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Vaccines represent one of the most successful public health initiatives worldwide.
However, despite the vast number of highly effective vaccines, some infectious
diseases still do not have vaccines available. New technologies are needed to fully
realize the potential of vaccine development for both emerging infectious diseases and
diseases for which there are currently no vaccines available. As can be seen by the success
of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for
effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and
inorganic nanoparticles and microparticles, have many advantages in the vaccine
market, but often require multiple doses and addition of artificial adjuvants, such as
aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native
pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial
adjuvants. Biological nanoparticles can be engineered to have many additional useful
properties, including biodegradability, biocompatibility, and are often able to self-
assemble, thereby allowing simple scale-up from benchtop to large-scale
manufacturing. This review summarizes the state of the art in biologically derived
nanoparticles and their capabilities as novel vaccine platforms.
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INTRODUCTION

Vaccines, arguably, represent one of the most successful preventative health initiatives worldwide. As
is evident from the COVID-19 pandemic, vaccines are valuable to not only prevent severe symptoms,
hospitalizations, and deaths, but also to prevent subsequent gain of function mutations of the
pathogen during replication in the host’s cells. Historically, vaccines are divided into three main
categories: live-attenuated, inactivated, and subunit/toxoid (Figure 1).

Live-attenuated vaccines provide good immune memory and neutralizing antibody responses.
One reason for their efficiency is that live pathogens display pathogen-associated molecular patterns
(PAMPs) on their surface and interior, which are recognized by pattern-recognition receptors, such
as toll-like receptors (TLRs) and NOD-like receptors (NLRs) of the innate immune system. Due to
their live nature and assorted PAMPs, live vaccines often do not require additional adjuvants or
periodic booster shots to re-activate the memory response. Unfortunately, live vaccines can be
dangerous to those with weakened immune systems, and as such, these individuals require other
vaccine types.

Inactivated vaccines, which are pathogens that have been “killed”with heat or chemical treatment,
provide some memory response, but overall require the use of adjuvants, such as aluminum
hydroxide, to act as artificial PAMPs, and fully engage the adaptive immune system. While
often effective in inducing a robust memory response to an inactivated pathogen, this strategy
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alone is not always adequate for generating life-long protection.
Therefore, a number of inactivated vaccines eventually require
use of a booster dose to re-activate the immune system and once
again generate a protective response.

Subunit and toxoid vaccines function similarly to inactivated
vaccines but are made from a specific component of the pathogen,
such as a protein or toxin. These vaccines have a favorable safety
profile over the whole-pathogen vaccines mentioned above, as
they are unable to replicate, and are non-infectious. On the other
hand, as these pathogen-derived antigens represent only one
component of the pathogen in many formulations, they are
often poorly or non-immunogenic, making adjuvants and
booster shots a necessity.

Over the past decade, there has been interest in creating novel
vaccines with improved safety and efficacy profiles. These efforts
have led to the development of a number of new vaccine
platforms, including RNA vaccines which, thanks to record-
breaking development on the COVID-19 vaccines, can now be
added to the list of licensed human vaccines. The COVID-19
vaccines recently developed by Pfizer-BioNTech and Moderna
use synthetic lipid components to encapsulate and protect
messenger RNA (mRNA). The mRNA then enters the cells
near the injection site and induces them to make a viral
protein, which then activates the immune system.
Interestingly, the immune response generated from the mRNA

vaccines persists for more than 6 months (Doria-Rose et al., 2021;
Pegu et al., 2021), but an overall decrease from peak response after
6 months is evident (Naaber et al., 2021; Pegu et al., 2021). In
addition to this waning immune response, viral variants have
further evaded these moderately efficacious vaccines, making
booster doses required (Choi et al., 2021).

Developing universal vaccines capable of generating a long-
lasting, protective immune response without utilizing live
pathogens has been a challenge. Biologically-derived
nanoparticles, such as virus-like particles, outer membrane
vesicles, and protein nanocages, may meet this need, as they
mimic the structure and function of live pathogens, but are
unable to replicate and are not infectious (Figure 2). These
nanoparticles naturally contain many of the PAMPs required
for full activation of the immune system and often don’t require
additional adjuvants. Additionally, as there is no danger that
these systems will undergo pathogen reversion, biological
nanoparticles may have an improved safety profile over whole-
pathogen based vaccines. Due to their native properties, capacity
for genetic engineering, and high versatility, these nanoparticle
systems have been successfully translated from the benchtop to
the clinic, with multiple approved vaccine platforms available to
the public, and others currently in clinical trials (Tables 1, 2). In
fact, virus-like particles (VLPs) and outer membrane vesicles
(OMVs), specifically, have had great success, with four FDA-
approved VLP vaccines, and two FDA-approved OMV vaccines
available to the public (Table 1). Protein nanocages based on
ferritin, three VLP-based vaccines, and one OMV vaccine are
currently being investigated for safety and efficacy in clinical trials
(Table 2).

Here, we provide an overview of biologically derived
nanoparticles, their applications in vaccine development,
and their advantages over conventional vaccine platforms.
We also discuss how nanoparticle properties, such as size,
affects uptake and trafficking by the immune system, and the
formulation of biological nanoparticles particles into higher
order constructs for controlled release and modulation of the
immune response.

ANTIGEN UPTAKE AND TRAFFICKING TO
THE LYMPHATIC SYSTEM

Antigen uptake and processing, as well as trafficking and lymph
node localization, are highly dependent on antigen size, shape,
and charge. The sizes of vaccine antigens varies greatly, from
subunit antigens that are less than 10 nm in size, to biological or
synthetic nanoparticle systems that range from 20 to 200 nm, to
whole cell vaccines that can be up to 20 µm in size (Figure 3).
Antigen size has significant impact on their uptake by antigen
presenting cells (APCs). Antigens with larger surface areas, such
as nano- or microparticles and whole-pathogen vaccines, are
better able to interact with APCs due to their variety of surface
properties such as charge, hydrophobicity, and potential for
receptor interaction (Bachmann and Jennings, 2010). Small
protein antigens, on the other hand, are inefficiently taken up,
and presented by APCs.

FIGURE 1 | Types of vaccines. A wide variety of vaccines have been
used for prevention of disease. Vaccines may be based on the whole-
pathogen, such as live-attenuated or killed-inactivated vaccines, or on
subsets of the pathogen, such as toxins or protein subunits produced by
the pathogen. Nucleic acid vaccines utilizing DNA or RNA are another strategy
for vaccine development. This figure was generated using Biorender.com.
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Transport of antigen to the secondary lymphoid organs
(i.e., lymph nodes, spleen) is required for induction of the
adaptive immune response, and size is an important
component of how the antigen is transported. Particles that
are 20–200 nm may efficiently enter the initial lymphatic
vessels (Manolova et al., 2008), where the endothelial cell
junctions lining the vessels are leaky, allowing flow through of
larger molecules (Singh, 2021). The lymphatic capillaries closer to
the lymph node, however, are a much tighter fit, only allowing

particles smaller than ~5 nm to continue forward (Carrasco and
Batista, 2007) (Carrasco and Batista, 2007; Singh, 2021). In fact,
these smaller particulate antigens, despite not being well taken up
by APCs, can be directly transported through specialized small
antigen conduits directly to the lymph node (Roozendaal et al.,
2009; Fries et al., 2021). Particles in the range of 200–500 nm are
unable to enter the lymphatic vessels without assistance. These
larger particles are most often taken up by dendritic cells (DCs)
and carried into the lymphatic system (Foged et al., 2005; Fries

FIGURE 2 |Biologically-derived vaccine platforms highlighted in this review. Virus-like particles (VLPs), outer membrane vesicles (OMVs), and protein cages (ferritin)
have been studied extensively as vaccine platforms (left). These biological nanoparticles may be formulated into higher order structures (right) to increase their stability
and adjuvanticity, as well as enabling controlled release for use as single-dose vaccine platforms. MS2 bacteriophage was used as a model for the VLP (pdb id. 2MS2
(Golmohammadi et al., 1993)). For the modeling of the ferritin nanocage, the crystal structure of L-ferritin (pdb id. 2fg8 (Wang et al., 2006)) was used. The VLP and
nanocage were constructed using UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San
Francisco, with support from NIH P41-GM103311 (Pettersen et al., 2004). The OMV figure was created using BioRender.com.

TABLE 1 | FDA-approved biologically-derived nanoparticle vaccines.

Vaccine name Target pathogen Type Company References

Cervarix
®

HPV VLP GlaxoSmithKline Harper et al. (2004)
Gardasil

®
HPV VLP Merck & Co. Villa et al. (2005)

Engerix
®

HBV VLP GlaxoSmithKline Keating et al. (2003)
Recombivax

®
HBV VLP Merck & Co. Van Damme et al. (2009)

Bexero
®

MenB OMV Novartis Giuliani et al. (2006)
PedVaxHIB

®
Hib OMV Merck & Co. Vella et al. (1990)

TABLE 2 | Biologically-derived nanoparticle vaccines recruiting or in active clinical trials in the United States.

Type Target disease Company/Sponsor Phase NCT number

VLP (plant) Influenza Medicago 1, 2 NCT04622592
VLP (plant) SARS-CoV-2 Medicago 2,3 NCT04636697
VLP (recombinant) Encephalitis SRI International 1 NCT03776994
VLP (recombinant) Chikungunya Emergent BioSolutions 2, 3 NCT05065983, NCT05072080
OMV Gonorrhea NIAID 2 NCT04722003, NCT04350138
Nanocage (ferritin) Influenza NIAID 1 NCT04579250
Nanocage (ferritin) Epstein-Barr Virus (EBV) NIAID 1 NCT04645147
Nanocage (ferritin) SARS-CoV-2 U.S. Army 1 NCT04784767
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et al., 2021). Interestingly, antigen particles smaller than 200 nm
can reach the secondary lymphoid organs within hours of vaccine
administration, but transport of larger particles via the DCs can
take approximately 24 h (Manolova et al., 2008; Cifuentes-Rius
et al., 2021). As antigens with dimensions of 20–200 nm may
freely drain to the lymphatic capillaries, designing vaccines within
this size range is imperative for facilitation of direct interaction
with B cells in the secondary lymphoid organs, and thus
activation of a potent immune response (Ding et al., 2021;
Singh, 2021; Zinkhan et al., 2021).

Antigen retention by dendritic cells is also affected by
nanoparticle size. Zhang et al. recently showed that dendritic
cells clear smaller synthetic particles (5–15 nm) from the lymph
node follicles very rapidly (within ~48 h), whereas larger
nanoparticles (50–100 nm) were retained for over 5 weeks,
allowing the larger particles to present more antigen over
time, resulting in a 5-fold greater immune response (Zhang
et al., 2000). These data indicate that there is a preferential
size range for particle uptake and transport by the immune
system, with approximately 50–500 nm being the minimum
and maximum dimensions, respectively.

Particle shape does not appear to play a significant role in
localization to and activation of B-cells, but certain shapes are
preferentially taken up over others by cells of the peripheral
immune system. For example, primary mouse bone

marrow-derived dendritic cells (BMDCs) preferentially
internalize hydrogel nanodiscs over nanorods, indicating that
there are unique, geometry-dependent uptakemechanisms taking
place (Agarwal et al., 2013; Baranov et al., 2021). In another study,
four different gold nanoparticle shapes and sizes (20 nm
spherical, 40 nm spherical, 40 × 10 nm rod, and 40 × 40 ×
40 nm cubic) were coated with antigens for West Nile Virus
(WNV) (Niikura et al., 2013). All of these particles generated
WNV-specific antibodies, whereas when WNV protein without
AuNPs was administered, the results were similar to the PBS
control. The 40 nm spherical nanoparticles were the most
successful in generating a protective immune response,
resulting in twice as many WNV-specific antibodies as the
rod-shaped nanoparticles. These data indicate that the gold
nanoparticles not only have an adjuvant effect, but that the
adjuvant effect is shape and size dependent. Interestingly, the
rod-shaped nanoparticles were internalized to a much greater
extent than the other two types, indicating that antibody
production does not directly relate to cellular uptake efficiency.

Surface charge is also known to influence particle uptake by
immune cells, but there is some debate over whether a positive or
negative surface charge better facilitates access to the lymph node.
Some studies speculate that improved drainage of negatively
charged particles to the lymph node is driven by repulsion
between the particles and the negatively charged extracellular

FIGURE 3 | Size ranges of vaccine delivery systems and pathogenic agents. The dimensions of the main particle systems discussed in this review, including
microparticle/hybrid structures, are compared to those of pathogenic agents in nanometers. The size ranges for efficient entry into the lymphatic vessels and efficient
uptake by antigen presenting cells (APCs) are also indicated. VLPs, virus-like particles; OMVs, outer membrane vesicles.
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matrix (Mueller et al., 2015), while others indicate that they more
effectively avoid uptake by cells, and therefore can drain to the
lymph node more efficiently (Coffman et al., 2018). Positively
charged particles, on the other hand, tend to attract and be
internalized by peripheral immune cells at the site of
administration, resulting in an enhanced immune response
(Fromen et al., 2015; Dacoba et al., 2017).

Once the antigen is within the lymph node, it can activate B cells
in two different ways (Figure 4). T cell dependent activation
involves binding of antigen to the B cell receptor (BCR) on
B cells, internalization and degradation of the antigen, and
presentation of peptides on major histocompatibility complex
(MHC) II molecules to CD4+ T helper cells. Following T cell
receptor binding to the MHC II molecules and release of co-
stimulatory molecules, B cells become activated, forming
germinal centers in the follicular region of lymph nodes, and
beginning proliferation. These cells then undergo affinity
maturation and class switching, guided by T helper cells, which
results in development of high affinity IgG antibody producing
plasma cells and long-lived memory B cells. Alternatively, B cells
can bind directly to PAMPs or through BCRs and extensively
crosslink to repeated epitopes on the pathogen surface, resulting in
proliferation of B cells, their differentiation into plasma cells, and
production of IgM antibodies. This T cell independent response,
while useful in the short-term, does not generally result in
production of memory B-cells and long-lived plasma cells
(Chaplin, 2010; Cyster and Allen, 2019).

Lymphocytes require additional signals to promote
maturation and appropriate antibody class switching. These
signals are usually provided by the antigen presenting cell,
which is activated to increase release of pro-inflammatory
cytokines (especially interleukins (IL), such as IL-10, IL-12,
and IL-23, etc.) in response to stimulatory signals from the
pathogen. These signals correspond with activation of pattern
recognition receptors, such as TLRs and NLRs, and which
recognize specific PAMPs. In many cases, synthetic adjuvants,
such as aluminum hydroxide, induce these signals, but
biologically derived nanoparticles naturally contain many
PAMPs that can be utilized to activate the immune system
without the need for additional adjuvant (Zhang et al., 2000;
Li Y. et al., 2021).

VIRUS-LIKE PARTICLES

Virus-like particles (VLPs), a type of subunit vaccine, are formed
from the self-assembly of viral capsid proteins into particles that
mimic the parent virus but are incapable of replication or
infection. The inherent inability of VLPs to infect or replicate
alleviates potential vaccine risks associated with live-attenuated
or inactivated vaccines, such as spontaneous reversion to a
pathogenic phenotype or incomplete inactivation. These
characteristics impart VLPs with a favorable safety profile and
enable low-containment manufacturing. Furthermore, many

FIGURE 4 |B cell activation. B cells can be activated primarily through two ways: the T cell-dependent (TD), or the T cell-independent (TI) pathway. The TD pathway
(left) involves the binding of antigen to B cell receptors (BCRs) on the surface of B cells, internalization and digestion, then display of the resulting peptide on the B cell
surface onmajor histocompatibility complex (MHC) II molecules to CD4+ T helper cells. Antigen-specific T cells will then bind to the MHC using their T cell receptor (TCR).
The CD40L and CD40 proteins on the T cell and B cell, respectively, will also bind, resulting in activation, proliferation, and maturation of the B cell into memory
B cells and long-lived plasma cells, which produce IgG antibodies. The TI pathway (right) is activated by repetitive epitopes on the surface of a pathogen, which heavily
crosslink the BCRs on the surface of the B cell. This most often results in B cell activation, maturation, and the generation of short-lived plasma cells, which primarily
produce IgM. This figure was generated using Biorender.com.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8671195

Curley and Putnam Biologically-Derived Nanoparticle Vaccines

http://Biorender.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


VLPs contain highly repetitive, dense (50–100 Å spacing), and
rigid structures on their surface, allowing them to naturally
crosslink B cell receptors. This effect, despite being T cell-
independent, then leads to strong stimulation of B cells and
induction of a robust and long-lasting antibody response
(Bachmann et al., 1993; Fries et al., 2021) that can even be
achieved without the addition of synthetic adjuvants (Zhang
et al., 2000; Li Y. et al., 2021). Furthermore, VLPs naturally
encapsulate bacterial nucleic acids when propagated in bacterial
expression systems, which further activate antigen-presenting
cells and B cells (Mohsen et al., 2021). The success of the VLP
platform has already resulted in many FDA-approved VLP-based
vaccines, including Cervarix® (Harper et al., 2004) and Gardasil®
(Villa et al., 2005) for Human Papilloma Virus (HPV), and
Engerix® (Keating et al., 2003) and Recombivax® (Van Damme
et al., 2009) for Hepatitis B Virus (HBV) (see Table 1).

A variety of viruses are used as VLP vaccine platforms,
including bacteriophage, insect viruses, and plant viruses
(Table 3). Single-stranded RNA viruses, such as MS2
bacteriophage, AP205, and Qβ, are widely used VLP
platforms, as their small genomes can be easily modified to
generate new antigens on their surfaces (Yadav et al., 2021). In
one study, MS2 coat proteins were fused with the minor capsid
protein (L2) of HPV to generate MS2-L2 VLPs (Zhai et al., 2017).
These vaccines were then administered to mice and challenged
against various HPV pseudovirus types (Zhai et al., 2017, 2019;

Yadav et al., 2021). The MS2-L2 VLPs were protective against all
tested viral strains, and one study even confirmed that the
protective antibodies generated from vaccination with these
VLPs last for over 9 months (Yadav et al., 2021).
Bacteriophage T4 have also been developed as a vaccine
platform, specifically for use against influenza (Li M. et al.,
2021). In addition to bacteriophage, insect and plant viruses
may also be genetically modified to generate chimeric viruses.
Chimeric viruses contain genetic material from two different
viruses, which results in fusion proteins that incorporate epitopes
from both viruses. Recombinant chimeric VLP vaccines have
been developed for Chikungunya virus (CHIKV), based on the
insect-specific alphavirus, Eilat virus (EILV) (Erasmus et al.,
2017); Bacillus anthracis, based on cowpea mosaic virus
(CPMV) (Phelps et al., 2007) and Flock house virus (Venter
et al., 2011); SARS-CoV-2 andMERS, based on cucumber mosaic
virus (CMV) (Mohsen et al., 2021, 2022); and SARS-CoV-2 and
Yersinia pestis, based on tobacco mosaic virus (TMV) (Arnaboldi
et al., 2016; Royal et al., 2021).

Direct chemical conjugation of antigen to VLPs is another
strategy for the development of VLP-based vaccines. When
genetic insertion of Zika virus (ZIKV) epitopes into MS2 and
PP7 bacteriophage genomes was unsuccessful, Basu et al.
covalently conjugated the epitopes to Qβ via a
heterobifunctional crosslinker, SMPH (succinimidyl 6-((beta-
maleimidopropionamido) hexanoate)) (Figure 5) (Basu et al.,

TABLE 3 | VLPs used as vaccine platforms.

VLP platform Pathogen targeted Reference

Bacteriophage

MS2 HPV Zhai et al. (2019), Yadav et al. (2021)
AP205 Escherichia Coli Govasli et al. (2019)

HPV and Malaria Janitzek et al. (2019)
Malaria Yenkoidiok-Douti et al. (2019)
Influenza Thrane et al. (2020)
SARS-CoV-2 Fougeroux et al. (2021), Liu et al., (2021)

Qβ Zika Basu et al. (2018)
Chikungunya Basu et al. (2020)
Dengue Warner and Frietze, (2021)
SARS-CoV-2 Ortega-Rivera et al. (2021)

T4 Influenza Li et al. (2021a)

Plant Virus

Tobacco Mosaic Virus Yersinia pestis Arnaboldi et al. (2016)
SARS-CoV-2 Royal et al. (2021)

Cowpea Mosaic Virus Anthrax Phelps et al. (2007)
Cucumber Mosaic Virus Zika Cabral-Miranda et al. (2019)

SARS-CoV-2 Zha et al. (2021), Mohsen et al. (2022)
MERS Mohsen et al. (2021)

Papaya Mosaic Virus HPV Thérien et al. (2017), Laliberté-Gagné et al. (2019)

Insect Virus

Flock House Virus Anthrax Venter et al. (2011)
Eilat Virus Chikungunya Erasmus et al. (2017)
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2018). ZIKV epitopes were modified to contain a cysteine residue
containing a free thiol group for conjugation, while the amine
groups on surface-exposed lysine residues of Qβ were reacted
with the other end of the linker. When tested in a mouse model,
immunized mice were not protected from Zika challenge, but
serum antibodies from immunized mice neutralized the virus
in vitro, indicating that this approach has potential for vaccine
development. A similar strategy was also used to conjugate Qβ
VLPs to CHIKV epitopes (Basu et al., 2020) and Dengue virus
(DENV) epitopes (Warner and Frietze, 2021), as well as to
conjugate CMV VLPs to recombinant SARS-CoV-2 spike
protein (Zha et al., 2021) and ZIKV immunogens (Cabral-
Miranda et al., 2019). Other linkers used for conjugation of
VLP platforms to pathogenic antigens include SM(PEG)4
(N-hydroxysuccinimide-poly (ethylene glycol)4-maleimide)
(Ortega-Rivera et al., 2021) for conjugation of Qβ to SARS-
CoV-2 spike protein, and carbodiimide chemistry for
conjugation of Yersenia pestis virulence factors (Arnaboldi
et al., 2016) to TMV VLPs. Another interesting method that
others have used to attach the VLP carrier to the antigen of
interest is through the use of sortase-mediated antigen coupling
(Thérien et al., 2017; Laliberté-Gagné et al., 2019). Sortase-
mediated conjugation allows for direct attachment of various
compounds that contain the target sequence (multiple glycine
residues) to VLPs that have been modified to express a specific
amino acid tag (LPETGG), without covalent conjugation
(Figure 5D). This universal approach allows the attachment of

virtually any antigen or adjuvant as long as they contain the tag
sequence.

Most vaccine platforms have focused on the use of
nonenveloped VLPs, but lipid enveloped VLPs (eVLPs) have
also been studied, mainly those derived from the baculovirus
expression system in insect cells (López-Macías et al., 2011; Dai
et al., 2018b; Hu et al., 2021), or in plant systems (D’Aoust et al.,
2008; Landry et al., 2010; Pillet et al., 2016). Nonenveloped VLPs
are much less complex than eVLPs, and can be produced in
prokaryotic systems, making them easily scalable, cost-effective,
and rapid to manufacture. The presence of a lipid bilayer in
eVLPs necessitates the use of eukaryotic hosts for expression,
which increases the overall production time and cost.
Additionally, eVLPs are much more sensitive to their external
environment, such as temperature and shear forces, which may
destroy the particle integrity. On the other hand, eVLPs can
express membrane-bound antigens and, as they use eukaryotic
hosts, can also incorporate post-translational modifications,
giving them some advantages over their simpler counterparts
(Dai et al., 2018a). In a recent study by Hu et al., three
recombinant insect-derived influenza eVLPs, each expressing
different influenza antigens, were tested for their ability to
promote a protective immune response (Hu et al., 2021). The
different eVLPs were mixed, then injected intramuscularly into
mice, and chickens. This resulted in a robust antibody response
and complete protection against lethal influenza virus challenge
in both animal models. Although the vaccines administered to the

FIGURE 5 | Approaches for antigen conjugation to VLPs. Heterobifunctional crosslinkers, such as SMPH (A) or SM(PEG)4 (B), have been used to link VLPs with an
antigen of interest. These linkers react with free primary amines from lysine residues on VLPs and thiols from genetically inserted cysteine residues on the antigen.
Alternative methods use carbodiimide chemistry to activate the less reactive carboxylic acid residues on the antigen for reaction with amines on the VLPs (C), and
Sortase-mediated transpeptidation (D). Sortase A catalyzes the binding of a target sequence (GGG), often bound to antigen, with an LPETGG tag genetically
added to the VLP surface.
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chickens contained adjuvant, the vaccines administered to the
mice did not, indicating that a protective response may still be
elicited by eVLPs alone. Plant-derived eVLPs have been met with
success in clinical trials. The Canadian company Medicago
recently completed Phase 3 clinical trials with their
quadrivalent eVLP influenza vaccine derived from plant cells
(NCT03301051), establishing their platform as a viable
alternative to current influenza vaccines on the market
(D’Aoust et al., 2008; Ward et al., 2020).

OUTER MEMBRANE VESICLES

While VLPs can express heterologous antigens on their surface
from various types of pathogens, they often lack many bacterially
derived PAMPs. Outer membrane vesicles (OMVs) naturally bud
from the outer membrane of Gram-negative bacteria, although
studies have shown that Gram-positive bacteria and archaea
produce similar extracellular vesicles (Liu et al., 2018; Gill
et al., 2019). OMVs contain many PAMPs associated with
bacterial outer membranes, including lipopolysaccharide (LPS),
periplasmic components, nucleic acids, lipoproteins, and other
outer membrane proteins (Figure 6). In this way, OMVs are often
considered “self-adjuvanting,” that is, the PAMPs contained both
on and within the OMVs provide an enhanced immune response
to any antigenic compounds being carried. The clinical
capabilities of the OMV platform have previously been
established, as there are currently two licensed vaccines on the
market containing OMVs, also known as outer membrane
protein complexes (OMPC). Bexero®, a Meningitis B (MenB)
vaccine created by GlaxoSmithKline, contains OMVs as an
artifact of the production process (Giuliani et al., 2006).
PedVaxHIB® is a conjugate vaccine that uses the
polysaccharide polyribosylribitol phosphate (PRP) of
Haemophilus influenzae type b (Hib) covalently bound to an
OMPC of Neisseria meningitidis (Vella et al., 1990) (see Table 1).

Although OMVs are replication deficient and are not
infectious, resulting in an increased safety profile over whole-
pathogen vaccines, they may also contain high amounts of LPS in
their membranes. LPS, or endotoxin, is pyrogenic and highly
toxic, and can lead to fever, uncontrolled inflammation, and
sepsis (Opal, 2010). In one study, after mice were immunized with
OMVs, some experienced over 20% weight loss, and were
subsequently euthanized. This result was attributed to a
reaction to LPS present on the OMVs (Kuipers et al., 2015).
Depending on the way OMVs are produced, the amount of
endotoxin may be reduced, but not fully removed. Detergents
are often be used to extract LPS, but this method may impact the
immunomodulatory effects of the OMVs by removing other
PAMPs needed to generate a protective immune response (van
de Waterbeemd et al., 2010). As an alternative, some groups have
genetically modified the structure of the lipid A component of
LPS to obtain bacterial strains capable of producing endotoxin-
free OMVs (van der Ley et al., 2001; Rosenthal et al., 2014; Chen
et al., 2016). The effect on the adjuvanticity, however, may vary
depending on the mutation. In one case, where the lpxM gene was
knocked out in E. coli, there was no significance difference in
serum antibody titers and survival upon challenge with OMV
vaccines containing native or modified LPS, suggesting that
OMVs with modified LPS may provide the same level of
protection as native OMVs (Chen et al., 2016). In another
study, however, insertional inactivation of lpxL1 N.
meningitidis resulted in retainment of adjuvant activity and
reduced toxicity, but inactivation of lpxL2 resulted in both
reduced adjuvant activity and toxicity, indicating that the type
and location of LPS mutation must be considered carefully (van
der Ley et al., 2001). The effect of these knockouts on the structure
of lipid A is shown in Figure 7.

OMV-based vaccines can be made directly from the target
pathogen or made recombinantly via genetic engineering of safer
bacterial hosts. Collecting and purifying OMVs from pathogenic
microbes requires greater attention to purification techniques and
reduces safety compared to genetic engineering of nonpathogenic
bacteria. Bacterial engineering is also amenable to the use of
endotoxin-free bacteria and allows expression of foreign antigens
on or within the OMV. There is evidence that antigen
presentation on the exterior of the OMV promotes a superior
immune response in comparison to antigen encapsulated within
the OMV (Hess et al., 1996; Kang and Curtiss, 2003; Barat et al.,
2012; Salverda et al., 2016). The presentation of antigen on the
surface of OMVs presents its own level of difficulty, because most
proteins do not naturally localize to the outer membrane.
Therefore, antigen fusion with outer membrane proteins or
autotransporters, such as cytolysin A (ClyA) (Chen et al.,
2010; Rappazzo et al., 2016), Sec-dependent signal peptide
(spPelB) (Weyant et al., 2021), and hemoglobin protease
(Daleke-Schermerhorn et al., 2014), is commonly used to
display antigen on the OMV outer surface. Chemical
conjugation of the antigen to the exterior of the OMV can
also be used to present antigen (or additional adjuvant) on the
surface of the OMV, as was done for the commercially available
vaccine PedVaxHIB®. This can be accomplished through
conjugation with antigen through amine groups or free thiols,

FIGURE 6 |Outer membrane vesicles (OMVs) and pathogen-associated
molecular patterns (PAMPs). OMVs naturally bud from the bacterial outer
membrane (left), which allows them to display many bacterially-derived
PAMPs (right) that activate toll-like receptors (TLRs) to enhance the
memory response. This figure was generated using Biorender.com.
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as discussed for VLPs (Wu et al., 2006; Scaria et al., 2019; Micoli
et al., 2020).

As mentioned, OMV-based vaccines currently exist for the
prevention of Hib and MenB infections. Recent literature has
focused on the development of OMV vaccines for influenza
(Rappazzo et al., 2016; Watkins et al., 2017b), malaria (Scaria
et al., 2019), pertussis (Raeven et al., 2020; Carriquiriborde et al.,
2021), Lyme disease (Klouwens et al., 2021), plague (Carvalho

et al., 2019; Wang X. et al., 2020), and SARS-Cov-2 (Gaspar et al.,
2021; Thapa et al., 2021; van der Ley et al., 2021). Due to the
inherent flexibility and capability of the OMV platform, there is
interest in expressing heterologous antigens from different
pathogens on the same OMV to create novel combined
vaccines (König et al., 2021). One recently reported strategy is
a clever universal approach termed “Addvax,” avidin-based dock-
and-display for vaccine antigen cross-linking (Weyant et al.,

FIGURE 7 | Effect of gene knockouts on the structure of Lipid A. The lipid A domain of lipopolysaccharide (LPS) is mainly responsible for the toxicity associated with
gram negative bacteria. As outer membrane vesicles (OMVs) natively contain LPS, and LPS is necessary for membrane stabilization, many studies have focused on
detoxifying LPS by modifying the structure of lipid A, rather than removing it entirely. Both E. coli and N. meningitidis lipid A structures are natively hexa-acylated.
Knockout of lpxM in E. coli (A) and lpxL1 in N. meningitidis (B), (top) results in a penta-acylated lipid A, whereas lpxL2 knockout in N. meningitidis (B),(bottom)
results in a tetra-acylated species. (Van Der Ley et al., 2001; Mamat et al., 2015; Chen et al., 2016).
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2021). The Addvax approach utilizes an avidin binding moiety
fused with an outer membrane protein so that the biotin binding
domain may be expressed on the OMV exterior (Figure 8). This
allows any compound that can be biotinylated to be conjugated to
the OMV surface. Through this mechanism, OMVs have been
decorated with a diverse array of compounds, ranging from
proteins and glycans to lipids and peptides. This platform
could be conceivably used to decorate the same OMV with
different antigens, depending on the reaction ratios used, and
steric hindrance between the different antigens.

PROTEIN NANOCAGES

While viruses and VLPs are often classified as nanocages, this
section considers cages made from non-viral protein subunits,
rather than those derived from a parental pathogen. Nanocages,
similar to VLPs, may also be considered protein subunit vaccines.
Protein nanocages self-assemble from a small number of subunits
to form symmetrical, macromolecular containers with a vast
diversity in shape and size (Flenniken et al., 2009; Chakraborti
and Chakrabarti, 2019). These characteristics often allow them to
mimic native pathogens, as they contain high density repetitive
regions on their surfaces that may be recognized and crosslinked
by B-cell receptors. In recent years, ferritin-based nanocages have
emerged as a promising platform for vaccine development.

Ferritin, most often derived from Helicobacter pylori, is
composed of 24 subunits that self-assemble into a 12 nm
diameter spherical cage with a hollow core. It is used in
humans to store iron (Chakraborti and Chakrabarti, 2019).

Target antigens may be introduced to the surface of ferritin
cages by either genetic modification or chemical conjugation
(Figure 9). Genetic modification of ferritin not only permits
antigenic display, but also allows for the introduction of
mutations that may improve functionality, such as addition of
a cysteine group to the exterior to allow for conjugation of
adjuvants via click chemistry (Kamp et al., 2020). Due to its
versatility, ferritin has been engineered as a vaccine platform to
display antigens from various pathogens, including Borrelia
burgdorferi (Kamp et al., 2020), influenza (Kanekiyo et al.,
2013; Yassine et al., 2015; Qi et al., 2018; Wei et al., 2020),
Epstein-Barr virus (Kanekiyo et al., 2015; Qu et al., 2021b, 2021a),
hepatitis B (Wang W. et al., 2020), rotavirus (Li et al., 2019), and,
most recently, SARS-Cov-2 (Joyce et al., 2021; Kalathiya et al.,
2021; Kang et al., 2021; King et al., 2021; Wuertz et al., 2021).

Ferritin nanocages have shown impressive correlates of
protection in animal studies. For example, when a
recombinant influenza vaccine was made using a
hemagglutinin-stem immunogen fused to ferritin, vaccination
of mice and ferrets generated a robust antibody response that
fully protected mice and partially protected ferrets against viral
challenge (Yassine et al., 2015). Furthermore, passive
immunization of unvaccinated mice with serum antibodies
from vaccinated mice also conferred protection against lethal
infection. In another study, non-adjuvanted ferritin-M2e cages
were used to vaccinate mice intranasally (Qi et al., 2018). The
results of this study showed that, even without adjuvant, the
ferritin nanocage vaccines elicited production of M2e-specific
IgG antibodies, secretion of IgG antibodies, and a strong T cell
response. Even more impressively, the non-adjuvanted intranasal

FIGURE 8 | The Addvax approach for external modification of outer membrane vesicles (OMVs). The Addvax approach, developed by Weyant et al. (2021),
consists of a scaffold protein inserted into the OMV membrane that is fused to a biotin-binding domain, such as avidin. These avidin-decorated OMVs can then be
reacted with any biotinylated compound, including proteins, peptides, carbohydrates, haptens, lipids, and nucleic acids, for conjugation to the OMV. This figure was
generated using Biorender.com.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 86711910

Curley and Putnam Biologically-Derived Nanoparticle Vaccines

http://Biorender.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


vaccine conferred complete protection against viral challenge,
demonstrating the further potential of ferritin nanocages as a
needle-free vaccine platform.

As mentioned above, in addition to influenza, ferritin
nanocages have also been studied for vaccines against Lyme
disease. Kamp et al. fused ferritin to the outer surface protein
A (OspA) of Borrelia bacteria, the causative agents of Lyme
borreliosis (Kamp et al., 2020). After ferritin-OspA
nanoparticles self-assembled, the squalene-based adjuvant
AF03 was added, and the vaccine was administered to mice
and non-human primates via intramuscular injection. The
nanoparticles not only generated high antibody titers against
seven different strains of Borrelia in both animal models, but
these titers were higher than those of a licensed non-human Lyme
disease vaccine, and the response lasted for over 6 months. When
chemically conjugated to a TLR7/8 agonist, the ferritin-OspA
vaccine also protected against two tick-fed murine challenge
models, indicating that surface modification does not affect
potency of the immune response. While adjuvant was mixed
with each vaccine before administration, the ferritin-OspA
platform still shows promise as a protective vaccine against
Lyme disease.

Various ferritin-based vaccines are in clinical trials, with two
influenza trials recently completing Phase I (NCT03186781,
NCT03814720), and trials for Epstein-Barr virus
(NCT04645147), SARS-Cov-2 (NCT04784767), and a third
influenza trial (NCT04579250) currently ongoing (see
Table 2). In addition to ferritin, other proteins naturally
undergo self-assembly into cage-like structures, such as
luzamine synthase (Ra et al., 2014; Ladenstein and

Morgunova, 2020), the E2 subunit of pyruvate dehydrogenase
(Molino et al., 2017), and small heat shock protein (Wang D.
et al., 2020; Demchuk and Patel, 2020), but they have not been
studied for their ability to generate a protective immune response.

HYBRID STRUCTURES

Biologically-derived particles are clinical successes, as evidenced by
their completion of clinical trials and translation into commercially
available vaccines. However, similar to other commercially available
vaccines, many biologically-derived nanovaccines still require
boosters, adjuvants, and multiple doses to promote a protective
immune response. Administration and manufacturing costs
associated with these additional doses could be reduced with a
single dose vaccine. More significantly, in pandemic situations, a
vaccine that can induce a protective immune response in only one
dose is preferred, minimizing the time needed to complete the
vaccine regimen and potentially reducing hospitalizations and
deaths. As shown by the currently available COVID-19 vaccines,
however, most pandemic-responsive vaccines are not capable of this
level of protection.

As discussed previously, biologically-derived nanoparticles
have some advantages over classical vaccine platforms. These
particles mimic the parent pathogen, contain densely repetitive
and rigid surface structures, and are nanoscale in size, all of which
help to promote a highly efficacious and protective immune
response while maintaining an improved safety profile over
whole pathogen vaccines. While studies have confirmed that
some types of biologically-derived nanoparticles are capable of

FIGURE 9 | Structure of the ferritin nanocage and techniques used for conjugation of antigen. Ferritin nanocages have an outer diameter of 12 nm, and a hollow
inner core of 8 nm in diameter. Ferritin can be modified in a variety of ways to conjugate antigen. Chemical modification involving heterobifunctional linkers such
SM(PEG)24 enable conjugation of antigen via click chemistry (top). Genetic modification can enable conjugation of antigen through the SpyTag/SpyCatcher system
(bottom). The crystal structure of L-ferritin (pdb id. 2fg8 (Wang et al., 2006)) was used to model the ferritin nanocage. The nanocage was constructed using UCSF
Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-
GM103311 (Pettersen et al., 2004).
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inducing a protective immune response in a single dose (Erasmus
et al., 2017; Hu et al., 2021; Joyce et al., 2021; Wuertz et al., 2021),
there is evidence that incorporating these nanovaccines into
higher-order structures, such as microspheres, microparticles,
or hydrogels, may provide a way to better invoke, and control
the immune response. Formulation of these nanoparticles into
higher order structures may also enable development of effective
single-dose vaccines. Additionally, selection of an appropriate
encapsulation agent may improve potency, increase stability, and
enable the use of less stringent storage conditions for biologically-
derived nanoparticle vaccines, as it does for protein-based
vaccines (Carreño et al., 2016).

Both VLPs and OMVs have been studied for encapsulation
and release from larger ordered structures, with the encapsulating
agents in more recent years mainly being polymer-based
(Watkins et al., 2017a; Jamaledin et al., 2020; Pastor et al.,
2020; Gomes et al., 2021), and although liposomes have also
been used (Kim et al., 2020) (Table 4).

One of the first studies to investigate the encapsulation of
OMVs, Arigita et al. developed dextran, and mannan
microspheres containing meningococcal OMVs expressing
neisserial pore protein A (PorA) (Arigita et al., 2004).
Interestingly, the serum antibody titers for PorA showed no
difference between mice immunized with OMVs alone and
OMVs encapsulated in either of the two microspheres,
indicating that immunogenicity was not affected by
encapsulation. In a more recent study, Watkins et al.
investigated encapsulation of M2e-OMVs into PLGA
microparticles as a single-dose, long lasting vaccine platform
for influenza (Watkins et al., 2017a). Four weeks post
vaccination, mice generated serum antibodies against M2e that
were equivalent with those generated at 8 weeks by mice
immunized in a typical prime/boost vaccination. Furthermore,
mice challenged with a lethal dose of influenza virus PR8 (H1N1)
both 10 weeks and 6 months post vaccination resulted in 100%
survival for both groups of vaccinated mice at both time points.
Additionally, mice in both groups showed sustained antibody

titers for 6 months post prime vaccination. Taken together, this
study supports the potential for a controlled release hybrid
platform as a single-dose, long lasting vaccine.

Veterinary vaccines may also benefit from hybrid vaccines that
encapsulate biologically-derived nanoparticles. As injectable
vaccines are often impractical for mass vaccination of farm
animals, oral or inhalable vaccines are preferred, which can be
less effective than the injectable formulations. Hybrid
formulations may provide the controlled release needed to
develop effective oral vaccines. Chitosan microparticle vaccines
were used to encapsulate VLPs derived from porcine circovirus
type 2 (PCV2), which was administered to mice via oral gavage
(Bucarey et al., 2014). The immune response of the orally-
administered chitosan-encapsulated PCV2-VLPs was
compared to a subcutaneously administered, commercially
available PCV2 vaccine. Both vaccines generated similar
cytokine and T-cell responses against PCV2, indicating a
similar protective response. While this study focuses on VLPs
derived from a porcine virus, this experimental hybrid vaccine
provides a promising foundation for the future development of
oral vaccines in humans.

In addition to microparticle systems, hydrogels also have great
applicability to nanoparticle vaccine formulation. Pastor et al.
recently developed a thermosensitive hydrogel incorporating
lyophilized OMVs for intranasal delivery (Pastor et al., 2020).
The copolymer gel was formulated using the polymer Gantrez®
AN119 and the surfactant Pluronic® F127. The OMV-loaded
hydrogel showed a rapid release profile, releasing the majority of
its cargo within 30 min. Interestingly, use of the hydrogel
platform prolonged the antigen residence time in the nasal
epidermis of intranasally vaccinated mice from 30 min (in
mice given free OMVs) to 2 h. However, the immune response
generated by these OMV-loaded hydrogels was not evaluated.
While the results are promising, this platform must be further
investigated for use as a vaccine platform. In addition to OMVs,
ferritin has been also incorporated into a polymer microgel
(Budiarta et al., 2021). Encapsulation into the microgel was

TABLE 4 | Hybrid structures used in the formulation of biologically-derived nanoparticles.

Hybrid structure Formulation Target pathogen Reference

Micron-size
particles

Recombinant OMV containing M2e antigens derived from Clearcoli
®
encapsulated in PLGA

microparticles
Influenza Watkins et al. (2017a)

Porcine circovirus type 2 VLPs encapsulated in chitosan microparticles Porcine circovirus
type 2

Bucarey et al. (2014)

OMVs isolated from Neisseria meningitidis encapsulated in dextran- or mannan-based
microspheres

Neisseria meningitidis Arigita et al. (2004)

Foot-and-mouth disease VLPs encapsulated in liposomes Foot-and-mouth
disease

Kim et al. (2020)

Bacteriophage-based (f3) VLPs encapsulated in PLGA microparticles None Jamaledin et al.
(2020)

Polymeric gel M2e VLPs encapsulated in a polymeric matrix Influenza Gomes et al. (2021)
Lyophilized OMVs derived from heat treated Shigella flexneri ΔtolR bacteria, encapsulated in a
polymeric matrix

Shigella flexneri Pastor et al. (2020)

Nano-sized
particles

Foot-and-mouth disease VLPs complexed with gold nanocages Foot-and-mouth
disease

Teng et al. (2021)

OMVs isolated from Bordetella pertussis encapsulated in sodium alginate nanoparticles Bordetella pertussis Rami et al. (2021)
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explored as a strategy to protect ferritin from proteolytic
degradation. The authors showed that the ferritin cages were
protected from degradation by protease when encapsulated in the
microgels, and could be rapidly released under different
environmental conditions, such as acidic pH. While not used
for vaccination in this study, this platform has potential as a
vaccine platform in the future.

Formulation of biologically derived nanoparticles into larger
nanoparticle systems, rather than microparticles, has also been
used to enhance immunogenicity (Rami et al., 2021; Teng et al.,
2021). Gold nanocages (AuNCs) were recently used as a carrier
for foot-and-mouth disease VLPs (Teng et al., 2021). AuNCs are
porous, hollow structures capable of loading smaller
nanoparticles into their interior. AuNC-VLP complexes were
shown to promote a greater inflammatory response in mice
than VLPs alone, agreeing with other studies that gold
particles have an adjuvant effect in vivo (Niikura et al., 2013).
Additionally, when used to immunize guinea pigs, the AuNC-
VLPs showed a protective effect, generating neutralizing antibody
titers with only one injection.

In pre-clinical animal models, formulation of biologically
derived nanoparticles into larger, hybrid vaccine platforms has
been shown to provide additional adjuvanticity and controlled
release, generating a much greater immune response than that
of the nanoparticles alone. In fact, these hybrid platforms can act
as highly effective vaccines that may be administered orally or
intranasally, rather than by injection. Needle-free vaccination is
of great value, reducing the need for trained personnel and the
occurrence of bloodborne pathogens such as hepatits B and HIV
across the world. From these studies, it is evident that
biologically derived hybrid platforms may be able to
meet this need to develop effective single-dose, needle-free
vaccines.

CONCLUSION

To mount a protective immune response against an antigen, two
main signals are needed: 1) repeated, high density motifs to
strongly crosslink BCRs and 2) PAMPs for activation of
B cells and T cells. Furthermore, nanoparticles within the size
range of 20–200 nm will directly transport to the lymph
(Manolova et al., 2008; Singh, 2021), and spherical particles
smaller than 500 nm are preferentially taken up over larger
particles of other shapes by APCs (Niikura et al., 2013).
Biologically-derived nanoparticles naturally contain both
PAMPs and repetitive surface structures capable of activating
an effective immune response, and are most often smaller than
500 nm in size, making them promising vaccine platforms. These
nanoparticles have many other useful properties, including
biodegradability, self-assembly, and use of industrial processes
already in place, allowing relatively simple scale-up from
benchtop to large-scale manufacturing. Due to their native
size, they are especially suited for efficient transport and
localization to the lymph node, either via direct transport
through the fenestrated lymphatic vessels, or through uptake
by APCs. In comparison to whole-pathogen vaccines, such as

live-attenuated and inactivated vaccines, biologically-derived
nanoparticles have the potential for more favorable safety
profiles, as they are non-infectious and unable to replicate;
therefore, incomplete inactivation or pathogenic reversion is
not a concern. Genetic modification or chemical linkage allows
surface display of many heterologous antigens, and novel
coupling strategies such as sortase-mediated conjugation
(Thérien et al., 2017) and Addvax (Weyant et al., 2021)
provide additional flexibility to further modify these highly
versatile platforms for use against various diseases.

Here, we have reviewed three classes of biological nanoparticles
(VLPs, OMVs, and protein cages) as vaccine platforms. As VLPs
directly mimic native viruses, these nanoparticle systems can
induce strong, T-independent stimulation of B cells through
BCR crosslinking (Bachmann et al., 1993; Fries et al., 2021).
VLPs also contain viral PAMPs, such as nucleic acids, that help
activate, in many cases, and an adjuvant-free protective immune
response (Venter et al., 2011; Li M. et al., 2021; Ortega-Rivera et al.,
2021; Royal et al., 2021; Warner and Frietze, 2021). Additionally, if
they are made in bacteria, VLPs may contain some bacterial
components that further promote a protective response without
use of classical alum adjuvants (Mohsen et al., 2021, 2022). As
OMVs are directly derived from bacteria, they display many
PAMPs that VLPs do not contain, such as LPS, flagellin, and
lipopeptides, and making them self-adjuvanting. This property has
enables OMVs to generate a protective immune response in
various animal models for multiple diseases (Chen et al., 2010;
Rosenthal et al., 2014; Kuipers et al., 2015; Watkins et al., 2017b;
Klouwens et al., 2021). Protein nanocages, such as those derived
from ferritin, also show promise as novel vaccine platforms. The
repetitive surface properties of these compounds, their size, as well
as their ease of modification, through either genetic or chemical
means, makes them a very interesting platform capable of eliciting
strong memory responses, and protection against viral challenge,
even without the presence of adjuvant (Qi et al., 2018; Wei et al.,
2020; Qu et al., 2021b).

The success of biologically-derived nanoparticles as vaccine
platforms is evident in their clinical usage. Already, there are
multiple VLP- and OMV-based vaccines on the market, and
protein nanocage vaccines based on ferritin are currently in
clinical trials. While controlled-release hybrid vaccine delivery
platforms are merely in their infancy, these new techniques
provide an exciting view of the potential for next generation
vaccine technologies.
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