somatic mutation data from >10,000 cancer sam-

ples from 33 cancer types (Urbanek-Trzeciak et al., 2020) (project ID: 16565; phs000178.v11.p8). As

miRNA genes, we defined pre-miRNA-coding sequences extended upstream and downstream by

25 nucleotides. The pre-miRNA-coding sequences were reconstructed as described previously

(Galka-Marciniak et al., 2019).

Note: The user should already have performedWES/WGS and created a variant call format (VCF)

or VCF.GZfileswith a list of the identified variants/mutations, which serve as themain input files of

the protocol. The input files may also contain mutations outside of miRNA genes, which are
STAR Protocols 3, 101023, March 18, 2022 ª 2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:murbanek@ibch.poznan.pl
mailto:pgalka@ibch.poznan.pl
https://doi.org/10.1016/j.xpro.2021.101023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.101023&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Coo

chr

chr

chr

ll
OPEN ACCESS

2

Protocol
filtered out in subsequent steps of the procedure. The user may also use files generated previ-

ously in any external project. The generation of VCF/VCF.GZ files based on unmapped sequence

reads can be performed with the use of the genome analysis toolkit (GATK) developed by the

Broad Institute (Cibulskis et al., 2013; Garcia et al., 2020; Van der Auwera, 2020). Alternatively,

the user may use a comma-separated values (CSV) file containing mutations as described in

more detail in the section Adding miRNA-specific information to specific mutations.

Note: The scripts assume that all needed quality filtering was done before, while creating

VCF/VCF.GZ files. If multiple sequencings were performed or multiple files were generated

for a single sample (as occurs in some TCGA somatic mutation files), they should be com-

bined, or the issue should be resolved otherwise to avoid distortion. An example solution

for TCGA file merging is described in the troubleshooting section under problem 1.
Reference files

Reference files for human miRNA genes (hg38 and hg19) are available at the GitHub repository and

within supplementary files, and we recommend using these files. Reference files include information

onmiRNA gene coordinates (coordinates_{genome version}.bed), miRNA characteristics (arm balance

and high confidence miRNAs), miRNA gene subregions [flanking sequence 50 (flanking-5), duplex
before seed (pre-seed), seed (seed), duplex after seed (post-seed), loop, and flanking sequence 3’

(flanking-3)], and gene orientation (localizations_{genome version}.csv) as well as miRBase-based pre-

cursor sequences (coordinates_with_seq_{genome version}.bed).
rdinates_{genome version}.bed file includes coordinates of miRNA genes in the following structure:

1 17343 17456 hsa-mir-6859–1

1 30384 30483 hsa-mir-1302–2

1 187865 187978 hsa-mir-6859–2
Each coordinate is in a new line and has a tab separator between the following columns: chromo-

some, start, stop, and miRNA_gene_ID. No header should be present in the file. Start and stop co-

ordinates are both inclusive.

Coordinates_with_seq_{genome version}.bed file has a structure as coordinates_{genome ver-

sion}.bed file with an additional column (last) with the sequences of the genomic regions. The file

is necessary for the prediction of disruptions of sequence motifs caused by the mutations.

Localizations_{genome version}.csv file is a CSV file with columns as follows (for a more precise col-

umn description, please see Tables 2 and S1): chrom (chromosome, e.g., chr1), name (name of

miRNA region, e.g., hsa-mir-6859–1_flanking-3), ID (miRBasemiRNA ID, e.g., MI0022705), start (first

position (inclusive) of region, e.g., 17344), stop (last position (inclusive) of region, e.g., 17368), orien-

tation (miRNA gene orientation, e.g., -), based_on_coordinates (information, if the region coordi-

nates were calculated based onmiRBase coordinates or only one mature miRNA was defined in miR-

Base and coordinates must have been predicted by the script, e.g., yes), arm (side of miRNA

precursor (or loop) in which mutation will be located, i.e., 5p, 3p, or loop), type (region type, i.e.,

flanking sequence 50 (flanking-5), duplex before seed (pre-seed), seed (seed), duplex after seed

(post-seed), loop, and flanking sequence 3’ (flanking-3)), pre_name (miRBase pre-miRNA name,

i.e., hsa-mir-6859-1), start_pre_build (miRBase start coordinate), stop_pre_build (miRBase stop co-

ordinate), confidence (as high-confidence miRNA genes, we considered genes of miRNA precursors

annotated as ‘‘high confidence’’ in miRBase and/or deposited in MirGeneDB v2.0), balance (accord-

ing to the number of reads reported for the particular pre-miRNA arm (miRBase), the analyzed

precursors were classified into one of 3 categories as follows: (i) generating mature miRNA predom-

inantly from the 5p arm (R90% of reads from the 5p arm) - 5p; (ii) generatingmaturemiRNA predom-

inantly from the 3p arm (R90% of reads from the 3p arm) - 3p; and (iii) balanced (>10% of reads from
STAR Protocols 3, 101023, March 18, 2022



ll
OPEN ACCESSProtocol
each arm) - both; if no reads were available, the balance was assigned as unknown), mirgenedb_ID

(ID from MirGeneDB if available, i.e., Hsa-Mir-8-P2a_pre)

Note: In the reference files, we excluded miRNAs (n = 9) that were problematic in the context

of the second strand and, therefore, reliable structure prediction (hsa-mir-4489, hsa-mir-4539,

hsa-mir-1469, hsa-mir-657, hsa-mir-4325, hsa-mir-548bb, hsa-mir-4285, hsa-mir-548o, and

hsa-mir-601). All of the excluded miRNAs had low confidence according to miRBase and

were not annotated in the MirGeneDB database.

Note: The reference files were primarily prepared based on miRBase v.22.1 (Kozomara and Grif-

fiths-Jones, 2014; Kozomara et al., 2019) andMirGeneDBv2.0 (Frommet al., 2020) for the human

genome (hg38). Hg19 files (coordinates_hg19.bed, coordinates_with_seq_hg19.bed, and local-

izations_hg19.csv) were prepared as liftover from hg38 files, and some of themiRNAs (n=8) were

removedduring liftover (hsa-mir-6859–2, hsa-mir-10401 (3genomic coordinates), hsa-mir-486–1,

hsa-mir-486–2, hsa-mir-1234, hsa-mir-4477b, hsa-mir-4477a, and hsa-mir-532). For other re-

leases and/or other organisms, please refer to the troubleshooting section under problem 2.
Installing prerequisites

Please refer to the wiki pages of GitHub repository for more details on prerequisites and installation.

In particular, additional options of setup using Docker (see also problem 3) or using conda environ-

ments (see also problem 5) are presented there.

1. Downloading or cloning GitHub repository

a. Clone GitHub: https://github.com/martynaut/mirnome-mutations repository, e.g., through

ssh protocol using the command in a terminal:
>git clone git@github.com:martynaut/mirnome-mutations.git
The repository can be also downloaded as a zip file and unpacked in a chosen directory.

A copy of the repository (release version v1.0.1, Zenodo: https://doi.org/10.5281/zenodo.5574501)

is available in Data S1 (however, the users are strongly encouraged to use GitHub version of the soft-

ware, where the newest version will be available).

2. Installing Python prerequisites

a. The user is encouraged to use a virtual environment for the project to avoid Python library con-

flicts among projects, but it is not a requirement. Example steps for conda virtual environment

are shown in the troubleshooting section under problem 5.

b. Change working directory to the repository folder:
>cd mirnome-mutations

>

c. Install Python prerequisites from requirements.txt file. The scripts were primarily tested and

are recommended to run using Python 3.8. Run command:
pip install -r requirements.txt

STAR Protocols 3, 101023, March 18, 2022 3

https://github.com/martynaut/mirnome-mutations
https://doi.org/10.5281/zenodo.5574501
http://git@github.com:martynaut/mirnome-mutations.git


>p

/p

/p

/p

/p

/p

REA

Dep

TCG

miR

Mir

Sof

Vie

miR

miR

>p

ou

ll
OPEN ACCESS

4

Protocol
Note: The scripts were tested on Ubuntu (20.04.3 LTS) and MacOS (Big Sur) with both Python

3.7 and Python 3.8 clean environments; therefore, in the commands presented in the manu-

script, we use Unix notation of paths. Due to the use of specific Python libraries (e.g., hgvs), it is

not currently straightforward to use the miRMut pipeline on Windows.
KEY RESOURCES TABLE
GENT or RESOURCE SOURCE IDENTIFIER

osited data

A data Campbell et al. (2020) https://gdc.cancer.gov/

Base Kozomara and Griffiths-Jones (2014) and
Kozomara et al. (2019)

http://www.mirbase.org/index.shtml

GeneDB Fromm et al. (2015, 2020) https://mirgenedb.org/

tware and algorithms

nnaRNA Lorenz et al. (2011) https://www.tbi.univie.ac.at/RNA/#download

Mut code GitHub GitHub: https://github.com/martynaut/mirnome-mutations

Mut Docker image Docker Hub https://hub.docker.com/repository/docker/martynaut/mirmut
STEP-BY-STEP METHOD DETAILS

We prepared a GitHub repository containing all the necessary reference files, scripts, and example

inputs and outputs for the method presented below. The repository wiki pages contain information

on installation and running miRMut. The repository is found at

GitHub: https://github.com/martynaut/mirnome-mutations.

To follow the step-by-step instructions, users are encouraged to download the whole repository,

including the example input files. For instructions on how to clone the repository and install the

required Python libraries, please refer to the ‘‘installing prerequisites’’ section in ‘‘before you begin’’.

It is expected that users will run the entire process all at once, but it is also possible to run the steps

independently (1 - filtering miRNA gene mutations, 2 – processing mutation list, 3 - adding miRNA-

specific information to specific mutations, 4 - calculating mutation weights, 5 - generating mutation

CSV summaries, and 6 - generating mutation visualizations). Here, we describe how to run the script

all at once, and later how to run each step separately. For default to run the whole procedure, the

user should run the following command within the repository:
ython3 run_mirnaome_analysis.py \

ath/to/input/folder/with/vcfs \

ath/to/output/folder/ \

ath/to/reference/files/coordinates.bed \

ath/to/reference/files/localizations.csv \

ath/to/reference/files/coordinates_with_seq.bed
To run the script on example files provided in the repository, run the following command:
ython3 run_mirnaome_analysis.py \ input_files/input_vcf/example_vcf_set \

tput_folder/user_example_output_from_vcf \

STAR Protocols 3, 101023, March 18, 2022

https://github.com/martynaut/mirnome-mutations
https://gdc.cancer.gov/
http://www.mirbase.org/index.shtml
https://mirgenedb.org/
https://www.tbi.univie.ac.at/RNA/#download
https://github.com/martynaut/mirnome-mutations
https://hub.docker.com/repository/docker/martynaut/mirmut


reference_files/coordinates_hg38.bed \

reference_files/localizations_hg38.csv \

reference_files/coordinates_with_seq_hg38.bed

ll
OPEN ACCESSProtocol
The already calculated output for this command can be found within the repository in the output_

folder/example_output_from_vcf folder.

Non-default values for all optional arguments used and described in each of the six steps can also be

defined for a full run as follows (for parameters, please refer to Table 1):
>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-m 1 -f 1
If the script is run but not completed, the user may define from which step analysis should start using

the ‘‘from_step’’ (‘‘-s’’) optional argument, e.g.,
>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-s 2
The command will start the analysis from step 2 of the procedure.

The end step of the analysis can also be defined (e.g., if the full analysis is not yet wanted) using the

‘‘end_step’’ (‘‘-es’’) optional argument as follows:
>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-s 2 \

-es 2

STAR Protocols 3, 101023, March 18, 2022 5



Table 1. All command line parameters for the miRMut scripts

Parameter Function Scripts that accepts the parameter

–from_step, -s Accepts a number value from 1 to 6.
Starts analysis from chosen step (inclusive), where:
1 – Filtering miRNA gene mutations
2 – Processing mutation list
3 – Adding miRNA-specific information to specific mutations
4 – Calculating mutation weights and HGVS nomenclature
5 – Generating summaries
6 – Generating visualization of mutations
Note that previous steps need to be run before as each step depends
on output files from earlier steps.
Note that –from_step parameter is overwritten when –csv_file
parameter is used if defined –from_step value is lower than 3.

run_mirnaome_analysis.py

–end_step, -es Accepts a number value from 1 to 6.
Stops the analysis on the chosen step (inclusive). For numbers
description see –from_step parameter.

run_mirnaome_analysis.py

–include_merger, -m Accepts values 0 (disabled) or 1 (enabled).
It must be enabled if analysed VCF/VCF.GZ files were created with
multiple algorithms (e.g., MuSE, MuTect2, etc.).
If the merger of algorithms is enabled, mutations are grouped by
position, individual ID of patient, and mutation type (reference and
alternative allele), and if the same mutation is found in files generated
by different algorithms, it is treated as one mutation. This
transformation prevents counting the same mutation multiple times.
If the merger of algorithms is enabled, the ‘‘indiv_name’’ has to be
defined in the
VCF/VCF.GZ files.

run_mirnaome_analysis.py,
merge_algorithms.py

–include_filtering, -f Accepts values 0 (disabled) or 1 (enabled).
If filtering is enabled, for each ‘‘results_{file type}.csv’’ file, ‘‘results_{file
type}_eval.csv’’ is created with an additional column ‘‘eval’’, which
contains information if the mutation passes filtering as defined below.
If filtering is enabled, the following criteria are taken into account (only
if available in VCF/VCF.GZ files):

� SSC > 30
� BQ of an alternative allele in tumor sample > 20
� QSS of an alternative allele in tumor samples divided by alterna-

tive allele count in tumor samples > 20
� At least two mutation-supporting reads in a tumor sample (if no

mutation-supporting read was detected in the corresponding
normal sample) OR at least 5 3 higher frequency of mutation-
supporting reads in the tumor sample than in the corresponding
normal sample

Please note that some of the filtering criteria are strictly al-
gorithm-related and are not relevant in other projects.

run_mirnaome_analysis.py,
merge_algorithms.py

–csv_file, -c Accepts path to a CSV file.
The parameter is used when the miRMut is to be run on a CSV file
instead of VCF/VCF.GZ files. The CSV file needs to be formatted as
defined in adding miRNA-specific information to specific mutations
section.
When used with run_mirnaome_analysis.py script, the input folder
argument will not be used (but needs to be defined), and the script will
automatically start from step 3 (unless a later step is defined using
–from_step parameter), skipping the first two steps.

run_mirnaome_analysis.py,
add_mirna_info.py

–pass_arg, -p Accepts values 0 (disabled) or 1 (enabled).
When PASS filtering is enabled using –pass_arg parameter only
mutations with PASS value in the FILTER column from VCF/VCF.GZ
files are included in the analysis. Although there is this option, it is
recommended to do VCF/VCF.GZ filtering prior to the miRMut usage.

run_mirnaome_analysis.py,
extract_results_for_mirnaome.py

–weight_filter, -w Accepts values 1, 1.5 and 2. The default value is set to 1.
It filters out only mutations with selected weight or higher. It is done on
the 4th step of the script and affects files with hgvs nomenclature,
summaries and figures.

run_mirnaome_analysis.py,
add_weghts.py

ll
OPEN ACCESS

6 STAR Protocols 3, 101023, March 18, 2022

Protocol



ll
OPEN ACCESSProtocol
To run analyses of the example files, the reusable bash file with Python commands (run_test.sh,

available in the repository) may be used. It can be executed by running the following command in

a terminal:
>./run_test.sh

>p

/p

/p

/p

/p

/p

-s

-e

>p

/p

/p

/p
Note: The TCGA analysis in Urbanek-Trzeciak et al. (2020) was run with -m, -f and -p flags. For

details, please refer to the original manuscript. The descriptions of the parameters can be

found in Table 1.

Note: For 1500 VCF.GZ files (1.61GB) on a PC with Ubuntu 20.04.3 LTS (8GB RAM; 3.20GHz

CPU) it took about 2h40 to process complete miRMut analysis (step 1 took approx. 1h40, step

2 – 20s, step 3 – 5s, step 4 – 10min, step 5 – 1s, step 6 – 50min).
Filtering miRNA gene mutations

Timing: hours to days; factors that affect timing include the number and size of samples as

well as available computing resources.

Within the first step from the provided VCF and/or compressed VCF.GZ files, mutations within

miRNA gene coordinates are filtered and gathered in a CSV file. This is usually the longest step of

the procedure. To run this step, the coordinates_{genome version}.bed reference file, which is

described in the ‘‘before you begin’’ section, is required.

Additionally, the user needs to provide a path to the folder with VCF/VCF.GZ files (all files may be in

a single folder but subfolders are allowed) and a path to the folder where output files should be

saved (if the folder does not exist, it will be created; and if it exists, the current content of the folder

will be removed).

1. To run only the first step of the script, use one of the following commands:
ython3 run_mirnaome_analysis.py \

ath/to/input/folder/with/vcfs \

ath/to/output/folder/ \

ath/to/reference/files/coordinates.bed \

ath/to/reference/files/localizations.csv \

ath/to/reference/files/coordinates_with_seq.bed \

1\

s 1
or
ython3 extract_results_for_mirnaome.py \

ath/to/input/folder/with/vcfs \

ath/to/output/folder/ \

ath/to/reference/files/coordinates.bed

STAR Protocols 3, 101023, March 18, 2022 7



ll
OPEN ACCESS Protocol
There are several output files saved in the defined output folder from this part of the protocol: files_-

summary.csv, which summarizes files included in the analysis, depending on information included in

the VCF/VCF.GZ files, it includes individual/sample names and IDs, tumor/normal sample names

and IDs, and types of algorithms used for mutation detection; results_{file type}.csv, file is created

for each file type, where ‘‘file type’’ is an algorithm name used for VCF file creation (if the information

is available in the VCF file), e.g., MuTect or MuSE.

Note: If all VCF files are created with a single algorithm, only one results file will be created. If

multiple algorithms are used (e.g., 4 algorithms in TCGA data), multiple files will be created. In

the second step of the procedure, the user may choose to merge mutations identified by

different algorithms.

Note: In the pipeline, it is assumed that all needed filtering has been completed during VCF/

VCF.GZ files preparation. However, during this step, it is possible to filter only mutations that

passed all filters (has FILTER assigned to PASS value), which can be achieved by using the

optional argument ‘‘-p’’ as follows:
>python3 extract_results_for_mirnaome.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/calculated/input/files/coordinates.bed \

-p 1
As we encourage users to filter VCF files prior to use of miRMut software, by default, the filtering of

only PASS variants is disabled.

Note: If no VCF/VCF.GZ files are found in the input directory, the pipeline will be terminated.

IMPORTANT: Please note that if the defined output folder does exist, the current content of the

folder will be removed by the script.
Processing mutation list

Timing: minutes to hours; factors that affect timing include the number of found mutations

and available computing resources.

The second step of the pipeline involves processing the mutation list, including the following two

optional transformations: a merger of mutations identified by different algorithms (if more than

one algorithm is used for mutation detection); and additional internal filtering of mutations as

defined below. The optional transformations are disabled on default, but they may be enabled using

two flags (‘‘-m’’ and ‘‘-f’’) as shown below. The flags might be used in a similar way when running the

whole pipeline at once.

If the merger of algorithms is enabled, mutations are grouped by position, individual ID of patient, and

mutation type (reference andalternative allele), and if the samemutation is foundbydifferent algorithms,

it is treated as one mutation. This transformation prevents counting the same mutation multiple times.

If additional internal filtering is enabled, the following criteria are taken into account (only if available

in VCF/VCF.GZ files): SSC (Somatic Score) > 30 - parameter determined by VarScan2 and SomaticS-

niper; BQ (Base Quality) of an alternative allele in tumor sample > 20 - parameter determined by

MuSE; QSS (Sum of base quality scores for each allele) of an alternative allele in tumor samples
8 STAR Protocols 3, 101023, March 18, 2022



ll
OPEN ACCESSProtocol
divided by alternative allele count in tumor samples > 20 - parameter determined by MuTect2, at

least two mutation-supporting reads in a tumor sample (if no mutation-supporting read was de-

tected in the corresponding normal sample) OR at least 5 3 higher frequency of mutation-support-

ing reads in the tumor sample than in the corresponding normal sample.

Please note that some of the filtering criteria are strictly algorithm-related and are not relevant in

other projects.

2. To run this step of the script, use one of the following proposed commands enabling needed op-

tions:

a. Second step without merging and filtering
>

>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed\

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-s 2 \

-es 2

>

/

/

/

/

/

-

-

-

-

>

-

-

or
python3 merge_algorithms.py /path/to/output/folder/
b. Second step of the script enabling bothmerger of various algorithms and filtering of mutations
python3 run_mirnaome_analysis.py \

path/to/input/folder/with/vcfs \

path/to/output/folder/ \

path/to/reference/files/coordinates.bed \

path/to/reference/files/localizations.csv \

path/to/reference/files/coordinates_with_seq.bed \

s 2 \

es 2 \

m 1 \

f 1
or
python3 merge_algorithms.py /path/to/output/folder/ \

m 1 \

f 1
This step generates multiple files. If filtering is enabled, for each results_{file type}.csv file,

results_{file type}_eval.csv is created with an additional column ‘‘eval’’, which contains
STAR Protocols 3, 101023, March 18, 2022 9



ll
OPEN ACCESS Protocol
information if the mutation passes filtering as defined above. Additionally, all_mutations.csv

file is created, including list of mutations described by chromosome (chrom), nucleotide po-

sition (pos), reference allele (ref), alternative allele (alt), and if available, individual name (in-

div_name), reference allele count in normal sample (norm_ref_count), alternative allele count

in normal sample (norm_alt_count), reference allele count in tumor sample (tumor_ref_count)

alternative allele count in tumor sample (tumor_alt_count), and algorithm used (alg).

Note: If VCF/VCF.GZ files were created with multiple algorithms but the merger of algorithms

is not enabled, the analysis will be terminated on this step with a relevant message. Similarly, if

no mutations in miRNA genes were found in defined input files, the script will be terminated.

IMPORTANT: If the merger of algorithms is enabled, the ‘‘indiv_name’’ has to be defined in

the VCF/VCF.GZ files.

Adding miRNA-specific information to specific mutations

Timing: seconds tominutes; factors that affect timing include the number ofmutations and

available computing resources.

During this step, miRNA mutations listed in the ‘‘all_mutations.csv’’ file generated in the previous

steps are annotated. The annotation is based mainly on the information gathered in the ‘‘localiza-

tions_{genome version}.csv’’ files. The following pieces of information are annotated based on the

mutation position: miRNA ID (frommiRBase andMirGeneDB), miRNA name, miRNA region (flanking

sequence, loop, and mature miRNA), miRNA confidence (information if miRNA found in miRBase is

believed to be true miRNA), and balance (50miRNA or 30miRNA depending on the main miRNA

generated from a particular miRNA gene based on miRBase data). Additionally, mutation type is

defined (substitution/insertion/deletion) if relevant, and substitution type is defined if relevant.

Alternatively, the usermay run this part of the script (and following steps) on an external CSV file. TheCSV

file needs to contain the following columns: chrom (with chromosome defined as, e.g., chr1), pos (with

nucleotide position of a mutation in the chromosome), ref (reference allele), alt (alternative allele), and

indiv_name (with sample ID; the script will accept empty values here but to enable all summaries sample

ID is recommended). To execute the script on a CSV file, please see step 3 (last option). The exam-

ple_csv.csv example CSV file is provided in the repository in the input_files/input_csv folder.

3. To run this step of the script, use one of the following commands:
>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-s 3 \

-es 3
or
>python3 add_mirna_info.py /path/to/output/folder/ \

/path/to/reference/files/localizations.csv

10 STAR Protocols 3, 101023, March 18, 2022



ll
OPEN ACCESSProtocol
Alternatively, this step may be run on any CSV file fulfilling the requirements defined earlier, using

option ‘‘-c’’:
>python3 add_mirna_info.py /path/to/output/folder/ \

/path/to/reference/files/localizations.csv \

-c /path/to/csv/file/with/mutations.csv
This step generates the all_mutations_with_localization.csv file, which includes a list of mutations

based on the all_mutations.csv file (or user-defined file with mutations) with annotated information.

Note: It is possible to run the whole script at once on a CSV file using the ‘‘-c’’ optional argu-

ment as follows:
>python3 run_mirnaome_analysis.py \

/path/to/input/folder \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-c /path/to/csv/file/with/mutations.csv
In this case, the input folder argument will not be used (but needs to be defined), and the script will

automatically start from step 3, skipping the first two steps.
Calculating mutation weights and HGVS nomenclature

During the fourth step, the potential functional impact of each mutation is evaluated based on the

mutation characteristics and location. A mutation receives a higher score (weight) if it is located

within the DROSHA or DICER1 (key endonucleases involved in miRNA biogenesis) cleavage site,

is located within a miRNA duplex, especially in the seed region, and is located in binding sites of pro-

teins known to play role in miRNA biogenesis.

The scoring is as follows: seed region mutation - weight 2; cleavage sites, duplex (excluding seed

region) or disturbance of protein binding motif - weight 1.5; all other mutations - weight 1.

Additionally, during this step, mutation designation according to the HGVS nomenclature is

defined. Both genomic (using chromosomal position) and noncoding DNA coordinate (using miR-

Base pre-miRNA coordinate) designations are calculated.

4. To run this step of the script, use one of the following commands:
>python3 run_mirnaome_analysis.py \ /path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

STAR Protocols 3, 101023, March 18, 2022 11



-s 4 \

-es 4

ll
OPEN ACCESS Protocol
or
>python3 add_weights.py \

/path/to/output/folder/ \

/path/to/reference/files/coordinates_with_seq.bed
This step generates the three files: all_mutations_with_weights.csv, which includes a list of muta-

tions with additional information on motifs and weights; all_mutations_with_hgvs.csv, which

includes all information as the previous file and genomic HGVS designation; all_mutations_

with_n_hgvs.csv, which includes all information as the previous file and miRBase HGVS designation.

Note: If a mutation is predicted to disturb more than one functional site, the highest weight is

counted.

Note: Sequence motifs analyzed within the script can be found in the add_weights_helpers.py

file in the repository. The sequence motif calculations were based on previously published scripts

(Urbanek-Trzeciak et al., 2018).

Generating summaries

Timing: seconds tominutes; factors that affect timing include the number ofmutations and

available computing resources.

In this step, files summarizing mutations in miRNA genes are generated, including summaries from

the miRNA gene perspective, specific mutation perspective, and complex mutation (explained

below) perspective.

5. To run this step of the script, use one of the following commands:
>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-s 5 \

-es 5
or
>python3 distinct_occur.py \

/path/to/output/folder/
This step generates the three files: occur.csv file, which reports the number of mutations found in

each miRNA gene in the analyzed cohort, for each miRNA gene (characterized by chromosome,
12 STAR Protocols 3, 101023, March 18, 2022



ll
OPEN ACCESSProtocol
pre-miRNA name, and miRNA miRBase ID), the count of unique samples with at least one mutation

(indiv_name_nunique), count of all mutations (indiv_name_count), and count of unique mutation po-

sitions (pos_nunique) are provided, additionally, complex mutations, if identified in a particular

miRNA, are reported; distinct_mutations.csv file, which summarizes distinct mutations (genome po-

sitions with specific alteration), including the number of patients/samples with the mutation, if

available, the sum of reads supporting reference and alternative alleles are also provided; complex_

mutations.csv file, which includes information on complex mutations defined as multiple nucleotide

alterations found in a singlemiRNA gene in a single sample/patient (please note: if the ‘‘indiv_name’’

(sample identifier) is not defined, this file will be inutile as all mutations will be treated as found within

a single sample). The file shows a number of mutations (pos_count) and unique mutation positions

(pos_nunique) found in each miRNA gene (characterized by chromosome, pre-miRNA name, and

miRNA miRBase ID) in each sample (indiv_name) and if any of the mutations are complex.

IMPORTANT: Do not use complex_mutations.csv if the individual name (indiv_name) is not defined

(empty or nonunique) in the VCF/VCF.GZ or CSV files. In such a case, the ‘‘if_complex’’ column in the

occur.csv file is also inutile.
Generating visualization of mutations

Timing: minutes to hours; factors that affect timing include the number of mutations in

miRNA genes and available computing resources.

During this step, figures graphically presenting mutations on a schematic structure of miRNA genes

are generated. For visualization of mutations and to enable examination of sequence variants in the

context of miRNA precursor structures, we superimposed the identified variants on the consensus

miRNA precursor structure and categorized them according to localization in the miRNA gene sub-

regions. Generated figures depict (i) all found variants (Figure 1A), (ii) variants found in miRNA genes

with the dominant 30 miRNA, (iii) variants found in miRNA genes with the dominant 50 miRNA, and (iv)

balanced miRNAs. Similar figures are generated separately for each miRNA gene with at least one

mutation in the provided dataset (example shown in Figure 1B). All figures are generated as Scalable

Vector Graphics (SVG) files to enable further editing in graphic software.

6. To run the sixth step of the script, use one of the following commands:
>python3 run_mirnaome_analysis.py \

/path/to/input/folder/with/vcfs \

/path/to/output/folder/ \

/path/to/reference/files/coordinates.bed \

/path/to/reference/files/localizations.csv \

/path/to/reference/files/coordinates_with_seq.bed \

-s 6 \

-es 6
or
>python3 mutation_loc_figures.py \

/path/to/output/folder/

STAR Protocols 3, 101023, March 18, 2022 13



Figure 1. Localization of mutations detected by the script

(A) All mutations found in the pan-cancer cohort in TCGA (Urbanek-Trzeciak et al., 2020).

(B) Mutations found within miR-205 in the pan-cancer cohort in TCGA (Urbanek-Trzeciak et al., 2020). miRNA duplex

positions are indicated in blue, and seed regions are indicated in dark blue. The flanking regions and terminal

positions of the apical loop are indicated in gray. The numbers in the lower right corner represent the number of

plotted mutations (upper) and the number of mutated miRNA genes (lower; not provided for mutations shown within a

single miRNA gene). If present, sequence variants localized beyond position 22 in longer mature miRNAs are

cumulatively shown at position 22. The plot shows mutations within six positions of the loop (first 3 and last 3

nucleotides). The number of the remaining loop mutations is indicated within the loop.

ll
OPEN ACCESS Protocol
EXPECTED OUTCOMES

Steps 1–5 from the step-by-step method generate CSV files. The output files are briefly

described in each step, and example outputs are provided in the GitHub repository in the

‘‘output_folder’’ folder. A description of each column found in all CSV files is included in

Tables 2 and S1.

Step 6 generates figures. Figure 1 shows example output figures, which partially resembles Figures 2

and S3 in our companion paper by Urbanek-Trzeciak et al. (2020). Example figuresmay also be found

in the ‘‘output_folder’’ in the GitHub repository.
LIMITATIONS

The protocol was tested on several VCFs and VCF.GZ files generated with different pipelines; how-

ever, taking into account the diversity of this file type, some files may not be feasible. In such a case,

the solution may be the conversion of the data to the CSV format (as described above in step 3 - add-

ing miRNA-specific information to specific mutations section.

With increasing knowledge of miRNA biogenesis and function, including verified miRNA-target in-

teractions, the assessment of mutation functional impact may be further developed.
14 STAR Protocols 3, 101023, March 18, 2022



Table 2. Mutation list column description in alphabetical order.

Column name Column description Possible values

alg algorithm used for detection of mutations e.g.,: mutect2, somatic sniper

alt alternative allele e.g.,: G, A, GAA

arm in which part of miRNA precursor
mutation is located

5p, loop, 3p

balance arm from which the main miRNA is generated;
defined based on deep sequencing reads (miRBase),
[for details see Urbanek-Trzeciak et al. (2020)]

5p, 3p, both, undefined

based_on_coordinates indicates whether used coordinates were defined
based on miRBase annotations or were predicted
based on miRNA structure

yes, no

chrom chromosome e.g.,: chr1, chrX

confidence as high-confidence miRNA genes, we considered
genes coding for miRNA precursors annotated as
‘‘high confidence’’ in miRBase and/or deposited in
MirGeneDB v2.0

High, Low

cut_region whether the mutation is within Drosha or
Dicer cut region

0 (no), 1 (yes)

duplex whether the mutation is within duplex 0 (no), 1 (yes)

from_start nucleotide position from start of miRNA region in
which mutation is located (e.g., within the seed, 50

flanking sequence)

e.g.,: 1, 3

from_end nucleotide position from end of miRNA region in
which mutation is located (e.g., within the seed,
50 flanking sequence)

e.g.,: -1, -25

hgvs noncoding HGVS nomenclature of the mutation in
the reference to the miRBase coordinates
*Note that annotation of some indels may not
match the latest HGVS recommendations; for
multimutations (multiple changes in a single
position in one sample) HGVS nomenclature
is not available

e.g.,: n.90G>A, n.67+21G>A,
n.1–15delA

hgvs_g genomic HGVS nomenclature of the mutation;
for multimutations HGVS is not available

e.g.,: NC_000010.11:g.17845137C>A,
NC_000001.11:g.1167872_1167873insT

ID miRBase ID e.g.,: MI0000737

indiv_name sample identifier e.g.,: sample01

mirgenedb_ID mirGeneDB ID e.g.,: Hsa-Mir-8-P1a_pre

motifs whether any motif was disturbed as a result
of the mutation

0 (no), 1 (yes)

motifs_{} information for each checked motif if there
was the loss of a motif as a result of the mutation

-, loss

mutation_type mutation type: substitution, insertion, deletion,
insertion-deletion, multimutation

subst, ins, del, indel, multimutation

name miRNA region name built by pre-miRNA
name and precursor region connected
by an underscore

e.g.,: hsa-mir-200a_flanking-5,
hsa-mir-511_post-seed

no_of_loc internal check column 1

orientation miRNA gene orientation +, -

pos genomic position of the mutation e.g.,: 1167859, 20633667

pre_name precursor name e.g.,: hsa-mir-200a, hsa-mir-6084

ref reference allele e.g.,: C, GCA

seed whether mutation is located within seed 0 (no), 1 (yes)

start miRNA region start coordinate e.g.,: 1167853, 20633667

start_pre_build miRBase start coordinate e.g.,: 1167863, 20633679

stop miRNA region stop coordinate e.g.,: 1167877, 20633691

stop_pre_build miRBase stop coordinate e.g.,: 1167952, 20633788

type region of miRNA precursor flanking-5, pre-seed, seed, post-seed,
loop, flanking-3

type_of_subst substitution type, n.a. for non-substitution
mutations

transition, transversion, n.a.

weight weight score 1, 1.5, 2

A description of all the columns present in transitional or summary files is included in Table S1.

ll
OPEN ACCESS

STAR Protocols 3, 101023, March 18, 2022 15

Protocol



ll
OPEN ACCESS Protocol
miRMut was tested and is supported on Ubuntu (tested on Ubuntu 20.04.3 LTS) and MacOS (tested

on Big Sur) systems.
TROUBLESHOOTING

Problem 1

In some projects, multiple sequencing is performed on a single sample, e.g., TCGA project (see

before you begin). Treating such samples separately is not recommended as some mutations spe-

cific for the sample (patient or tumor) may be redundant and, in some cases, generate artifacts in

downstream analyses. However, in unique situations, e.g., if sections of the same cancer sample

are tested in the context of cancer heterogeneity, the particular sections may need to be considered

separate samples.
Potential solution

Here, we provide a script that merges VCF.GZ files. The script was prepared to be compatible with

VCF.GZ files provided by TCGA consortium and may not be suitable for other files.

The script checks all the VCF.GZ files gathered in the input directory, defines which samples have

multiple files available, merges the files, saves the files in the output folder, and moves all unique

VCF.GZ files to the output folder. Alternatively, the user may force the script to create a copy of

the input files (instead of moving them), keeping the original files intact in the input directory.

This step assumes that the user cloned the repository of the project as described in the previous

sections.

To run the script, use one of the following commands:
>python3 merge_vcf_files.py \

/path/to/input/folder/with/vcfs \

/path/to/new/output/folder/
If the user wants to copy unchanged files instead of moving them, the command is as follows with

parameter -c defined:
>python3 merge_vcf_files.py \

/path/to/input/folder/with/vcfs \

/path/to/new/output/folder/ \

-c 1
There are several output files in addition to merged and copied/moved VCF.GZ files saved in

the defined output folder: files_summary_before_merging.csv - summary of files in the defined

input directory before merger, including the path to the files, sample identifier (indiv_name,

indiv_ID, sample_ID_tumor_name, sample_ID_tumor_aliQ, sample_ID_normal_name, sample_

ID_normal_aliQ), and algorithm used to create VCF.GZ file (type_of_file); files_summary_

count_per_patient_before_merging.csv - count of files per sample using the same algorithm;

not_unique_patients.csv – a fragment of the files_summary_count_per_patient_before_

merging.csv file with nonunique samples; do_not_use.txt - list of paths to files of nonunique sam-

ples that are used to create merged files.

IMPORTANT: Please note that if the defined output folder does exist, the current content of the

folder will be removed by the script.
16 STAR Protocols 3, 101023, March 18, 2022



ll
OPEN ACCESSProtocol
Problem 2

The VCF/VCF.GZ files were prepared on a different genome version for the human genome or for

another organism (see reference files section).
Potential solution

Reference files may be prepared based on the reference files available within the repository

and described in the ‘‘reference files’’ section for any organism and genome version.

Alternatively, we provide a script that creates reference files based on files from miRBase and Mir-

GeneDB. The GitHub repository needs to be cloned as defined in the ‘‘installing prerequisites’’

section.

To install ViennaRNA, there are two options. Option 1 is to install from source code, in which case

you should download ViennaRNA distribution from https://www.tbi.univie.ac.at/RNA/#download

to a selected folder and install ViennaRNA using the following instructions:
>tar -zxvf ViennaRNA-2.4.18.tar.gz

>cd ViennaRNA-2.4.18

>./configure

>make

>sudo make install
Option 2 is to install by pip. Within your Python environment, run:
>pip install viennarna
After installing ViennaRNA, you need to prepare input files from miRBase and MirGeneDB. From

miRBase, download the following files (from ftp site for chosen miRBase release https://www.

mirbase.org/ftp.shtml): hairpin.fa, hsa.gff3.txt, confidence.txt, confidence_score.txt, aliases.txt,

and mirna_chromosome_build.txt, From MirGeneDB, download the following file (https://

mirgenedb.org/download): hsa.gff (Genomic coordinates gff file).

Run prepare_localization_file.py script in a similar way as shown below on the downloaded files:
>python3 prepare_localization_file.py \

/path/to/ViennaRNA-2.4.11 \

/path/to/hairpin.fa \

/path/to/hsa.gff3.txt \

/path/to/confidence.txt \

/path/to/confidence_score.txt \

/path/to/aliases.txt \

/path/to/mirna_chromosome_build.txt \

/path/to/hsa.gff \

/path/to/output/folder
Note: One may also use the Docker image where the Vienna package is already pre-installed

(for details see problem 3).
STAR Protocols 3, 101023, March 18, 2022 17

https://www.tbi.univie.ac.at/RNA/#download
https://www.mirbase.org/ftp.shtml
https://www.mirbase.org/ftp.shtml
https://mirgenedb.org/download
https://mirgenedb.org/download


ll
OPEN ACCESS Protocol
Problem 3

Running into dependency error while installing Python packages from requirements.txt (see

installing prerequisites section).
Potential solution

When using conda (Python environment management system) for virtual environment handling,

the user may encounter dependency error if the base Python has libraries depending on

CPython installed before. It is caused by how conda is handling the base space and the fact

that the HGVS library depends on CPython. For more details please refer to the conda GitHub

issues (GitHub: https://github.com/conda/conda/issues/7173). The possible solution would be to

use virtualenv instead of conda for virtual environment handling as virtualenv does not have this

issue. However, acknowledging that conda has several advantages over virtualenv it is also

possible to use Python 3.7 instead of 3.8 (if Python 3.8 is the user’s base Python version) for

miRMut.

Alternatively, the user can use the provided Docker image. The latest Docker image can be found in

the Dockerhub: https://hub.docker.com/repository/docker/martynaut/mirmut. The Docker image

contains Python 3.8 with all required Python libraries installed, including ViennaRNA. We recom-

mend using docker-compose.yml file to run the Docker image to automatically copy the output files

to the host location. Example docker-compose.yml file is available within the miRMut GitHub

repository.

Using the docker-compose.yml file, the Docker image can be run using a command:
>docker-compose run app
Problem 4

Low quality mutation calls (see before you begin section).

Potential solution

Our protocol starts with the list of already called variants (VCF files) and it is assumed that all needed

filtering has been completed during VCF/VCF.GZ files preparation. But for the reliability of the anal-

ysis, it is worth paying attention to the quality of the sequencing, and reliability of mutation calls

affected among others by the depth of coverage. This should be noted that the coverage below

103 or 303 in the case of sequencing of normal and tumor samples, respectively, may not be suf-

ficient and many variants may not be properly identified or missed (Xiao et al., 2021). To filter out

mutations that are likely false positives users may use –pass_arg and –include_filtering parameters

in the miRMut pipeline. When PASS filtering is enabled only mutations with PASS value in the FILTER

column from VCF/VCF.GZ files are included in the analysis. Similarly, when the additional internal

filtering is enabled (which includes the parameters described in step 2 ‘‘processing mutation list’’),

only mutations that fulfill the criteria are included in the analysis. For details please refer to the

flag descriptions in Table 1.

Problem 5

The user has a different Python version installed than recommended in the manuscript (see installing

prerequisites section).

Potential solution

The scripts were tested on Python 3.7 and 3.8, it is not recommended to use earlier versions and

Python 3.9 as not all libraries may work in the environment. If the user is using a different version

of Python by default, we recommend using conda for clean environments with specific Python

versions.
18 STAR Protocols 3, 101023, March 18, 2022

https://github.com/conda/conda/issues/7173
https://hub.docker.com/repository/docker/martynaut/mirmut


ll
OPEN ACCESSProtocol
To create a clean environment with required libraries follow the instructions:

1. Download and install conda (for details please see https://conda.io/projects/conda/en/latest/

user-guide/install/index.html)

2. Create a new conda environment with Python 3.8:
>conda create –name mirmut_env python=3.8
3. Activate virtual environment
>conda activate mirmut_env
4. Install all needed libraries from requirements file (working directory needs to be the repository

folder)
>pip install -r requirements.txt
5. Perform all needed analyses using miRMut

6. After working with miRMut deactivate virtual environment
>conda deactivate
Next time using miRMut, the user only needs to activate the environment (step 3), run analyses

(step 5), and deactivate the environment (step 6).

For more detail on using conda virtual environments see: https://conda.io/projects/conda/en/

latest/user-guide/getting-started.html#managing-environments.

Alternatively, use the prepared Docker image with miRMut software with all installed dependencies.

For the details, please see the problem 3 section.

If the user encounters any problem not addressed in the troubleshooting section, please create an

issue in the miRMut GitHub repository.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Paulina Galka-Marciniak (pgalka@ibch.poznan.pl).
Materials availability

This study did not generate new unique reagents.
Data and code availability

The code is available at GitHub repository: GitHub: https://github.com/martynaut/

mirnome-mutations. Example input and output files are provided. To rerun full TCGA-based pan-

cancer analysis as shown in Urbanek-Trzeciak et al. (2020), a request to TCGA consortium needs

to be made.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.101023.
STAR Protocols 3, 101023, March 18, 2022 19

https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-environments
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-environments
mailto:pgalka@ibch.poznan.pl
https://github.com/martynaut/mirnome-mutations
https://github.com/martynaut/mirnome-mutations
https://doi.org/10.1016/j.xpro.2021.101023


ll
OPEN ACCESS Protocol
ACKNOWLEDGMENTS

The results published here are based upon data generated by TCGA project (project ID: 16565)

at the following research network: https://www.cancer.gov/tcga. This work was supported by

research grants from the Polish National Science Centre [2016/22/A/NZ2/00184 and 2020/39/

B/NZ5/01970 (to P.K.); 2015/17/N/NZ3/03629 (to M.O.U-T.); and 2020/39/D/NZ2/03106 (to

P.G-M.)]

AUTHOR CONTRIBUTIONS

Protocol Design and Conceptualization – P.K., P.G-M., and M.O.U-T.; Pipeline Execution and Docu-

mentation - M.O.U-T; Pipeline testing P.G-M. and M.O.U-T.; Manuscript Writing - Review and Edit-

ing - P.G-M., M.O.U-T., and P.K.; Funding Acquisition and Supervision - P.K., P.G-M., and M.O.U-T.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES
Campbell, P.J., Getz, G., Korbel, J.O., Stuart, J.M.,
Jennings, J.L., Stein, L.D., Perry, M.D., Nahal-Bose,
H.K., Ouellette, B.F.F., Li, C.H., et al. (2020). Pan-
cancer analysis of whole genomes. Nature 578,
82–93.

Cibulskis, K., Lawrence, M.S., Carter, S.L.,
Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S.,
Meyerson, M., Lander, E.S., and Getz, G. (2013).
Sensitive detection of somatic point mutations in
impure and heterogeneous cancer samples. Nat.
Biotechnol. 31, 213–219.

Ejigu, G.F., and Jung, J. (2020). Review on the
computational genome annotation of sequences
obtained by next-generation sequencing. Biology
9, 295.

Elliott, K., and Larsson, E. (2021). Non-coding driver
mutations in human cancer. Nat. Rev. Cancer 21,
500–509.

Fromm, B., Billipp, T., Peck, L.E., Johansen, M.,
Tarver, J.E., King, B.L., Newcomb, J.M.,
Sempere, L.F., Flatmark, K., Hovig, E., et al.
(2015). A uniform system for the annotation of
vertebrate microrna genes and the evolution of
the human microRNAome. Annu. Rev. Genet. 49,
213–242.

Fromm, B., Domanska, D., Høye, E.,
Ovchinnikov, V., Kang, W., Aparicio-Puerta, E.,
Johansen, M., Flatmark, K., Mathelier, A., Hovig,
E., et al. (2020). MirGeneDB 2.0: the metazoan
microRNA complement. Nucleic Acids Res. 48,
D132–D141.
20 STAR Protocols 3, 101023, March 18, 2022
Galka-Marciniak, P., Urbanek-Trzeciak, M.O.,
Nawrocka, P.M., Dutkiewicz, A., Giefing, M.,
Lewandowska, M.A., and Kozlowski, P. (2019).
Somatic mutations in miRNA genes in lung
cancer—potential functional consequences of non-
coding sequence variants. Cancers 11, 793.

Garcia, M., Juhos, S., Larsson, M., Olason, P.I.,
Martin, M., Eisfeldt, J., DiLorenzo, S., Sandgren, J.,
Ståhl, T.D.D., Ewels, P., et al. (2020). Sarek: a
portable workflow for whole-genome sequencing
analysis of germline and somatic variants.
F1000Res 9, 63.

Kozomara, A., and Griffiths-Jones, S. (2014).
miRBase: annotating high confidence microRNAs
using deep sequencing data. Nucleic Acids Res.
42, D68–D73.

Kozomara, A., Birgaoanu, M., and Griffiths-Jones,
S. (2019). miRBase: from microRNA sequences to
function. Nucleic Acids Res. 47, D155–D162.

Lorenz, R., Bernhart, S.H., Höner zu Siederdissen,
C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker,
I.L. (2011). ViennaRNA package 2.0. Algorithms
Mol. Biol. 6, 26.

Pabinger, S., Dander, A., Fischer, M., Snajder, R.,
Sperk, M., Efremova, M., Krabichler, B., Speicher,
M.R., Zschocke, J., and Trajanoski, Z. (2014). A
survey of tools for variant analysis of next-
generation genome sequencing data. Brief.
Bioinform. 15, 256–278.

Rheinbay, E., Nielsen, M.M., Abascal, F., Wala, J.A.,
Shapira, O., Tiao, G., Hornshøj, H., Hess, J.M., Juul,
R.I., Lin, Z., et al. (2020). Analyses of non-coding
somatic drivers in 2,658 cancer whole genomes.
Nature 578, 102–111.

Shameer, K., Tripathi, L.P., Kalari, K.R., Dudley, J.T.,
and Sowdhamini, R. (2016). Interpreting functional
effects of coding variants: challenges in proteome-
scale prediction, annotation and assessment. Brief
Bioinform. 17, 841–862.

Tan, H. (2020). Somatic mutation in noncoding
regions: the sound of silence. EBioMedicine 61,
103084.

Urbanek-Trzeciak, M.O., Jaworska, E., and
Krzyzosiak, W.J. (2018). miRNAmotif-A
tool for the prediction of pre-miRNA�

Protein interactions. Int. J. Mol. Sci. 19,
4075.

Urbanek-Trzeciak, M.O., Galka-Marciniak, P.,
Nawrocka, P.M., Kowal, E., Szwec, S., Giefing, M.,
and Kozlowski, P. (2020). Pan-cancer analysis of
somatic mutations in miRNA genes. EBioMedicine
61, 103051.

Van der Auwera, G.A. (2020). Genomics in the
Cloud: Using Docker, GATK, and WDL in Terra
(O’Reilly Media).

Xiao, W., Ren, L., Chen, Z., Fang, L.T.,
Zhao, Y., Lack, J., Guan, M., Zhu, B.,
Jaeger, E., Kerrigan, L., et al. (2021).
Toward best practice in cancer mutation
detection with whole-genome and whole-
exome sequencing. Nat. Biotechnol. 39,
1141–1150.

https://www.cancer.gov/tcga
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref14
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref14
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref14
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref14
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref14
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref15
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref15
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref15
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref16
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref16
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref16
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref16
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref16
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref16
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref17
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref17
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref17
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref17
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref17
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref18
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref18
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref18
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19
http://refhub.elsevier.com/S2666-1667(21)00729-2/sref19

	XPRO101023_proof_v3i1.pdf
	miRMut: Annotation of mutations in miRNA genes from human whole-exome or whole-genome sequencing
	Before you begin
	Reference files
	Installing prerequisites

	Key resources table
	Step-by-step method details
	Filtering miRNA gene mutations
	Processing mutation list
	Adding miRNA-specific information to specific mutations
	Calculating mutation weights and HGVS nomenclature
	Generating summaries
	Generating visualization of mutations

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References



