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Abstract

Extreme weather events affect the development and survival of disease pathogens and vec-

tors. Our aim was to investigate the potential effects of heat waves on the population dynam-

ics of Asian tiger mosquito (Aedes albopictus), which is a major vector of dengue and Zika

viruses. We modeled the population abundance of blood-fed mosquito adults based on a

mechanistic population model of Ae. albopictus with the consideration of diapause. Using

simulated heat wave events derived from a 35-year historical dataset, we assessed how the

mosquito population responded to different heat wave characteristics, including the onset

day, duration, and the average temperature. Two important observations are made: (1) a

heat wave event facilitates the population growth in the early development phase but tends

to have an overall inhibitive effect; and (2) two primary factors affecting the development are

the unusual onset time of a heat wave and a relatively high temperature over an extended

period. We also performed a sensitivity analysis using different heat wave definitions, justify-

ing the robustness of the findings. The study suggests that particular attention should be

paid to future heat wave events with an abnormal onset time or a lasting high temperature in

order to develop effective strategies to prevent and control Ae. albopictus-borne diseases.

Author summary

Understanding the population dynamics of Asian Tiger mosquito (Ae. albopictus)–the

most prevalent vector of global epidemics including West Nile virus, dengue fever, Zika–

could shed lights on improving the understanding of vector transmission as well as devel-

oping effective disease control strategies. It is widely acknowledged that the life cycle of

Ae. albopictus is firmly regulated by meteorological factors in a non-linear way and is sen-

sitive to climate change. Our study extends the understanding about how extreme heat

events manipulate the mosquito population abundance. We adopted an existing mecha-

nistic population model of Ae. albopictus, combined with a rich set of simulated heat wave

events derived from a 35-year historical dataset, to quantify the mosquito’s responses to

different heat wave characteristics. We found that an abnormal onset time and a lasting
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high temperature play the most important role in affecting the mosquito population

dynamics. We also performed a sensitive analysis by changing the definition of the heat

wave, justifying the rigor of the conclusion. This research provides implications for devel-

oping public health intervention strategies: to control dengue fever, Zika, as well as other

far-reaching mosquito-borne epidemics, priority should be given to heat wave events with

an abnormal onset time or a lasting high temperature.

Introduction

Originated from Southeast Asia, Asian tiger mosquito (Aedes albopictus) is the most prevalent

vector in all continents except the Antarctica [1, 2, 3, 4, 5]. The pathogens it transmits pose a

severe threat to human health by global epidemics, including dengue and Zika arboviruses.

For instance, the dengue incidence has increased six-fold from 1990 to 2013, with cases more

than doubled every decade [6]. This historical evidence suggests a crucial need to develop

effective disease control and intervention strategies in order to minimize the risk of epidemic

spread and infection [7, 8]. Meanwhile, the Zika virus, being detrimental to children born with

microcephaly and neurological disorders, has spread from Brazil to twenty-six other countries

or territories in the Americas within one year [1]. Despite the increasing infections and rapid

spread of these arboviruses, no effective antiviral treatment exists. Thus, controlling the devel-

opment of mosquito vectors becomes a viable option for curbing the disease transmission,

especially in regions with limited public health resources [9].

The life cycle and transmission of most infectious agents are inextricably linked to climate

[10]. Ae. albopictus is a small-bodied ectotherm; its population abundance and dynamics are

firmly regulated by meteorological factors [11] and are sensitive to climate change [5], [12].

Temperature influences many aspects of Ae. albopictus’ life cycle in a non-linear fashion [13, 14,

15]. Lukewarm temperature fosters the development of mosquito at the stages of egg incubation

[13], larval pupation [14], and pupal eclosion [15]; and it shortens the extrinsic incubation

period, eventually expediting the transmission cycle and adult production [15]. However, when

temperature exceeds a certain threshold, the effects on the mosquito development become con-

trastingly different and even detrimental [15]. It was tested that the duration of the gonotrophic

cycle or the oviposition extended and the number of laid eggs decreased when the temperature

rose above 35.0˚C [16]. Findings from forecasting models also proved that the mosquito popu-

lation tended to decrease in certain tropical regions under extremely hot weather [17].

The mechanism leading to the population dynamics of Ae. albopictus has yet to be eluci-

dated [14, 15, 16, 18]. An obstacle to the identification is the uncertainty of climatic conditions,

such as the onset, peak, and duration of extreme weather events, which are globally heteroge-

neous and regionally specific. Furthermore, seeking the theoretic pathway to the mosquito

development is becoming more challenging, since the global climate manifests a higher degree

of oscillation [19, 20, 21]. A coupled global climate model predicts that heat waves, as common

extreme weather events, will become more frequent and longer-lasting in the second half of

the 21st century [22]. Despite few instances exploring the statistical links between heat waves

and the mosquito ecology, the climate-driven mechanism has been poorly understood [23].

Specifically, little is known about how heat wave characterisitics (e.g., the onset day of a heat

wave, the duration of a heat wave) affect the development. This existing knowledge gap obfus-

cates developing effective strategies to prevent and control mosquito-borne epidemics.

Many studies have employed controlled experiments to identify the response of Ae. albopic-
tus to extremely high temperature [14, 15, 16, 18]. These studies, however, cannot capture the

full range of parameters in the mosquito’s life stages, since the development process is
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relatively slow, complicated, and unrepeatable. Statistical methods (e.g., multivariate regres-

sion models) are able to establish the long-term association between environmental factors

and population growth, but they are invariably focused on the aquatic stages (e.g., larvae) and

are thus unable to characterize the growth parameters in the aerial stages (i.e., adults) and

explain the intricacy of the transition between stages [24]. Most importantly, the few recorded

heat wave events at data collection sites pose a considerable challenge to the model validation.

To overcome the data issue, computer-based simulations of the weather processes offer an

alternative solution [25]; however, very few existing studies are focused on the impact of

extreme weather [23]. In addition, most simulation studies rely on statistical models while

overlooking the intrinsic process of the development within the mosquito’s life-history stages.

The mechanistic population model, which establishes the multi-stage development of the

mosquito by a series of differential equations, has become popular in the entomological

research of mosquitoes [26, 27, 28]. Recently, Jia et al. [29] proposed a mechanistic population

model that accounts for the diapause behavior, referring to the inactive state in which the mos-

quito is unable to hatch and ceases from the development in order to survive extreme environ-

mental conditions (e.g., high temperature, extreme desiccation). This model, termed the

mechanistic population model of Ae. albopictus with diapause (MPAD), has been further

explored in this paper to identify the mechanistic associations between heat waves and the

population abundance of Ae. albopictus. A 35-year historical heat wave dataset was employed

to extract key climatic elements. Finally, a rich set of mathematical simulations were conducted

to thoroughly investigate the important mechanisms responsible for the population dynamics

of Ae. albopictus caused by heat waves.

Materials and methods

Study area

Our study area is in Guangzhou (113.23˚E, 23.17˚N) (Fig 1)—the largest city of Southwest

China with over 12.7 million population and a population density of 1,708 residents per km2

[30]. This mega-city has a distinct subtropical climate with an average annual temperature of

21.9˚C and an annual rainfall ranging from 1,370 to 2,353 mm. The humid and warm climate

is favorable for Ae. albopictus to survive and grow. In 2014, an unprecedented outbreak of den-

gue fever occurred in Guangzhou, causing 37,305 cases of infections [30]. This outbreak was

attributed to the combined effects of the urban heat island and climate change, including more

frequent and intense heat wave events [31].

Fig 1. The study area: Guangzhou, China. The map was produced by ESRI ArcMap 10.4. The data used for the map

was open access and was provided by ESRI ArcGIS Online.

https://doi.org/10.1371/journal.pntd.0007528.g001
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Mechanistic population model

The theoretical foundation of the study is the climate-driven and process-based MPAD model

[29, 32]. The MPAD model formulates the continuous development of Ae. albopictus in a

seven-stage process using a bottom-up approach, as shown in Eqs (1) through (7). These seven

stages include eggs (E, including non-diapause E0 and diapause Edia, Eq (1)), larvae (L, Eq (2)),

pupae (P, Eq (3)), emerging adults (Aem, Eq (4)), blood-fed adults (Ab, Eq (5)), gestating adults

(Ag, Eq (6)), and ovipositing adults (Ao, Eq (7)). In each equation (representing one develop-

ment stage), the variation of daily population abundance (marked in the prime notation) is

determined by (1) the accumulated population from the last stage, (2) the mortality at the cur-

rent stage, and (3) the population developing into the next stage. The life-history traits are

driven by both climate-dependent parameters and climate-independent parameters. The cli-

mate-dependent parameters include daily mean temperature, daily accumulated precipitation,

and daily photoperiod. These variables, derived from the experimental results [12, 16, 33, 34],

are given in S1 Table and S2 Table. One highlight of the MPAD model is the consideration of

diapause. Diapause-related parameters, as indicated by the subscript dia in Eqs (1) through

(7), are defined to indicate whether the mosquito eggs are dormant or whether adults suspend

the hatching activity under extreme conditions [35, 36].

The performance of the MPAD model was evaluated in our previous work by comparing

against field Ae. abopictus container index (CI) in two Chinese cities: Guangzhou and Shang-

hai [29]. The coefficient of determination (r2) was 0.84 in Guangzhou and 0.90 in Shanghai,

which showed a significant improvement over previous mechanistic population models. The

better performance was attributed to the inclusion of diapause-related parameters and the

modification of temperature-driven parameters. These adjustments are of critical importance

in regions characterized by considerable seasonality (e.g., temperate zones), where the intra-

annual dynamics of mosquito population only emerges with one peak.

_E0 ¼ ð1 � z1ÞbA0 � ðmE þ fEÞE0

_Edia ¼ z1bA0 � ðmdia þ z2fdiaÞEdia

E ¼ E0 þ Edia

ð1Þ

8
><

>:

_L ¼ fEE0 þ z2fdiaEdiað Þ � mL 1þ
L
KL

� �

þ fL

� �

L ð2Þ

_P ¼ f LL � ðmP þ fPÞP ð3Þ

_Aem ¼ fPse
� mem 1þ P

KPð ÞP � mA þ zdiagAem

� �
Aem ð4Þ

_Ab ¼ zdiaðgAem
Aem þ gAo

AoÞ � ðmA þ mr þ zdiagAb
ÞAb ð5Þ

_Ar ¼ zdiagAb
Ab � ðmA þ fAg

ÞAg ð6Þ

_A0 ¼ fAg
Ag � ðmA þ mr þ zdiagAo

ÞAo ð7Þ
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Definition and characteristics of heat waves

The heat wave (HW) is an extended period of continuously hot weather, typically followed by

a high level of humidity [22]. However, since local acclimatization and adaptation influence

the impact of extreme heat, there is no globally accepted measure of heat waves [37]. A widely

used strategy is to define heat wave locally using both intensity and duration indicators [38,

39]. Here, we first adopted one heat wave definition given by the China National Standard: a

heat wave refers to an extreme weather event where the daily maximum temperature is greater

than or equal to 35.0˚C for at least three consecutive days (HW Definition I) [40].

To extract the historical heat wave events, we acquired all available daily temperature and

precipitation measurement data in Guangzhou from the China Meteorological Data Sharing

Service System, and generated a 35-year climate dataset spanning from 1980 to 2014 [41]. We

also derived the photoperiod data from the National Oceanic and Atmospheric Administra-

tion [42]. Using the temperature dataset, we identified all heat waves in the study area.

Heat wave events operate at both fast and slow rates with various degrees of severity. These

processes can be characterized by the onset day (OHW, the first day in day of year [DOY] when

a heat wave occurs), the duration (DHW, the period of consecutive heat wave days), and the

average daily mean temperature (THW
ave ). Their descriptive statistics are shown in Table 1. The

frequency distributions (fit by trend curves) of their characteristics are summarized in Fig 2.

The only year without an occurrence is 1996, after which an increased frequency can be identi-

fied (Fig 2A). The occurrences have a strong seasonality, where the most frequent DOYs range

from mid-July to mid-August (Fig 2B). More than two-thirds of events (n = 86) have lasted

three to four days (Fig 2C). In addition, the peak of THW
ave ranges from 29.7–30.5˚C (Fig 2D)

and the peak of the maximum of the daily maximum temperature (THW
max ) is around 35.5–

36.8˚C (Fig 2E).

As the heat wave is a complex extreme weather event, the estimates of the recurrence proba-

bilities of heat waves are used as the proxy for the temporality of their occurrences [43], which

are calculated from the probability distributions (Pdf) of OHW,DHW, and THW
ave , as given by Eqs

(8) through (10).

pdf OHWð Þ ¼ exp �
OHW � 211

26

� �2
( )

ð8Þ

pdf ðDHWÞ ¼ 4:7e� 4:7ðDHW � 3Þ þ 3;DHW � 3 ð9Þ

pdf THW
ave

� �
¼ exp �

THW
ave � 30:1

0:71

� �2
( )

ð10Þ

Table 1. Descriptive statistics of heat wave characteristics based on HW Definition I (n = 127, 1980–2014).

OHW (DOY) DHW (days) THW
ave ð

�CÞ

Mean 211 4.7 30.1

S.D. 26 2.5 0.71

Min. 144 3 28.0

1st quartile (Q1) 193 3 29.7

2nd quartile (Q2) 211 4 30.2

3rd quartile (Q3) 232 5 30.5

Max. 271 18 32.3

https://doi.org/10.1371/journal.pntd.0007528.t001
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Creating synthetic temperature series

In order to evaluate the effects of heat waves on population abundance, one assumption is to

make the non-heat wave conditions constant across the period of observation without inter-

annual variability. Thus, we calculated the averaged annual daily mean temperature (T) over

35 years using Eq (11), as shown in Fig 3A. We also derived the time series of two other key cli-

matic variables required by the MPAD model: the daily accumulated precipitation (P) and the

photoperiod (PP) (Eq 11). The temperature series T was then replaced by the temperature of a

heat wave event (THW, the red line in Fig 3B) during the heat wave DOYs (Eq 12). This new

synthetic temperature series was labeled as T’ (Fig 3B). A total of 127 such temperature series

Fig 2. The frequency distributions of heat wave characteristics in Guangzhou, China (1980–2014). The Y-axes are the

frequency (count), the X-axes are (a) year of occurrence, (b) onset day (DOY), (c) duration (days), (d) average daily mean

temperature (THW
ave ), (e) maximum of the daily maximum temperature (THW

max), respectively.

https://doi.org/10.1371/journal.pntd.0007528.g002

Fig 3. (a) 35-year averaged annual daily mean temperature series (T); (b) simulated heat wave temperature series (T’);
(c) extrapolated 3-year temperature series, where Year 1 and Year 3 are derived from T and Year 2 is derived from T’.

https://doi.org/10.1371/journal.pntd.0007528.g003
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T’ were generated. In addition, we also found that using a single year is insufficient to identify

the climate-driven mechanism, as the result is largely dependent on the conditions in Year 1

[27, 28, 29]. Thus, we extrapolated the 3-year temperature curve by placing T’ in Year 2 (Fig

3C). We then designed experiments to test the effect of the 3-year temperature curve on the

population abundance in Year 2 and Year 3.

Xj ¼
1

35

P35

i¼1
Xi

j ð11Þ

i = 1. . .35 (year)

j = 1. . .365 (day)

X = T, P, PP

T 0 ¼
THW OHW � DOYs � OHW þ DHW

T other DOYs
ð12Þ

(

Experimental design

The stage of blood-fed adults is of critical importance in the disease ecology. During this

period, the mosquito becomes an active transmission vector of disease pathogens [44]. For this

reason, we used the daily population abundance of the blood-fed adults to examine the heat

wave effects.

Here we compared the population dynamics between two groups of blood-fed adults: the

control group (A) under the non-heat wave scenario (T) and the test group (AHW) under the

heat wave scenario (T’). After deriving the daily population abundance of A and AHW by the

MPAD model, we calculated the relative difference in population (R(j)), as shown in Eq (13).

We then derived the duration of consecutive days (RD) when this relative difference exceeds

10% as a proxy for the heat wave effect, as shown in Eq (14).

R jð Þ ¼
jAHWðjÞ � AðjÞj

AðjÞ
; j ¼ 1 . . . 365 ð13Þ

RD ¼ jtE � tBj ð14Þ

where tB denotes the first day when R(j) exceeds 10% and tE denotes the last day when R(j)
exceeds 10%.

Then we tested the effect of each heat wave characteristic. Specifically, the proposed indica-

tor RD is treated as a function of three heat wave variables (OHW,DHW, and THW
ave ), as shown in

Eq (15).

RD � f ðOHW;DHW;THW
ave Þ ð15Þ

To test the contribution of each climatic factor, we designed three groups of sensitivity anal-

ysis. In each group, only one factor was treated as a test variable while the two other factors

were held constant as controlled variables, as shown in Table 2. For example, in the first group

({RD}~OHW), the value of OHW was randomly drawn from its probability distribution (Eq (8))

for 1,000 times, while the two other factors DHW and THW
ave were selected as the combinations of

their first, second, and third quartiles (the values were drawn from Table 1). This group of sim-

ulation generated a total of 9,000 runs.
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Results

Heat wave effects on mosquito population dynamics

The given heat wave definition generated a total of 127 synthetic heat wave temperature series

T’. These series of T’ served as the input into the MPAD model, further generating 127 daily

blood-fed adult population abundance curve AHW as the outcome. Comparatively, the popula-

tion abundance A under the non-heat wave scenario T was also derived. The overlay of simu-

lated heat wave population curves AHW is shown in Fig 4, which reveals that the historical heat

waves only occurred briefly from early summer into early autumn (DOYs2[144,271],

DHW2[3,18]). Their effects on the population abundance were also limited to the time period

when heat waves stroke and would not carry over to winter or the next year. In addition, the

heat wave occurrences mostly suppressed the mosquito development rather than promoted it,

as demonstrated by comparing A and one selected AHW (Fig 4 inset).

Effects of heat wave characteristics

We further examined how the population dynamics responded to the variation of individual

heat wave characteristics, including OHW(Fig 5A and 5B), DHW(Fig 5C), and THW
ave (Fig 5D).

For each test variable, we held the other two variables constant and included three specific

Table 2. Experimental design to test the effect of each heat wave characteristic.

Group Test variable Controlled variable

RD~OHW OHW: 1000 random draws from Eq (8) DHW = 3 (Q1) THW
ave ¼ Q1;Q2; or Q3

DHW = 4(Q2) THW
ave ¼ Q1;Q2; or Q3

DHW = 5 (Q3) THW
ave ¼ Q1;Q2; or Q3

RD~DHW DHW: 1000 random draws from Eq (9) THW
ave ¼ 29:7 (Q1) OHW = Q1,Q2, or Q3

THW
ave ¼ 30:2 (Q2) OHW = Q1,Q2, or Q3

THW
ave ¼ 30:5 (Q3) OHW = Q1,Q2, or Q3

RDeTHW
ave THW

ave : 1000 random draws from Eq (10) OHW = 193 (Q1) DHW = Q1,Q2, or Q3

OHW = 211 (Q2) DHW = Q1,Q2, or Q3

OHW = 232 (Q3) DHW = Q1,Q2, or Q3

https://doi.org/10.1371/journal.pntd.0007528.t002

Fig 4. Overlay of simulated blood-fed adult populations AHW derived from 127 heat wave temperature series T’.
The inset shows the comparison between one selected AHW (red curve, under one heat wave scenario T’) and A (black

curve, under the non-heat wave scenario T).

https://doi.org/10.1371/journal.pntd.0007528.g004
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cases for discussion. In addition, we generated the population abundance under the non-heat

wave scenario T (black curve in Fig 5) and derived its peak at DOY 192.

Fig 5A shows the examples of three heat waves with different onset days (i.e., OHW = 169,

179, and 189). These scenarios, with an onset day earlier than DOY 192, generated population

curves similar to that under the non-heat wave scenario. The early onset of heat wave slightly

advances the emergence of the population peak but has no cascading effect on the late stage

development (DOY > 225). However, when heat waves occur after DOY 192 (i.e., OHW = 205,

214, and 244), the population curves largely shift, where a greater level of variation is observed

(Fig 5B). Fig 5C shows three heat waves with different durations (i.e., DHW = 4, 7, and 18),

which demonstrates that the longer the event lasts, the greater extent it suppresses the popula-

tion growth. Lastly, Fig 5D shows three scenarios under different temperature conditions (i.e.,

THW
ave = 29.1, 29.6, and 30.7), where the resulting effects on the population abundance are not

significant. One noticeable pattern in all of these scenarios is that the population grows when

the heat wave strikes but plummets after a short period. Several factors may contribute to this

phenomenon. Environmentally, long-lasting heat waves can dry up shallow bodies of water

and subsequently deprive mosquitos of breeding grounds. Physiologically, heat waves can also

cause most mosquito species to spawn at once and then dry in unison when weather becomes

extreme. Several genes of heat shock protein—known to overcome high temperature stress—

tend to show downregulation in larvae when subject to thermal stress at 39˚C [45].

Fig 5. Simulated population curves by the MPAD model under different heat wave scenarios: (a) different OHW (before DOY 192),

(b) different OHW (after DOY 192), (c) different DHW, and (d) different THW
ave . The black curve represents the population abundance

under the non-heat wave scenario, where the peak is identified at DOY 192.

https://doi.org/10.1371/journal.pntd.0007528.g005
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Besides the visual assessment, we further quantified the effects via statistical regressions

based on the experimental design in Table 2. Specifically, we used RD—consecutive days when

the relative difference in the population abundance exceeds 10%—as a population index repre-

senting the heat wave effects. Fig 6 shows the associations between RD and OHW,DHW, THW
ave . In

Fig 6A–6C, the relationship between RD and OHW generally follows a quadratic form (average

r2 is around 0.90) with the trough appearing in late July (DOY 203–204). We noticed that in

Fig 6C, in addition to the quadratic curve, two peaks emerge in early June (DOY 160) and late

September (DOY 265) when both DHW and THW
ave are at their third quantiles (i.e, blue curve in

Fig 6C). In Fig 6D–6F, a significant linear correlation is observed between RD and DHW only

with a large OHW(i.e., late heat wave onset, blue lines in Fig 6D–6F). In Fig 6G–6I, RD and THW
ave

have a piecewise association, which is relatively flat before THW
ave = 30.5 and follows a linear pat-

tern afterwards. The full list of the mathematical relationships are included in S3 Table.

Sensitivity analysis of heat wave definitions

The definition of a heat wave event is regionally specific [39]. Since there is a lack of consensus

about the heat wave definition, we would like to examine if our results are robust when a dif-

ferent definition applies. To test the sensitivity of the MPAD model, we adopted two other

heat wave definitions that have been previously employed in Guangzhou [46, 47]. The second

definition is less restrict: a heat wave is defined as� 2 consecutive days with the daily mean

temperature at or above the 95th percentile of the year (HW Definition II) [46]. The last defini-

tion is a stricter criterion: a heat wave is defined as� 7 consecutive heat days with the daily

mean temperature at or above the 95th percentile (HW Definition III) [47].

Based on the same experimental design, we extracted the historical heat waves according to

each new definition. Their descriptive statistics are shown in S4 Table. Then, we simulated the

Fig 6. The relationships between RD and heat wave characteristics: (a-c) OHW, (d-f) DHW, and (g-i) THW
ave . Controlled variables are chosen as their first (Q1), second (Q2),

and third quartile (Q3).

https://doi.org/10.1371/journal.pntd.0007528.g006
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mosquito population AHW under each new heat wave definition and tested the relationship

between RD and the three heat wave variables OHW,DHW, and THW
ave following the simulation

design in Table 2. The results are shown in S1 Fig (for HW Definition II) and S2 Fig (for HW

Definition III). A total of 489 heat waves were extracted by using HW Definition II. It can be

observed from the results that the correlation patterns are in consistent with HW Definition I.

However, when HW Definition III was employed, only 12 heat waves were extracted. With the

few identified events, we were unable to establish a significant correlation pattern. It is thus

demonstrated that our simulation results are robust, when a sufficient number of observations

can be generated using a new definition.

Discussion

Although the evidence of heat wave effects on human health has grown significantly, the out-

comes on important vectors such as mosquitoes remain unclear. Utilizing a mechanistic popu-

lation model, we simulated the responses of Ae. albopictus to heat waves under various

scenarios. The mechanistic model is advantageous in connecting the climatic parameters to

the mosquito population abundance, which allows the mathematical interpretation of the

multi-stage development behavior in the mosquito’s life cycle [26, 27, 28]. Although part of

this work was initially inspired by laboratory experiments, controlled lab environments are

constrained by the subject quantities and cannot fully capture the adult stage of the mosquito.

Considering these limitations, we designed the MPAD model to simulate the life-history traits

of the mosquito.

As our analyses illustrate, the historical heat wave events primarily have negative effects on

the mosquito abundance. It is observed that a heat wave event could facilitate the population

growth in the early development phase but tends to have an overall inhibitive effect (Fig 5).

This conclusion was in line with previous knowledge: the preferable temperature range for the

Aedes mosquito to develop is 15–30˚C and the temperature of natural eradication is above

35˚C [48]. Although the mosquito development can be promoted by a lukewarm temperature,

it can be greatly curtailed when the temperature rises to a lethal threshold, which is not

unusual in summer. Thus, when a heat wave occurs and persists (i.e., daily maximum

temperature� 35˚C for at least three days), the mosquito development will be greatly

inhibited.

Our research also provides insights into the heat wave-mosquito relations according to the

distinct characteristics of the extreme weather, which, to the best of our knowledge, is among

the first to be investigated. Most previous studies solely relied on the degree of temperature to

identify the thermal reaction norm of mosquitoes [15, 48]. Supported by the systematic simu-

lation, we found that heat waves with distinct characteristics, including the onset day, dura-

tion, and average temperature, can manipulate the mosquito dynamics during the heat wave

period.

The onset time OHW plays a complex role in manipulating the population dynamics. The

quadratic relationship between the population index RD and OHW (Fig 6A–6C) further con-

firms that the change of the mosquito population is less influenced by a heat wave, if the event

emerges in late July. In Guangzhou, July is the month with the highest daily mean temperature;

and for this reason, the mosquito could naturally adapt to the extreme weather. However, if

the heat wave strikes relatively early or late, the mosquito population may not well adapt to the

changing seasonality; thus, their development will exhibit different degrees of abnormity.

The effects of duration DHW and the daily mean temperature THW
ave are more complex. It can

be observed that the relationships between the population index RD and DHW are evident only

when THW
ave is high (Fig 6F). Also, the relationships between the population index RD and THW

ave
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are in the forms of piecewise functions: only when THW
ave rises above a threshold (i.e., 30.5˚C in

our simulation results) can the reduction in population becomes noticeable (Fig 6G–6I). These

observations signify that a heat wave with a modest high temperature will not affect the devel-

opment, no matter how long it lasts. The mosquito population will be significantly reduced

only if the temperature rises beyond a certain threshold.

So far, we have illustrated the capacity and strength of the MPAD model in simulating the

population dynamics of Ae. albopictus. Our study is also the first to assess the climatic influ-

ence on the mosquito using different heat wave definitions. Our conclusions are relatively

robust when a different heat wave definition applies. Because of the nature of simulation mod-

els, we still recommend that regional specific investigations are needed to better define and

articulate heat wave events, as the mosquito may evolve and adapt to a different level of cli-

matic conditions [49].

Several limitations in this study should be mentioned. First, only static multivariate analysis

was employed to investigate the regression between the population dynamics and heat wave

characteristics, while ignoring the time lag effect. Many previous studies have identified the

crucial role of time lag effect in dictating dengue incidence rates [49, 50, 51]. Thus, future

research could consider employing more advanced statistical tools, such as the lagged-time

Poisson regression analysis [52], to refine the experimental design. Second, this study has an

overarching focus on the heat wave effects, whereas other extreme weather types (e.g., rain-

storms) that could be equally important in altering the population abundance [53, 54], are

overlooked. Future attempts should be made to investigate the climate-mosquito mechanisms

under different extreme weather scenarios.

Conclusions

There is much epidemiological evidence demonstrating how climate variations and trends

affect human health outcomes [55, 56, 57]. Despite the many explorations on the disease path-

ogens, the complicated interplay between heat waves and Ae. albopictus remains unclear. This

paper explores the variability of Ae. albopictus responding to heat waves events using a 35-year

historical climate dataset via mathematical modeling and a simulation design. Our simulation

results reveal that the unusual onset of a heat wave and a relatively high temperature over an

extended period are the two primary factors inhibiting the population development. As the fre-

quency and severity of heat waves are likely to increase in the future [22], this study provides

insights into assessing the potential effects on the mosquito introduced by the global climate.

Understanding this climate-driven mechanism is crucial to developing effective strategies to

prevent and control dengue fever, Zika, as well as other far-reaching mosquito-borne

epidemics.
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