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Mining the plasma‑proteome 
associated genes in patients 
with gastro‑esophageal cancers 
for biomarker discovery
Frederick S. Vizeacoumar1, Hongyu Guo2, Lynn Dwernychuk3, Adnan Zaidi3,4, 
Andrew Freywald1, Fang‑Xiang Wu2,5,6, Franco J. Vizeacoumar3,4,8* & Shahid Ahmed3,4,7* 

Gastro‑esophageal (GE) cancers are one of the major causes of cancer‑related death in the world. 
There is a need for novel biomarkers in the management of GE cancers, to yield predictive response 
to the available therapies. Our study aims to identify leading genes that are differentially regulated in 
patients with these cancers. We explored the expression data for those genes whose protein products 
can be detected in the plasma using the Cancer Genome Atlas to identify leading genes that are 
differentially regulated in patients with GE cancers. Our work predicted several candidates as potential 
biomarkers for distinct stages of GE cancers, including previously identified CST1, INHBA, STMN1, 
whose expression correlated with cancer recurrence, or resistance to adjuvant therapies or surgery. To 
define the predictive accuracy of these genes as possible biomarkers, we constructed a co‑expression 
network and performed complex network analysis to measure the importance of the genes in terms of 
a ratio of closeness centrality (RCC). Furthermore, to measure the significance of these differentially 
regulated genes, we constructed an SVM classifier using machine learning approach and verified 
these genes by using receiver operator characteristic (ROC) curve as an evaluation metric. The area 
under the curve measure was > 0.9 for both the overexpressed and downregulated genes suggesting 
the potential use and reliability of these candidates as biomarkers. In summary, we identified leading 
differentially expressed genes in GE cancers that can be detected in the plasma proteome. These 
genes have potential to become diagnostic and therapeutic biomarkers for early detection of cancer, 
recurrence following surgery and for development of targeted treatment.

Cancers of the stomach and esophagus or gastro-esophageal (GE) cancers represent a highly aggressive disease 
and are one of the major causes of cancer-related death in the world. Stomach cancer is the fifth most common 
cancer and the third leading cause of cancer-related death worldwide. For example, in 2018, more than 1 million 
new cases of stomach cancer were diagnosed and about 783,000 people die from  it1. Likewise, esophageal cancer 
is the seventh most common cancer and the sixth leading cause of cancer-related death. Each year more than 
500,000 new cases of esophageal cancer are diagnosed and about 509,000 people die from  it1. Despite improve-
ments in surgical and radiation treatments and the availability of newer agents, the prognosis of patients with 
recurrent GE cancers remains very  poor2–4. The need for novel strategies to improve current therapy is therefore 
vital in the management of GE cancers.

It is well known that cancer development and progression are triggered by altered activities and dysregulated 
expression of genes that control cell proliferation and  differentiation5. Comparative assessment of genetic aberra-
tions between cancerous and matched normal tissues as control, has facilitated identification of new biomarkers 
that may also serve as new therapeutics targets or predict various cancer-related outcomes. There are several 
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known biomarkers that are associated with tumorigenesis or have prognostic and predictive values in patients 
with stomach and esophageal  cancers6–10. For example, approximately 20% of stomach and gastroesophageal 
junction cancers are associated with the amplification of the HER2 gene that is an important therapeutic target 
and predicts response to  trastuzumab8. Most biomarkers such as TP53 or CDH1, however, have limited therapeu-
tic and predictive values and presence or absence of them does not alter treatment  strategies9. There is a strong 
unmet need for novel biomarkers in the management of GE cancers to identify new therapeutic targets and to 
yield predictive response to the available therapies.

We conducted this study by intersecting the gene expression profiles from The Cancer Genome Atlas (TCGA) 
with the plasma proteome databases to identify leading genes that are differentially expressed (upregulated 
or downregulated) in patients with esophageal and stomach  cancers11,12. We also applied machine-learning 
approaches to test our predictive accuracy. Overall, the purpose of these analyses is to identify differentially 
expressed novel tumor-specific genes that code for the plasma proteins and use this information to develop 
blood-based prognostic biomarker studies in the near future.

Methods
TCGA gene expression analyses. We obtained the level-3 HiSeq RSEM gene-normalized RNA-seq 
gene expression data for stomach adenocarcinoma (STAD) and esophageal carcinoma (ESCA) from the TCGA 
 database11. Overall, gene expression data for 415 independent tumor samples and 35 matching normal tissue 
samples for STAD and for 185 ESCA cases with 11 matching normal tissue samples were available. We also 
downloaded the plasma proteome database from http:// www. plasm aprot eomed ataba se. org. The database con-
tained information on 1241 protein-coding genes, while gene expression profiles from TCGA mapped to 1232 
protein-coding genes. To analyse plasma proteome genes, we used non-parametric Mann–Whitney-U test to 
identify genes that are expressed at significantly different levels (p < 0.05) in cancerous and normal tissues. The 
deregulated genes were grouped according to tumor stages based on the available patient data. This allowed 
identification of genes with expression significantly increased or decreased at multiple stages of cancer.

Computational method using gene co‑expression network analysis. Gene co-expression net-
works were used for analyzing the importance of genes and their relationships with other genes. In a weighted 
gene co-expression networks (WGCN), nodes represent the gene expression profiles, edges represent the pair-
wise correlation between gene expressions while the edge weights represented the correlation strengths. For our 
study, the correlation strength of a pair of genes was measured by their similarity, which was calculated by the 
Pearson correlation coefficient (PCC) between their expression profiles. Specifically, for each pair of genes gi and 
gj , its strength was calculated as

where xi and xj are expression profiles of genes gi and gj , respectively; var(xi) and var
(

xj
)

 are the variance of xi 
and xj , respectively while covar(xi , xj) is the covariance of xi and xj . Since the result of PCC has a value between 
− 1 and 1, we transformed the similarity measure Sij into Dissimilarity_corij and Simmilarity_corij , as follows:

Similarity_corij represents the positive correlation between the genes since the larger value indicates the 
stronger positive correlation between the pair of genes, while Dissimilarity_corij represents the negative cor-
relation between a pair of genes since the larger value indicates the stronger negative correlation between genes, 
which is also called the distance of a pair of genes. Both Dissimilarity_corij and Simmilarity_corij take on values 
in [0, 1], that was used for further network analysis.

We used WGCNA R  package13, that is commonly used in recent  studies14,15, to construct the weighted network 
for the stomach and esophageal cancer datasets. To filter out the noisy edges in WGCNs, we applied the soft 
thresholding  scheme13 by raising the co-expression similarity to a soft power β to shrink the lower correlations. 
Hence, the strengths in WGCN is represented by

where β ≥ 1. The criterion for the determination of the soft power β is dependent on the model fitting index of 
the scale-free  topology13. The scale-free networks were constructed because they have strong ability to tolerate 
against  errors16. We then removed the self-loop edges of nodes by setting the diagonal elements of the adjacency 
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matrix as 0. Also, we applied a hard threshold to remove weak edges between nodes by setting the threshold as 
0.01.

Next, we calculated the closeness centrality measures to identify the closeness of a particular node to all 
other nodes in a  network17. This closeness centrality is the inverse of the average shortest-path distance from one 
node to other nodes in the network. It also indicates the efficiency of one node to spread information through a 
network. Finally, based on the closeness centrality score of genes in networks, we defined a novel metric of gene 
importance in networks as the ratio of the closeness centrality (RCC) of a gene in its corresponding similarity 
network and its dissimilarity network, i.e.

where CNsim and CNdis represent the closeness centrality score in the similarity network and the dissimilarity 
network of normal samples, while CTsim and CTdis represent the closeness centrality score in the similarity 
network and the dissimilarity network of tumor samples, respectively. We expect that the biomarkers should be 
significantly different in terms of log2(RCC) between the normal and tumor samples.

Machine learning approach to test the significance. To test the significance of the differentially regu-
lated genes, we constructed a support vector machine (SVM) classifier with linear kernel. The features were 
based on the leading upregulated genes, the leading downregulated genes and a set of randomly selected genes 
for each cancer type. Accordingly, we used Receiver Operator Characteristic (ROC) curve as the evaluation 
metric for the classification of cancer patients and normal samples as in previous  studies18. The ROC curve is 
an evaluation metric for binary classification problems, which visualizes the trade-off between true positive rate 
(TPR) and false positive rate (FPR). We then measured the area under the curve (AUC), as higher the AUC, the 
better the performance of the model in distinguishing between normal and tumor samples.

Results
Leading upregulated genes in GE cancers. We examined gene expression of 1232 protein-coding genes 
that were detected in plasma proteome in tumors of 185 patients with esophageal cancer and in the matching 
tissue of 11 subjects with no cancer. Among cancer patients, 18 (9.7%) had stage I tumors, 78 (42.2%) had stage 
II disease, 56 (30.3%) had stage III disease, and 9 (4.9%) had stage IV cancer. In 24 (13%) patients, cancer stage 
was not known. The comparison between esophageal tumors and healthy tissue showed BIRC5 (p = 2.61E−08), 
APOC2 (p = 3.23E−08), CENPF (p = 4.38E−08), STMN1 (p = 5.74E−08), and HNRPC (p = 8.21E−08) to be five 
leading genes overexpressed in esophageal cancer (Fig. 1A). The stage-based assessment of overexpressed genes 
showed significant overexpression of BIRC5, APOC2, CENPF, STMN1, and HNRPC across all cancer stages 
including early, locally advanced and metastatic esophageal tumors (Fig. 1B). The significance of expression for 
each gene compared between normal and tumor samples (p values), along with the number of samples in each 
stage are provided in Supplementary Table S1.

For stomach cancer, we evaluated 415 cases and compared them with 35 normal tissue samples. Among 
patients with stomach cancer, 57 (13.7%) had stage I cancer, 123 (29.6%) had stage II disease, 169 (40.7%) had 
stage III disease, and 41 (9.9%) had stage IV cancer. In 25 patients (6%) with stomach cancer, the disease stage was 
not known. Comparison between normal stomach tissue and stomach tumors showed that CST1 (p = 3.97E−21), 
INHBA (p = 9.22E−20), ACAN (p = 1.08E−19), HSP90AB1 (p = 2.62E−19), and HSPD1 (p = 3.91E−19) were the 
leading five genes that were overexpressed in stomach cancer (Fig. 1C). The stage-based assessment of overex-
pressed genes showed significant upregulation of CST1, INHBA, ACAN, HSP90AB1, and HSPD1 genes across all 
stages, including early, locally advanced and metastatic stomach cancer (Fig. 1D). The significance of expression 
for each gene compared between normal and tumor samples (p values), along with the number of samples in 
each stage are provided in Supplementary Table S2.

Stage‑specific upregulation of genes in GE cancers. We next examined the pattern of gene expres-
sion based on the specific-stage of the disease in GE cancers. In addition to the five overexpressed genes reported 
above, the stage-based analysis showed a differential expression of following genes based on the stage of the 
disease. Patients with stage I esophageal cancer had significantly higher expression of CPS1 (p = 0.003), PNP 
(p = 0.007), SERPINB8 (p = 0.042) and EHD1 (p = 0.046). In patients with stage II disease, MSN (p = 0.003), 
KRT5 (p = 0.004), TNC (p = 0.007), and NAP1L4 (p = 0.018) were overexpressed compared with other stages of 
the disease. In patients with stage IV esophageal cancer CYCS (p = 0.014), PON3 (p = 0.14), ACPP (p = 0.047), 
and RPL22 (p = 0.047) were significantly upregulated compared with patients with early-stage cancer. We did 
not notice a stage-specific upregulated gene in stage III esophageal cancer (Fig. 2A). The significance of expres-
sion for each gene compared between normal and tumor samples (p values), are provided in Supplementary 
Table S3. Likewise, the stage-based analysis in patients with stomach cancer showed a differential expression 
of several genes at the specific stages of the disease. Thus, patients with stage I, II, III, and IV stomach cancer 
have significantly higher overexpression of PYGB (p = 0.043), TNF (p = 0.02), HLA-A (0.05), and EFNB2 (0.001) 
genes, respectively (Fig. 2B). The significance of expression for each gene compared between normal and tumor 
samples (p values), are provided in Supplementary Table S4.

Leading progressively upregulated genes in GE cancers. We also examined if certain gene expres-
sion pattern intensifies in parallel with the progression of the disease. This analysis showed a gradual stage-wise 
increasing expression pattern for ANGPT2, APOC2, CXCL5, HIST1H1E, IL17A, IL2RA, IL8, OSM, PF4V1, and 
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Figure 1.  (A) The comparison between patients with esophageal cancer versus control individuals showed 
significant overexpression BIRC5, APOC2, CENPF, STMN1, and HNRPC in patients with esophageal cancer. 
(B) BIRC5, APOC2, CENPF, STMN1, and HNRPC significantly overexpressed across all stages in patients with 
esophageal cancer. (C) The comparison between patients with stomach cancer and healthy control showed 
significant overexpression of CST1, INHBA, ACAN, HSP0AB1, and HSPD1 in patients with stomach cancer. 
(D) Assessment of CST1, INHBA, ACAN, HSP90AB1, and HSPD1 in different stages of stomach cancers 
showed a significant overexpression of these genes across all stages in patients with stomach cancer.
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SAA4 in esophageal cancer. Among them, a gradual increase from early-stage cancer to more advanced stages 
were strongest for APOC2 and IL8 genes followed by for SAA4 and OSM genes, whereas HIST1H1E, PF4V1, 
CXCL5, and IL2RA expression showed limited stage-wise upregulation (Fig. 3A). In the stomach cancer, the 
stage-wise analysis showed a gradual increasing expression pattern for AGRN, CETP, FGL1, HABP2, MDK, 
OSMR, RNASE2, SELE, SERPINE1, and VCAN. Among them, the upregulation from the early-stage cancer to 
more advanced stages were the strongest for RNASE2, SERPINE1, and CETP (Fig. 3B).

Leading downregulated genes in GE cancers. In addition to the upregulated genes, we also exam-
ined leading downregulated genes that could play a major role in pathogenesis and progression of cancer. Our 
analysis showed that following five genes were most significantly downregulated in esophageal cancer: C16orf89 
(9.78E−08), AR (1.01E−07), CKB (1.17E−07), ADH1B (1.79E−07), and NCAM1 (2.15E−07) (Fig. 4A). We did 
not observe any stage-specific down-regulation for esophageal cancer. However, the stage-wise analysis showed 

Figure 2.  (A) Stage-based analysis of esophageal cancer showed a differential expression of various genes based 
on the stage of the disease. (B) Stage-based analysis showed a differential expression of various genes based on 
the stage of the disease in patients with stomach cancer.
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a gradual downregulation of the following genes from stage I to IV esophageal cancer: AHNAK, APOM, ART3, 
CAMK2D, MB, MEGF8, MMRN1, PROC, S100A1, and TNFRSF10C (Fig. 4B).

In patients with stomach cancer following five genes were most significantly downregulated: GPX3 (1.65E−19), 
CLEC3B (5.70E−19), CFD (5.68E−18), GSN (4.5 IE−17), and CCL14 (1.12E−16) (Fig. 4C). The stage-based 
analysis showed that C1R (2.34E−04), A2M (3.15E−04), LTBP1 (3.15E−04), SERPING1 (4.23E−04), and BASP1 
(4.88E−04) were significantly downregulated only in patients with stage I (early-stage) stomach cancer whereas 
SERPINB6 (2.0E−03), G0S2 (1.80E−02), HSD17B10 (2.50E−02), ECM1 (2.60E−02), and PRDX1 (2.80E−02) 
were significantly downregulated in patients with stage III (locally advanced) stomach cancer (Fig. 4D). The 
significance of expression for each gene compared between normal and tumor samples (p values), are provided 
in Supplementary Table S5. The stage-wise analysis also revealed a progressive downregulation of the following 
genes from stage I to IV stomach cancer: ACAA1, AZGP1, BLVRB, CYB5A, EPHX2, FBP1, REG1A, SECTM1, 
SELENBP1, and TPPP3 (Fig. 4E,F). The significance of expression for each gene compared between normal and 
tumor samples (p values), are provided in Supplementary Table S6.

Measuring robustness and significance of the identified biomarkers. We next sought to evaluate 
the predictive accuracy of the leading candidates as potential biomarkers in GE cancers. Towards this, we calcu-
lated the similarity and dissimilarity matrices. These matrices were used to construct the co-expression network 
with weighted co-expression network analysis (WGCNA)13. Using complex network analysis, we calculated the 
centrality of the genes in the constructed network and verified the importance of biomarkers. The log RCC 
calculated for the differentially expressed genes between normal and tumor samples are shown in Fig. 5A,B for 
esophageal and stomach cancers, respectively. To statistically confirm our conclusion, we applied the paired 
samples Wilcoxon signed-rank test to  log2(RCC) of the identified biomarkers between normal and tumor sam-
ples for both cancer types and found them to be significant (p < 0.05). Based on these results, we are confident on 
our predictive accuracy of these genes as potential biomarkers.

Since the sample sizes of the esophageal and stomach cancer datasets were small, a fivefold cross validation 
was adopted to evaluate the performances of SVM models on each dataset. The corresponding mean ROC curves 
of 50 executions of fivefold cross validation are illustrated in Fig. 5C,D. For the esophageal cancer dataset, the 
feature sets include the up-regulated genes (Fig. 1A), the down-regulated genes (Fig. 4A) and five randomly 
selected genes. Similarly, for the stomach cancer dataset, the feature sets include the up-regulated genes (Fig. 1C), 
the down-regulated genes (Fig. 4C) and five randomly selected genes as the third set. The model based on the 
up-regulated gene group has the AUC of 0.9941 with standard deviation of 0.0031 for esophageal cancer and 
the AUC of 0.9924 with standard deviation of 0.0038 for stomach cancer. Likewise, the AUC of the downregu-
lated genes are 0.9788 (standard deviation 0.0265) and 0.9770 (standard deviation 0.0114) for esophageal and 
stomach cancers respectively. Meanwhile, the classifier model using the random selected genes has the lowest 
AUC score 0.9280 with standard deviation of 0.1137 for esophageal cancer and 0.5603 with standard deviation 
of 0.1664 for stomach cancer. This suggests that the features based on the differentially expressed genes are 
significant at identifying patients from normal samples compared with randomly selected genes. Specifically, 
the AUC scores of both the esophageal and stomach cancer using the up-regulated genes are greater than 0.99, 
which illustrates our proposed biomarkers have strong capability at differentiating the class of cancer patient 
samples from normal samples.

Discussion
Our investigation identified leading genes that are upregulated or downregulated in patients with GE cancers. 
We specifically focussed on those genes whose protein products can be detected in the plasma, as measured in 
the plasma proteome database. Thus, our investigation has a direct translational impact. The abnormal gene 
expression plays a pivotal role in tumor development and  progression5. We noted that compared to normal tissue, 
BIRC5, CENPF, STMN1, APOC2, and HNRPC were the five most significantly upregulated genes in esophageal 
cancer. Furthermore, these genes were also overexpressed in stomach cancer.

The baculoviral IAP repeat containing 5 (BIRC5) gene, also known as survivin, is a member of the inhibitor of 
apoptosis (IAP) family, where it encodes regulatory proteins that prevent apoptotic cell death. Survivin localizes 
to the mitotic spindle and participates in regulating mitosis. In addition to GE cancers, it is highly expressed in 

Figure 3.  (A) Stage-wise incremental over-expressions of leading genes in patients with esophageal cancer. (B) 
Stage-wise incremental over-expressions of leading genes in patients with stomach cancer.
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Figure 4.  (A) Comparison between healthy control and patients with esophageal cancer showed that C16orf89, 
AR, CKB, ADH1B, and NCAM1 were the top five genes that were significantly down regulated in patients with 
esophageal cancer. (B) Stage-wise incremental downregulation of leading genes in patients with esophageal 
cancer. (C) Comparison between healthy control and patients with stomach cancer showed that: GPX3, 
CLEC3B, CFD, GSN, and CCL14 were the top five genes that were significantly down regulated in patients with 
stomach cancer. (D) The stage-based analysis showed a differential downregulation of various genes based on 
the stage of the disease. (E) Stage-wise incremental downregulation of leading genes in patients with stomach 
cancer. (F) Stage-wise downregulation of leading genes in patients with stomach cancer.
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various other malignancies and is associated with poor outcomes including a shorter survival  period19–21. CENPF 
gene encodes centromere protein F that associates with the centromere–kinetochore complex. CENP-F protein 
is thought to be a cell cycle regulated protein that may play a role in chromosome segregation during mitosis. 
Interestingly, there is evidence that CENPF expression is associated with inferior outcomes in patients with 
esophageal cancer and patients with lower CENPF expression had a better survival rate compared with those with 
higher CENPF  expression22. The CENPF gene is also amplified in other solid tumors including hepatocellular 
and breast cancers and correlates with patients’  outcomes23–25. As cancer cells undergo active division, perhaps 
the up regulation of genes like BIRC5, CENPF could be a direct consequence of active mitosis.

STMN1 belongs to the stathmin family of genes and encodes a cytosoplasmic phosphoprotein stathmin 1. 
The encoded protein belongs to the family of microtubule-destabilizing proteins that control the assembly and 
disassembly of the mitotic spindle and thereby, regulate mitosis. Similar to esophageal cancer, STMN1 is highly 
expressed in various cancers, including leukemia, breast, prostate and lung cancer, and is a promising target for 
cancer  therapy26,27. There is some evidence that it may have a prognostic significance in the early-stage gastric 
cancer. For example, a study that evaluated STMN1 role in both operable and advanced gastric cancers showed 
that in the operable cohort, STMN1 expression correlated with cancer recurrence, and resistance to adjuvant 
 therapies28.

In contrast to the relatively known roles of BIRC5, CENPF, and STMMN1 in malignancies, functions of 
APOC2 and HNRNPC genes in cancer cell are less well defined. The APOC2 gene encodes a lipid-binding 
protein that belongs to the apolipoprotein family and is a component of the very low-density lipoprotein. This 
protein activates the enzyme lipoprotein lipase, which hydrolyzes triglycerides. APOC2 mutations could cause 
hyperlipoproteinemia type IB, characterized by hypertriglyceridemia, xanthomas, and early  atherosclerosis29,30. 
HNRNPC gene encodes a protein that belongs to the subfamily of ubiquitously expressed heterogeneous nuclear 
ribonucleoproteins (hnRNPs). The hnRNPs are RNA binding proteins and are associated with pre-mRNAs in 
the nucleus. These proteins are involved in pre-mRNA processing and other aspects of mRNA metabolism and 

Figure 4.  (continued)
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transport along with cell proliferation and  differentiation31. However, functions of hnRNPs in tumorigenesis and 
cancer progression in solid and hematological malignancies are not well  understood32.

Our analysis showed that compared with normal stomach tissue, CST1, INHBA, ACAN, HSP90AB1, and 
HSPD1 were the leading five genes that were overexpressed in stomach cancer. These genes were also upregu-
lated in patients with esophageal cancer. The CST1 gene encodes a secretory peptide called Cystatin SN, which 
is a cysteine proteinase inhibitor. Cysteine proteases are involved in tissue remodeling during development, and 
they support the migration of cancer cells. CST1 itself is known to promote proliferation, clone formation, and 
metastasis in breast cancer cells and high CST1 expression is negatively correlated with breast cancer  survival33. 
CST1 has also been considered as a potential tumor marker in various epithelial  malignancies33,34. Of note, a 
study involving patients with esophageal squamous cell carcinoma whose tumors express high levels of Cysta-
tin SN showed favorable survival compared with those patients with low Cystatin SN  expression35. Inhibin-βA 
(INHBA), a ligand belonging to the transforming growth factor-β superfamily, is associated with cell proliferation 
in cancer. INHBA is overexpressed in various types of cancers including esophageal and stomach  tumors36,37. 
Overexpression of the INHBA gene is considered a useful independent predictor of outcomes in patients with 
gastric cancer after the curative surgery. High INHBA gene expression has shown to be associated with signifi-
cantly poorer 5-year overall survival compared with low expression cases in patients with stomach  cancer37. 
HSPD1 and HSP90AB1 belong to heath shock protein (HSP) group and encodechaperonin family  proteins38. 
HSPD1 encodes a mitochondrial protein, which is important for assembly of imported proteins in the mito-
chondria and may function as a signaling molecule in the immune system. HSP90AB1 is thought to play a role 
in gastric apoptosis and inflammation. HSPs control a wide variety of signaling and cellular responses and have 
been classified into several subfamilies such as the HSP60s, HSP70s, HSP90s, and  HSP100s39. HSP expression 
often correlates with patient prognosis in various  malignancies40–42 For example, HSP60 has been identified as 
an independent prognostic factor for both overall survival and recurrence-free survival in patients with early-
stage stomach  cancer42. The ACAN gene is a member of the aggrecan/versican proteoglycan family. The encoded 
protein is an integral part of the extracellular matrix in cartilaginous tissue, and it withstands compression in 
cartilage. Mutations in this gene may be involved in skeletal dysplasia and spinal degeneration, however, its role 
in cancer is not well understood.

With respect to downregulated genes, C16orf89, AR, CKB, ADH1B, and NCAM1 were the leading downregu-
lated genes in patients with esophageal cancer. C16orf89 is predominantly expressed in the thyroid gland and is 
involved in the development and function of the  thyroid43. Its role in tumorigenesis and progression has not been 
elucidated yet. The androgen-receptor (AR) gene encodes AR. Once AR binds its hormone ligand testosterone, 
it translocates into the nucleus, and stimulates transcription of androgen responsive  genes44. In vitro evidence 
suggests a significant influence of sex hormones upon cancer  growth44,45. For example, AR pathway plays an 
important role in the development of prostate cancer and various other epithelial malignancies including blad-
der, kidney, lung, breast, liver and  ovary45. However, AR role in GE cancers development and progression is not 
 known46. CKB or creatinine kinase B gene encodes a cytoplasmic enzyme that is involved in energy homeostasis. 
Its dysregulation could promote cancer invasiveness and  progression47. Similar to AR, its disease modulating 
effect in GE cancers is unknown. ADHIB encodes alcohol dehydrogenase 1B enzyme. Evidence suggests that 
genetic polymorphisms of this enzyme has been associated with the increased risk of the aerodigestive cancer 
triggered by alcohol  consumption48. The NCAM1 gene encodes a cell adhesion protein, a member of the immu-
noglobulin superfamily that is involved in both cell to cell and cell to matrix interactions. Its downregulation has 
been linked to cancer progression and development of metastases in gastrointestinal and other  malignancies49.

In patients with stomach cancers, GPX3, CLEC3B, CFD, GSN, and CCL14 were the leading five genes that 
were most significantly downregulated. GPX3 encodes glutathione peroxidase that belongs to a family of sele-
nocysteine-containing redox enzymes that play important roles in cell signaling and immune  modulation50. 
Consistent with our observation of its downregulation, promoter hypermethylation and downregulation of 
GPX3 in melanoma, stomach, head and neck, cervical and lung cancers suggest that GPX3 serves as a tumor 
suppressor in these  cancers50,51. C-Type Lectin Domain Family 3 Member B (CLEC3B) is a member of the C-type 
lectin superfamily that encodes tetranectin. Dysregulation of CLEC3B has been reported in various epithelial 
cancers including stomach  cancer52,53. Chen and others using TCGA database also noted downregulation of 
CLEC3B in stomach cancer. However, when they evaluated 328 patients with early-stage stomach cancer, high 
intratumoral tetranectin level was significantly associated with tumor invasion, lymph node metastasis, advanced 
TNM stage, and a shorter overall  survival53. CFD or complement factor D encodes a serine protease that catalyze 
breakdown of factor B a rate limiting step of alternative pathway of complement activation. Impaired balance of 
complement activation could promote inflammation and tumorigenesis resulting in malignant cells proliferation, 
migration, invasiveness and  metastasis54,55. GSN or Gelsolin gene encodes a protein that is involved in assem-
bly and disassembly of actin filaments. Gelsolin has been attributed in prostate tumorigenesis and malignant 
 transformation56,57. The C–C type chemokine 14 gene is known to induce targeted cell migration and is thought 
to play a role in carcinogenesis and metastasis of certain malignancies including breast  cancer58,59.

Aside from the leading upregulated and downregulated genes in patients with GE cancers, we also noted a 
stage-wise upregulation of several genes, such as APOC2, IL8, RNASE2, SERPINE1, and CETP, and stage-wise 
downregulation of other genes that play important role in and survival, including AHNAK, MEGF8, MMRN1, 
PROC, REG1A, SECTM1, TNFRSF10C, and TPPP3. The stage-related expression of these genes suggests their 
potential role in the disease progression and utility as monitoring markers or therapeutic targets. The choles-
teryl ester transfer protein (CETP) for example maintains cholesterol homeostasis and has been identified as a 
potential target for estrogen positive breast  cancer60. Conversely, AHNAK can act as a tumour suppressor gene 
and mediates the negative regulation of cell  growth61.

Furthermore, we also evaluated the predictive accuracy and the significance of the genes we identified. In 
recent years, deep neural networks have achieved enormous successes for such  applications62–64. However, deep 
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learning networks was not adopted in this study. This is primarily because, deep learning algorithms are non-
linear and normally has millions of  parameters65. Since the aim of our study is to identify key biomarkers for GE 
cancers, the explanation of model is crucial to evaluate the significance of genes. Contrarily, the classical machine 
learning models, such as linear models, provide a direct relationship between features and their prediction which 
makes it relatively straightforward to reason the decision mechanism of the model. Also, to avoid overfitting, 
more data are needed for the training of deep learning models. Moreover, the variations of the training data are 
necessary to construct a robust model. As the dataset sizes are not large in this study, the deep learning model 
will result in overfitting, if we apply deep learning to these datasets.

While our work provides a significant amount of novel information regarding the behavior of cancer-related 
molecules in GE cancers, it does not assess the level of gene expression based on the molecular classification of 
stomach and esophageal  cancers7. Furthermore, we did not have information on histopathology of these cancer 
types and therefore, were not able to segregate the data based on histopathology. Finally, while we examine the 
up/down regulated genes, solely from the perspective of their differential expression, it will be interesting to 
investigate these candidates in cohorts of immunodeficient patients as it will provide additional knowledge on 

Figure 5.  (A) The log ratio of closeness centrality (RCC) between normal and tumor samples for the proposed 
potential biomarkers in Esophageal cancer. (B) The log ratio of closeness centrality (RCC) between normal 
and tumor samples for the proposed potential biomarkers in Stomach cancer. (C) Comparison of ROC curves 
with features of the leading up-regulated genes, the leading down-regulated genes and the random selected 
genes for classification of tumor and normal samples in esophageal cancer. The dashed blue line in the diagonal 
presents the ROC curve of a random predictor, which has an AUC of 0.5 and can be used as the baseline to 
validate the effectiveness of our models. The mean AUC scores of the SVM models based on the up-regulated 
genes and the down-regulated genes are 0.9941 (standard deviation: 0.0031) and 0.9788 (standard deviation: 
0.0265), respectively. The mean AUC of the comparison group, which uses the random selected genes, has the 
lowest score 0.9280 (standard deviation: 0.1137). (D) Comparison of ROC curves with features of the leading 
up-regulated genes, the leading down-regulated genes and the random selected genes for classification of tumor 
and normal samples in stomach. The dashed blue line in the diagonal presents the ROC curve of a random 
predictor, which has an AUC of 0.5 and can be used as the baseline to validate the effectiveness of our models. 
The mean AUC scores of the SVM models based on the up-regulated genes and the down-regulated genes are 
0.9924 (standard deviation: 0.0038) and 0.9770 (standard deviation: 0.0114), respectively. The mean AUC of 
the comparison group, which uses the random selected genes, has the lowest score 0.5603 (standard deviation: 
0.1664).
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how these candidates may promote adaptive alterations of host gut- and tissue-based  microbiome66. In summary, 
the present study identified leading upregulated and downregulated genes in GE cancers. Since expression of 
the upregulated genes was minimal in both stomach and esophageal normal tissues, these genes have a strong 
potential to become diagnostic and therapeutic biomarkers for screening and early detection of cancer, recur-
rence following surgery and for anti-cancer therapies. Future studies will be required for validating diagnostic, 
therapeutic and prognostic importance of these genes. Our group plans to prospectively evaluate prognostic 
and predictive values of selected genes in a cohort of patients with metastatic gastroesophageal cancer who are 
treated with combination chemotherapy.
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