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Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye,

liver, skin, and nervous system contribute significantly to the morbidity and mortality

of diabetes. However, whether the lung should be considered a diabetic target

organ has been discussed for decades. Accumulating evidence shows that both

pulmonary histological changes and functional abnormalities have been observed in

diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms

underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation,

and premature aging convincingly contribute to them. Circadian system and Sirtuins have

been well-documented to play important roles in above mechanisms. Circadian rhythms

are intrinsic mammalian biological oscillations with a period of near 24 h driven by the

circadian clock system. This system plays an important role in the regulation of energy

metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus

impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins,

a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been

demonstrated to regulate a series of physiological processes and affect diseases such

as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging.

In this review, we summarize recent advances in the understanding of the roles of the

circadian clock and Sirtuins in regulating cellular processes and highlight the potential

interactions of the circadian clock and Sirtuins in the context of diabetic lung.

Keywords: circadian clock, Sirtuins, diabetic lung, oxidative stress, inflammation, aging

INTRODUCTION

Diabetes mellitus appears to be one of the most common chronic diseases worldwide and leads to
high premature mortality in human. The complications of diabetes can be separated into two main
subgroups, microvascular complications, andmacrovascular complications. Vascular damage plays
a central role in diabetic complications. Despite a large capillary network, the lung is frequently
overlooked because of its subclinical characteristic in diabetic patients. Recently, accumulating
evidence has indicated a correlation between diabetes and impaired pulmonary structures and
functions. In addition, diabetes increases the risk of some chronic pulmonary diseases. For instance,
T2DM can deteriorate the progression and prognosis of COPD (1–4). Moreover, diabetes increases
the severity of pulmonary hypertension secondary to COPD (5). Amulticenter investigation proved
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that diabetes increases the odds of mortality for COPD patients
(3). Therefore, the lung is certainly a diabetic target organ.

Mechanisms of lung damage caused by diabetes are still
unclear, but some are convincing. For instance, glycosylation
of proteins in the lung and chest wall promotes collagen
accumulation in lung connective tissue and ultimately leads
to a reduction in lung compliance (6–8). Hyperglycemia
triggers vascular oxidative damage resulting in a loss of
microvascular reserve in the lung. Systemic inflammation
exaggerates vascular damage through endothelial dysfunction
(9–11). Insulin resistance has been shown to disturb lung
volume through leptin (12, 13). Interestingly, the anatomical
and biological changes in the diabetic lung are similar to those
described in the aging lung (14, 15), suggesting that mechanisms
associated with premature aging may contribute to diabetic
pulmonary injuries.

Mammalian Sirtuins, a family of adenine dinucleotide
(NAD+)-dependent histone deacetylases, play important roles
in age-related diseases including T2DM (16, 17). According
to previous studies, Sirtuins are speculated to act on all of
the known mechanisms underlying diabetic pulmonary injuries.
However, few articles refer to the roles of Sirtuins in pulmonary
pathophysiology, let alone in diabetic pulmonary injuries.

The circadian clock system drives mammalian intrinsic
biological oscillations with a period of near 24 h (18). Current
studies highlight the critical role of the circadian clock system
in regulating cellular processes such as metabolism, oxidative
stress, inflammation, cellular proliferation, and senescence (19,
20). Disrupted circadian rhythms are common in patients with
chronic airway diseases and may trigger cellular senescence,
especially among tobacco smokers, and disturb inflammatory
responses in the lungs of COPD patients (21). Sirtuins regulate
both the circadian clock in the brain as well as in peripheral
tissues, including the lungs. Thus, it is rational to hypothesize that
Sirtuins affect diabetic pulmonary injuries by interacting with the
circadian clock system.

In this review, we provide a general view of the regulatory
effects of Sirtuins and the circadian clock system in pulmonary
pathophysiology and diabetic pulmonary injuries. Moreover, we
focus on the interactions of Sirtuins and the circadian clock
system to provide new ideas for viewing diabetes complications
in the lung and to provide novel targets for therapies.

THE LUNG IS A DIABETIC TARGET ORGAN

Histological Changes in the Diabetic Lung
Microangiopathy is a well-known diabetic complication
involving the retina, kidney and peripheral or autonomic
nervous system. A study comparing the histological changes
in the lungs of diabetic patients showed significantly increased
thickness of alveolar epithelial basal lamina (BL), endothelial
capillary BL, and both fused BL (22). Moreover, researchers
found the same thickening magnitude of BL in the lung
and kidney in this study. The clinical findings of diabetic
pulmonary microangiopathy have also been demonstrated
in a streptozotocin (STZ)-induced diabetic rat model (23).
In addition to microangiopathy, the increased glycosylation

of insoluble collagen in human lung parenchyma found in
young diabetic patients is similar to that in non-diabetic aged
individuals (24). This phenomenon has also been reported in
STZ-induced diabetic rats (25). These findings show accelerated
aging in the diabetic lung. Data from a retrospective longitudinal
cohort study shows that lung fibrosis is significantly enhanced
in diabetic subjects (26). Lung fibrosis is representative of an
important cause of premature mortality in patients.

Function Abnormalities in the Diabetic
Lung
Lung function mainly consists of pulmonary diffusion function
and pulmonary mechanical function. Pulmonary diffusing
capacity for carbon monoxide (DLCO) was reported to be
reduced among diabetes patients compared with healthy subjects
(27). The reduction in DLCO in diabetic patients is parallel to
the severity of retinopathy and nephropathy (15). Moreover,
glycemic control increases DLCO (28). Pulmonary mechanical
function is reflected by several parameters, including forced
expiratory volume in 1 s (FEV1), forced vital capacity (FVC),
and total lung capacity (TLC). An increasing number of recent
studies support the notion that there is a correlation between
diabetes and decreased pulmonary mechanical function (28–30).
Themeta-analysis carried by Klein et al., showed a decline in lung
function, including FEV1, FVC, and DLCO, in diabetic patients
compared with healthy subjects (31). The reduction in lung
function is negatively correlated with blood glucose level and
the duration and severity of diabetes (31). In four longitudinal
studies, two studies demonstrated a significant decline in lung
function in diabetic patients compared with healthy individuals,
and two other studies showed lower FEV1 and FVC in patients
before diabetes onset than in subjects who did not develop
diabetes (31).

The bronchomotor tone (15, 32–34), the chemosensibility to
hypoxia (35, 36) and the respiratory muscle strength (37–40) are
damaged in diabetic patients. On the basis of histological and
functional changes in the lungs of diabetic patients and animals,
it can be concluded that the lung is a definite diabetic target organ
(Figure 1).

MOLECULAR MECHANISMS UNDERLYING
DIABETIC PULMONARY INJURIES

Mechanisms underlying diabetic pulmonary injuries remain
unclear; however, advanced glycosylation end-products (AGEs),
oxidative stress and inflammation, endothelial dysfunction, and
hypercoagulation convincingly contribute to pulmonary injuries,
which have well-summarized in other reviews (15, 41–43).
All of the above-mentioned pathogenic factors are regulated
in a circadian manner. Patients with chronic airway diseases,
including COPD and asthma, develop more frequently, and
worsen mostly in the evening or early morning (44–46).
Accumulating evidence shows that circadian rhythm regulation
is upstream of known mechanisms. Next, we will discuss the
mechanisms underlying diabetic pulmonary injuries in the
context of circadian regulation (Figure 2).
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FIGURE 1 | The lung is a diabetic target organ. Diabetes can induce tissue

injuries in target organs including nephropathy, retinopathy, neuropathy,

NAFLD, dermopathy, and atherosclerosis in coronary arteries, cerebrovascular

and peripheral vascular systems. Despite the subclinical characteristic of the

lung, diabetes induces pulmonary structural and functional abnormities, so the

lung is a diabetic target organ. Diabetes can induce histological and functional

changes to the lung. Histological changes, such as microangiopathy, fibrotic

changes, and accelerated collagen aging, can be seen in diabetic lungs.

Impaired pulmonary functions such as reductions in FEV1, FVC, FEV1/FVC,

TLC, and DLCO, abnormal bronchomotor tone, decreased ventilatory

response to hypercapnia and reduction in the strength of respiratory muscle

have been implicated in the diabetic lung. NAFLD, non-alcoholic fatty liver

disease; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity;

TLC, total lung capacity; DLCO, diffusing capacity for carbon monoxide; BT,

bronchomotor tone.

CIRCADIAN REGULATION IN THE
DIABETIC LUNG

The Circadian Clock System
Inmammals, the circadian clock system consists of a central clock
located in the hypothalamic suprachiasmatic nucleus (SCN) and
peripheral clocks, which drive 24 h rhythms of physiology and
behavior. The SCN clock is set mainly by environmental light

and then sends the entrained timing signal to peripheral clocks
via neural signals, hormonal signals, and body temperature.
At the cellular level, the circadian rhythms are generated by
clock genes. The core clock genes include Bmal1 and Clock
encoding activators, period genes (Per1-3) and cryptochrome
genes (Cry1-2) encoding repressors and genes encoding the
nuclear receptors REV-ERB (NR1D1 and NR1D2) and ROR
(Rorα, Rorβ, and Rorγ ).

Clock genes forms a transcriptional autoregulatory feedback
loop. The BMAL1/CLOCK heterodimer translocate to the
nucleus and transcriptionally activate expression of the core
clock genes including Per1-3, Cry1-2, and nuclear receptors Rev-
erbα and Rorα. Conversely, once PER and CRY accumulate
to a certain level, they form heterodimer and translocate
back to the nucleus to block transcriptional activity of the
BMAL1/CLOCK complex and ultimately repress their own
transcription. REV-ERB and ROR drive the rhythmic expression
of BMAL1 and CLOCK via competitively binding to the
REV-ERB/ROR binding site, thus repressing or activating
transcription of Bmal1 and Clock, respectively (47, 48). In
addition, posttranslational modifications have been established
to regulate clock gene expression. For instance, SIRT1 binds
BMAL1/CLOCK and promotes deacetylation and degradation of
PER2 (49). Phosphorylation of PER2, mediated by casein kinase
Iε, recruits the ubiquitin ligase adaptor protein β-TrCP and leads
to polyubiquitination and proteasome-mediated degradation of
PER2 (50). CRY binds PER2 and prevents its nuclear export,
thus preventing the ubiquitylation and subsequent degradation
of PER2 (51). Likewise, PER2 can prevent the ubiquitylation
and subsequent degradation of CRY (51). CLOCK can induce
sumoylation of BMAL1 at Lys259 and control BMAL1 stability
(52). Both BMAL1 and CLOCK undergo phosphorylation
during the circadian cycle (53), which is coupled to nuclear
translocation and the subsequent degradation of CLOCK (54).
CLOCK has intrinsic histone acetyltransferase activity and can
acetylate BMAL1 on the Lys537 residue, which facilitates the
recruitment of CRY1 to the BMAL1/CLOCK complex, resulting
in transcription repression (55).

These core clock genes function not only as active or
repressive components of a cell-autonomous clock but also as
regulators of clock-controlled genes (CCGs). Mechanistically,
the core clock genes interact with chromatin-modifying
complexes, co-activators and co-repressors to regulate
CCG expression. The BMAL1/CLOCK complex drives the
expression of numerous CCGs, thus regulating a series of
biological processes, including metabolism. At the beginning
of transcription, the BMAL1/CLOCK complex interacts with
chromatin and recruits chromatin-modifying complexes such
as histone acetyltransferases P300 and CBP (56), histone
deacetylases SIRT1 (57, 58) and SIRT6 (59), methyltransferases
MLL1 (60) and MLL3 (61), and histone lysine demethylases
JARID1a and LSD1 (62) to promote chromatin accessibility and
activate CCG transcription. The PER-CRY repressor complex
translocate to the nucleus and recruits a series of co-repressors
to block BMAL1/CLOCK complex activity (48). In general, in
the circadian cycle, transcriptional activation and repression
of rhythmic genes involve dynamic chromatin epigenetic
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FIGURE 2 | The role of the circadian clock in the diabetic lung. The circadian clock system consists of a central clock located in the SCN and peripheral clocks

located in the pancreas, muscle, liver, adipose tissue, gut, kidney, and lung. Light is the most important zeitgeber for the SCN. The SCN synchronizes the peripheral

clocks through signals including biological behaviors, hormones, the autonomic nervous system, and body temperature. The central clock and peripheral clocks

regulate insulin secretion, insulin sensitivity, lipid, and glucose metabolism. Circadian disturbance contributes to the development of T2DM. The peripheral clock in the

lung can influence some pathophysiological processes, including oxidative stress, inflammation, and cellular senescence. Disturbance of the circadian clock in the

lung promotes the development of diabetic lung. SCN, suprachiasmatic nucleus; T2DM, type 2 diabetes.

transition. In addition, transcription factors, including NF-
κB, nuclear receptor hepatocyte nuclear factor 4A (HNF4A)
and USF1, can compete with the BMAL1/CLOCK complex
for binding to target genes and repress the transcriptional
activity of the BMAL1/CLOCK complex (63–65). MYC
can inhibit the expression and oscillation of BMAL1 by
inducing REV-ERBα expression (66). Furthermore, REV-
ERBα can recruit the N-CoR/HDAC3 co-repressor to regulate
the expression of some metabolic genes (67). Conversely,
transcription factors, including PDX1 and HIF1α, act
synergistically with BMAL1 to activate target gene expression
(68, 69).

The Role of the Circadian System in
Diabetes
As described in a series of reviews, the circadian clock system
plays a pivotal role in regulating energy metabolism and
maintaining energy homeostasis. The SCN clock drives sleep-
wake and feeding-fasting cycles and functions as the basic
biological clock of metabolism. Except for tuning by the SCN,
peripheral clocks can be set by feeding as well, having autonomic
circadian oscillators in their respective tissues and contributing
to metabolic processes. Insulin resistance and pancreatic β

cell dysfunction are critical pathophysiological processes in
the development of T2DM. Glucose metabolism and insulin
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secretion occur in a circadian manner. Internal circadian system
dysfunction induces insulin resistance and glucose intolerance.
The roles of the SCN clock and peripheral clocks located in
different tissues in insulin secretion, insulin sensitivity and
glucose metabolism regulation will be discussed individually.

First, the SCN clock controls the sleep-wake cycle as well
as rhythmic feeding behavior, which is critical in determining
organism nutritional status and in the development of diabetes.
The SCN dives the rhythmic release of several hormones that
affect the secretion and/or action of insulin. For instance,
melatonin, a hormone synthesized by the pineal gland at
night, is orchestrated by output from the SCN and coordinates
circadian activity in turn by regulating clock gene expression
(70). Furthermore, melatonin exerts its function through two
specific receptors, MT1 and MT2, in different peripheral tissues.
Both of these receptors are present in human islets. The
protective roles of melatonin in maintaining glucose homeostasis
and suppressing insulin resistance and T2DM have been
described in substantial human studies. For instance, lower
nocturnal melatonin secretion is linked with increased insulin
resistance in non-diabetic individuals and is an independent
risk factor for developing T2DM (71). Notably, diabetic patients
mostly lack circadian melatonin rhythm (72). Specific single
nucleotide polymorphisms of MT2 are related to higher fasting
glucose levels and HbA1c (73, 74). Further, loss-of-function
mutations of MT2 are associated with the highest incidence
of T2DM (75). In addition to regulating insulin secretion,
melatonin has other functions, such as stimulating antioxidant
enzymes (76) and attenuating the production of proinflammatory
cytokines in high-fat diet (HFD)-induced insulin-resistant rats
(77), suppressing mitochondrial dysfunction in diabetic rats
(78), reducing cortisol secretion (75), and regulating glucose
metabolism in adipocytes (79), skeletal muscle cells (80), and
hepatocytes (81). In addition, the SCN affects the production and
release of cortisol via regulating the activity of the hypothalamic-
pituitary-adrenal axis (HPA) (82). Endogenous hypercortisolism
can cause pancreatic β cell dysfunction and induce insulin
resistance in the liver, adipose tissue and skeletal muscle (83).
Disorder of circadian rhythm caused by obstructive sleep apnea
causes HPA hyperactivity, contributing to insulin resistance (84).
The SCN regulates the diurnal rhythm of growth hormone, which
exerts anabolic effects and favors body composition and physical
fitness (85). Moreover, the SCN is responsible for circadian
regulation of energy expenditure for thermogenesis (82).

Convincingly, pancreatic β cell dysfunction contributes to
T2DM. As mentioned above, insulin from rodents (86) and
human (87, 88) islet cells is secreted in a circadian manner.
Insulin secretion lacking a rhythmic release pattern has been
observed in T2DM patients (89). The pancreatic clock is
synchronized to the light-dark cycle by the SCN via signals such
as melatonin, cortisol and body temperature (86–88). Pancreatic
islet cells in mice have self-sustained clock genes and protein
oscillations of BMAL1 and CLOCK, which act with co-activator
PDX1 to activate the transcription of genes involved in insulin
biosynthesis, transport and secretion (68). Moreover, specific
ablation of these clock components disrupted insulin secretion
leading to diabetes in mice (90). Saini et al. reported that

circadian clock disruption via small interfering RNA perturbed
insulin secretion in human pancreatic islet cells (88).

Adipose tissue, liver and skeletal muscle are important
insulin target organs responsible for energy metabolism, and
insulin resistance in these organs contributes to the development
of T2DM. These organs have autonomous circadian clocks
that are synchronized by the SCN (91) and signals from
food intake (92–96). Misalignment of the peripheral clocks in
these organs by disruption of the normal fasting-feeding cycle
contributes to the development of diabetes in HFD-fed mice
(97). Furthermore, germ-line Bmal1 disruption mice exhibit
increased total fat content, glucose intolerance comparable to
mice lacking protein kinase Akt2 (98) as well as reduced
insulin production after refeeding following overnight fasting
(99). Adipocytes from humans present rhythmic glucose uptake
due to an intrinsic diurnal rhythm in insulin sensitivity (96),
which has been mechanistically demonstrated to be associated
with circadian regulation of retinol-binding protein receptor
STRA6 (100). The circadian clock regulates the expression of
key enzymes involved in lipolysis (101) and lipogenesis (102),
and disruption of the clock promotes triglyceride accumulation
in white adipose tissue (101). As the liver plays a pivotal
role in maintaining blood glucose homeostasis by regulating
glycogenolysis, glycogenesis, and gluconeogenesis, it is strongly
affected by the fasting-feeding cycle. Abundant genes in the
liver responsible for glucose metabolism exhibit circadian
regulation (103). Liver-specific Bmal1 knockout (KO) mice
showed abnormalities in both glucose storage and production
resulting from disturbed expression of CCGs, including Glut2,
GCK, Pepck2, and L-PK, which confirms the essential role of
the liver clock in maintaining euglycemia (99). Human muscle
exhibits diurnal rhythms in mitochondrial oxidative capacity and
insulin sensitivity (104, 105). Muscle-specific Bmal1 KO mice
showed insulin resistance and impaired glucose metabolism in
skeletal muscles (106). The BMAL1/CLOCK complex regulates
the expression and membrane translocation of the insulin-
sensitive glucose transporter GLUT4 and affects pyruvate
dehydrogenase (PDH) activity by regulating the expression of
PDH regulators, including Pdp1 and Pdk4, ultimately impacting
glucose oxidation (106). In addition, the BMAL1/CLOCK
complex improves insulin sensitivity through the upregulation
of SIRT1 expression in cultured C2C12 myotubes and mouse
skeletal muscle (107). Recently, the muscle clock was reported
to regulate insulin sensitivity and glucose utilization by affecting
genomic recruitment of HDAC3 and subsequently disturbing the
expression of metabolic genes (108).

The Role of the Circadian System in the
Lung
As early as two decades ago, researchers observed clock
gene expression in the lungs of rats (109). Later, the link
between circadian rhythm and lung pathophysiology was well-
documented. For example, patients with asthma show a circadian
rhythm in the bronchial response to challenges such as cold
dry air, dust mite, histamine, etc. (110). Nocturnal worsening in
lung function in asthma has been linked to diurnal alterations of
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inflammation and airway narrowing (111). Core clock genes are
expressed strongly in Clara cells lining the bronchioles, and these
cells are critical for maintaining circadian oscillations in both
mouse and human lung tissue (112). Subsequent studies declared
that environmental factors such as air pollutants, cigarette smoke
(CS), allergens, pathogens, jet lag, and shift work can disturb
molecular clock function in the lung and lead to exacerbations
of chronic lung diseases, including COPD, lung fibrosis and
asthma (113–120).

The Role of the Circadian Clock in Pulmonary Redox

Regulation
A growing body of evidence indicates that the molecular clock
regulates redox in multiple tissues. For instance, global Bmal1
KO mice showed significant ROS accumulation in the kidney,
heart, brain, and spleen compared to wild-type mice, indicating
that BMAL1 controls ROS homeostasis (121). These Bmal1−/−

mice showed reduced expression of redox genes, including
Aldh2 encoding ALDH2, which scavenges reactive aldehydes
generated during mitochondrial respiration, and Nqo1 encodes
NADPH dehydrogenase, which decreases toxic quinones and
ultimately increases lipid peroxidation in the brain, promoting
neurodegeneration (122). Bmal1 depletion in macrophages
reduced the NRF2 response to LPS challenge, resulting in
ROS accumulation and production of the proinflammatory
factors IL-1β and IL-6 (123). Furthermore, Bmal1 depletion
predisposes pancreatic β cells to oxidative-induced β cell
dysfunction, generating a diabetic phenotype in mice (124).
In humans, impaired redox balance has been associated with
several chronic pulmonary diseases, including COPD, lung
fibrosis, asthma, and lung cancer (125–128), which contributes
to diabetic pulmonary dysfunction, as previously mentioned.
The critical role of NRF2 in cellular antioxidant defense has
been well-documented in a substantial number of studies. In
response to oxidative stress, NRF2 translocates to the nucleus
and induces the expression of a series of antioxidant genes,
including glutathione cysteine ligase (GCL), glutathione S-
transferase (GST), and haeme oxygenase 1 (HMOX1) (129,
130). In Clock119 mice expressing a dominant negative
mutation of the CLOCK protein, NRF2 expression in the
lung is constitutively low and arrhythmic and is accompanied
by reduced glutathione levels, increased markers of oxidative
damage and fibrotic phenotype (131). Several antioxidant
enzymes, including SODs and GPxs, are under transcriptional
control of PPARs (132–137). Interestingly, PPARα is involved
in a positive regulatory feedback loop with BMAL1 in rodent
liver circadian clock (138). PER2 interacts with PPARγ directly
and represses its activity (139). These findings suggest that the
circadian clock may exert an antioxidant role by regulating
PPARs. In addition, the circadian clock has been shown to
drive NAD+ oscillations and control mitochondrial oxidative
metabolism (140). REV-ERBα is reported to improve skeletal
muscle oxidative capacity by reducing mitochondrial autophagy
and biogenesis (141). As mitochondrial dysfunction is the major
cause of ROS production, the circadian clock is supposed
to protect against oxidative damage to the diabetic lung via
regulating mitochondrial function.

The Role of the Circadian Clock in the Pulmonary

Inflammatory Response
The molecular clock powerfully regulates the inflammatory
response (142, 143). Global Bmal1 KO mice display significantly
increased expression of proinflammatory cytokines, including
TNF-α, COX2 and prostaglandin synthase gene (ptgs2), in the
brain, suggesting that molecular clock disruption is directly
related to the inflammatory response (122). Myeloid cell-specific
Bmal1 depletion disrupts rhythmic mobilization of Ly6Chi
monocytes and fortifies inflammatory responses, potentiating
metabolic inflammation, and predisposing experimental
animals to insulin resistance and metabolic dysfunction
(144). Mechanistically, the BMAL1/CLOCK complex recruits
polycomb repressive complex 2 (PRC2) to chemokine gene
promoters, such as Ccl2, Ccl8, and S100a8, and silences
expression of these CCGs in monocytes and macrophages (144).
The BMAL1/CLOCK complex induces NRF2 expression via
binding the E-box sites in the Nrf2 promoter, which contributes
to suppressing the inflammatory response of macrophages (123).
NRF2 further inhibits proinflammatory cytokine IL-6 and IL-1β
expression by reducing ROS levels (123) as well as by inhibiting
the recruitment of RNA polymerase II to the transcription
start sites (TSSs) of IL-6 and IL-1β (145). BMAL1 can exert
an anti-inflammatory effect by recruiting glucocorticoid
receptors to promoters of proinflammatory cytokines such as
CXCL5 (116). Bronchiole-specific Bmal1 depletion enhances
CXCL5 expression, driving pulmonary neutrophil recruitment
and augmenting pulmonary inflammation and responses
to pathogen (116). Deletion of Bmal1 in pulmonary airway
epithelial cells increases neutrophil infiltration in mouse
lungs, alters lung mechanic functions and impairs influenza
defense (146). An HFD has been shown to induce insulin
resistance partly via activation of the NF-κB signaling pathway
(147). CLOCK interacts with the p65 subunit of NF-κB and
enhances NF-κB-dependent transcription; however, BMAL1
counteracts NF-κB activation by sequestering CLOCK (148).
Positively regulated by BMAL1, the nuclear receptor REV-
ERBα has been demonstrated to be an important intermediary
molecule linking the core clock and inflammatory pathways
in macrophages. As a transcriptional repressor, REV-ERBα

inhibits IL-6 and Ccl2 production by direct DNA binding to
their promoters (149, 150). REV-ERBs repress macrophage
genes, including Mmp9 and Cx3cr1 expression, by inhibiting
the function of distal enhancers selected by macrophage
lineage-determining factors (151). Deletion of Rev-erbα in
bronchial epithelia exaggerates pulmonary inflammation
(152). Inflammatory stimuli can induce REV-ERBα protein
degradation, which can be blocked by its inverse agonist
GSK1362 (152). Deletion of Cry releases its inhibition of cAMP
production and leads to constitutive activation of PKA, which
results in activation of NF-κB via phosphorylation of the
p65 subunit and subsequent induction of proinflammatory
cytokines (153).

In recent years, Although the role of the circadian clock has
been well-documented in the development of insulin resistance
and T2DM via the regulation of oxidative stress, inflammation
and energy metabolism, far less is known about circadian
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regulation in the diabetic lung. SIRT1, a well-known member
of Sirtuins, has been well-demonstrated to bridge metabolism
and circadian rhythms, and together with other family members,
SIRT1 plays a powerful role in metabolic homeostasis, oxidative
stress, inflammation, and aging. Next, we will retrospectively
examine the roles of Sirtuins in diabetic pulmonary injuries
and discuss the interactions of Sirtuins with circadian clocks in
this context.

THE CIRCADIAN ROLES OF SIRTUINS IN
THE LUNG

The mammalian Sirtuins are a family of NAD+-dependent
deacetylases consisting of seven members (SIRT1-SIRT7) (154).
These seven members display distinct subcellular localization
and biological functions (17). Sirtuin family members regulate a
wide variety of cellular processes and affect a series of diseases
such as obesity, insulin resistance, T2DM, cardiovascular disease,
cancer, and aging (155, 156). Sirtuins are supposed to prevent
diabetic lung through attenuating diabetes. Roles of Sirtuins in
insulin resistance, NAFLD and T2DM etc. have been summarized
in our and other reviews (17, 155). Here, we will focus on
the interaction of Sirtuins and the circadian clock (Figure 3)
and discuss their possible role in diabetic pulmonary injuries
(Figure 4).

The Interaction of SIRT1 and the Circadian
Clock in Diabetes and Pathogenesis of the
Diabetic Lung
The Role of SIRT1 in the Central Clock
Sirt1 mRNA is highly expressed in the hypothalamus (157),
which is an important metabolism-relevant region as well as
the location of the central clock. Loss of brain SIRT1 activity
in mice results in an abnormal extension of the intrinsic
period and an inability to reset a new light-dark regimen
(158). Expression of core clock genes, including BMAL1,
CLOCK, and PER2, in the SCN significantly decreases in brain-
specific Sirt1 knockout (BSKO) mice and increases in brain
Sirt1 transgenic mice (BSTG) (158). Mechanistically, in N2a
neuroblastoma cells, SIRT1 and PGC-1α bind cooperatively to
the Bmal1 promoter, driving its expression and enhancing the
amplitude of circadianmachinery (158). In addition, SIRT1 in the
ventromedial hypothalamus (VMH) has been shown to function
as a metabolic sensor by sending nutritional information to the
SCN via efferent signals and synchronizing the central clock
to feeding conditions (159). Sirt1 gene ablation in the Sf1
neurons of the VMH perturbs the activity and circadian gene
expression in the SCN and subsequently disrupts the connection
of food intake and circadian behavior (159). These studies
support the crucial role of SIRT1 in linking metabolism with the
central pacemaker.

The Role of SIRT1 in Peripheral Clocks
Studies on the interactions of SIRT1 and peripheral clocks
have mainly been carried out in mouse liver cells and embryo
fibroblasts (MEFs). First, SIRT1 is expressed in a circadian

manner in mouse liver cells, MEFs, and NIH 3T3 cells and is
essential for augmenting the expression of several core clock
genes, such as Bmal1, Rorγ , Per2, and Cry1 (49). This study also
reported that SIRT1 binding to the BMAL1/CLOCK complex
rhythmically drove the deacetylation and degradation of the
PER2 protein (49). A secondary study revealed that SIRT1
deacetylase activity rather than transcript and protein levels was
regulated in a circadian manner in mouse liver cells and MEFs
(57). SIRT1 associates with CLOCK and is then recruited to the
BMAL1/CLOCK complex at the CCG promoters, where it is
responsible for the rhythmic deacetylation of H3 Lys9/Lys14 and
BMAL1 at Lys537, counteracting the acetyltransferase activity
of CLOCK (160), and prevents the transcriptional activating
effect of the BMAL1/CLOCK complex (57). This study revealed
the crucial role of SIRT1 in acting as the molecular rheostat
of CLOCK. Subsequent studies declared that the SIRT1 activity
rhythm was generated from the oscillation of intracellular NAD+

levels, which are regulated by NAMPT, the rate-limiting enzyme
in the NAD+ salvage pathway (58, 161). NAMPT synthesis
is positively regulated by the BMAL1/CLOCK complex, and
SIRT1 activation due to NAMPT-mediated NAD+ biosynthesis,
in turn, suppresses BMAL1/CLOCK complex activity, forming a
circadian clock feedback loop (58, 161). In addition to histone
acetylation, circadian transcription is associated with MLL1-
mediated H3K4 trimethylation. MLL1-dependent H3K4me3 on
the CCGpromoter favors the recruitment of the BMAL1/CLOCK
complex and activates CCG transcription (60). MLL1 exhibits
rhythmic acetylation of two conserved lysine residues, K1130
and K1133, and SIRT1 deacetylates these two lysine residues
of MLL1, inhibiting its methyltransferase activity (162). Some
studies demonstrated other interactions of SIRT1 and clock
genes. For instance, BMAL1/CLOCK regulates mouse hepatocyte
insulin sensitivity via circadian regulation of the expression of
SIRT1 (163). Similarly, BMAL1/CLOCK regulates muscle insulin
sensitivity through circadian regulation of SIRT1 expression
(107). PER2 negatively regulates mouse hepatocyte SIRT1
expression by binding to the BMAL1/CLOCKbinding E-box sites
in the Sirt1 promoter in vivo and in vitro. In turn, Sirt1 deficiency
leads to increased acetylation of H4K16 in the Per2 promoter
and subsequent transcriptional activation of Per2, which results
in misalignment of the circadian rhythm in the liver (164).

SIRT1 Regulates the Circadian Clock in Response to

Inflammation in the Lung
SIRT1 protein levels and activity decrease in macrophages,
lung epithelium and peripheral lung tissues of smokers and
COPD patients, leading to increased acetylation of RelA/p65
and subsequent activation of the NF-κB pathway (165). SIRT1
activity in peripheral blood mononuclear cells is positively
associated to lung function of COPD patients (166). Similar
results were observed in the lungs of rats and mice exposed
to CS (167, 168). BMAL1 levels also decrease in the lungs
of COPD patients compared with non-smoking individuals
(169). Acute and chronic CS exposure reduces the amplitude
of core clock genes, especially BMAL1 (169). Moreover,
lung epithelial-specific Bmal1 deletion mice show enhanced
pulmonary inflammation in response to CS (169). However,

Frontiers in Endocrinology | www.frontiersin.org 7 April 2020 | Volume 11 | Article 173

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zhou et al. Circadian/Sirtuins in Diabetic Lung

FIGURE 3 | Schematic representation of the role of Siruins in clock regulation. Clock genes forms a transcriptional autoregulatory feedback loop. The BMAL1/CLOCK

heterodimer transcriptionally activate expression of the core clock genes including Per1-3, Cry1-2, and nuclear receptors Rev-erbα and Rorα. Conversely, once PER

and CRY accumulate to a certain level, they form complex with BMAL1/CLOCK and block transcriptional activity of the BMAL1/CLOCK complex and ultimately

repress their own transcription. In addition, REV-ERB represses and ROR activates BMAL1 transcription. (1) In the SCN, the binding of SIRT1 and PGC-1α to the

Bmal1 promoter containing RORE through a synergistic action with RORα amplifies circadian gene expression, thereby, brain SIRT1 prevents circadian function decline

with aging. (2) In the peripheral clock located in the liver and MEFs, there is a new negative feedback loop. BMAL1/CLOCK positively regulates the transcription of

NAMPT, the rate-limiting enzyme in mammalian NAD+ biosynthesis. NAD+ is a classic co-enzyme for Sirtuins. Conversely, SIRT1 deacetylates BMAL1 and represses

BMAL1/CLOCK activity. In addition, SIRT1 binds to BMAL1/CLOCK complex and promotes the deacetylation and degradation of PER2. SIRT6 controls different

circadian genome subdomains from SIRT1. SIRT6 interacts with BMAL1/CLOCK complex and controls their chromatin recruitment to CCGS promoter. Meanwhile,

SIRT6 governs circadian chromatin recruitment of SREBP-1. The core clock regulates circadian oscillation of SIRT3 activity by driving changes in NAD+ levels. MEFs,

mouse embryonic fibroblasts; PGC-1α, peroxisome proliferator-activated receptor gamma co-activator 1-alpha; BMAL1, brain, and muscle aryl hydrocarbon receptor

nuclear translocator-like 1; CLOCK, circadian locomotor output cycles protein kaput; PER2, period 2; SREBP-1, sterol regulatory element-binding protein 1; CCGs,

clock-controlled genes; mTOR, mechanistic target of rapamycin; IGF, insulin-like growth factor; NF-κB, nuclear factor κB; mtDNA, mitochondrial DNA; TGFβ1,

transforming growth factor β1; NAD, nicotinamide adenine dinucleotide; NAMPT, nicotinamide phosphoribosyl transferase; FOXO3, forkhead protein box 3; E-box,

enhancer box; RORα, retinoic acid receptor– related orphan receptor a; RORE, retinoic acid receptor–related orphan receptor response element.

SRT1720, a pharmacological activator of SIRT1, failed to inhibit
CS-induced pulmonary inflammation in lung epithelial-specific
Bmal1 deletion mice (169). These findings show a pivotal
role of the SIRT1-BMAL1 pathway in regulating pulmonary
inflammation in response to environmental stress (119, 169).
Although SIRT1 may play an important role in regulating several
pulmonary pathophysiological processes, including oxidative
stress, inflammation, and endothelial dysfunction, which are
involved in the development of the diabetic lung, studies
about the direct effects of SIRT1 on the diabetic lung
are absent.

Roles of SIRT1 and the Circadian Clock in Pulmonary

Premature Aging
Interestingly, the anatomical and biological changes in the
diabetic lung are similar to those described in the aging lung,
which suggests that we can discuss the roles of SIRT1 and the
circadian clock in the diabetic lung from the perspective of
cellular senescence-induced organ dysfunction and aging.

CS is a well-known factor leading to rapid decline in
lung function and increases cellular senescence in the lungs
of COPD patients (167). Mechanistically, CS induces DNA
damage and impairs double-strand break (DSB) repair (47,
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FIGURE 4 | Hypothetical model showing the possible role of Sirtuins and circadian system in the pathogenesis of diabetic lung. Dotted line represents the pathway

needed to be elucidated. Solid line represents the pathway which has been proved in former studies. Circadian disturbance decreases deacetylase activity of Sirtuins

via impairing NAD+ oscillation. SIRT1 inhibits pulmonary inflammation through regulating circadian clock or through regulating transcriptional factors such as NF-κB

and FOXO3. SIRT1 and SIRT6 rescue pulmonary cells from premature aging via regulating the DNA damage response synergistically with circadian clock. In addition,

SIRT6 prevents premature aging by attenuating the IGF-mTOR signaling pathway. Both SIRT3 and SIRT6 inhibit pulmonary fibrosis by inactivating the TGFβ1/Smad3

signaling pathway. SIRT3 inhibits pulmonary fibrosis by maintaining mtDNA stability. NAD, nicotinamide adenine dinucleotide; NF-κB, nuclear factor κB; FOXO3,

forkhead protein box 3; mTOR, mechanistic target of rapamycin; IGF, insulin-like growth factor; TGFβ1, transforming growth factor β1; mtDNA, mitochondrial DNA.

170, 171). Persistent DNA damage in the lung causes stress-
induced senescence (SIPS) and a senescence-associated secretory
phenotype (SASP), as characterized in COPD (172, 173). As
mentioned above, CS also induces molecular clock dysfunction
in the lung. The molecular clock is established to play a critical
role in regulating the cellular response to DNA damage (174,
175). Bmal1-deficient mice show age-related pathologies and
increased levels of ROS in a series of organs (121). Circadian clock
protein also mediates cellular DNA damage/repair responses
by interacting with factors such as Ku70, Ku80 and ataxia
telangiectasia mutated (ATM) (175–177). p21 is induced by
p53 following DNA damage and is known as a prosenescence
gene. The p21 gene is negatively regulated by REV-ERBα,
which in turn is positively regulated by the CLOCK/BMAL1
complex (178). Therefore, Bmal1 deficiency results in aberrant
p21 expression and decreased hepatocyte proliferation (178).
In addition, PER1 inhibits p21 expression and interacts with
the checkpoint proteins ATM and Chk2, leading to significant
growth reduction and sensitizing human cancer cells to DNA
damage-induced apoptosis (179). These studies suggest that the

circadian clock can influence cellular senescence by regulating
the DNA damage response pathway.

In aged mice, levels of SIRT1 and core clock genes, including
BMAL1, CLOCK, CYR1, and PER2, in the SCN decrease, leading
to a longer intrinsic period and the inability to reset to a
new light-dark regimen (158). Young BSKO mice have the
same circadian changes as aged mice (158). SIRT1 and PGC-
1α synergistically activate expression of the circadian activator
Bmal1 in the SCN (158). This study suggests that SIRT1 links
the clock with aging in the mammalian brain. In response to
DNA damage, SIRT1 is recruited to DSBs and is required for
efficient DSB repair and genomic stability; however, this process
results in deregulation of genes causing aging (167, 180, 181).
SIRT1 overexpression promotes survival in a mouse model
of genomic instability and inhibits age-related transcriptional
changes (167, 180, 181). Furthermore, SIRT1 activation by
both overexpression and pharmacological activator SRT1720 can
reduce cellular senescence via the SIRT1-FOXO3 axis and then
attenuate emphysema (167). This protective role of SIRT1 in
emphysema is not attributed to its effect on NF-κB-mediated
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inflammation (167). CLOCK is reported to be a transcriptional
target of FOXO3, and FOXO3 knockdown dampens circadian
amplitude in the mouse liver (182). Hence, it is rational that
SIRT1 affects SIPS and SASP by regulating molecular clock
directly or indirectly in the lung. In addition, SIRT6 deletion
also decreases genomic stability via reducing base excision DNA
repair and causes accelerating aging in mice (183). Accumulating
evidence indicates that SIRT1 and SIRT6 play an important role
in regulating the DNA damage response, maintaining genomic
stability and defending against aging. However, the roles of SIRT1
and SIRT6 in circadian function related to DNAdamage response
and to SIPS and SASP in the lung need to be clarified.

The Role of SIRT3 in Diabetic Lung
In the STZ-induced diabetic rat model, decreased NADH/NAD+

redox imbalance, mitochondrial abnormalities, and decreased
SIRT3 expression were present in the diabetic lung (184). Lungs
from idiopathic pulmonary fibrosis patients show decreased
SIRT3 activity, as indicated by acetylated mitochondrial SOD
(MnSOD) levels, particularly in the lung epithelium. Sirt3
deletion promotes lung fibrosis by augmenting mitochondrial
DNA (mtDNA) damage and apoptosis in mouse alveolar
epithelial cells and myofibroblasts (185, 186). SIRT3 can prevent
the fibrosis phenotype via inhibition of the TGFβ1/Smad3
signaling pathway (187, 188).

The Role of SIRT3 in Circadian Mitochondrial

Functions
Mitochondria are the factory for metabolism and energy
generation in the body. SIRT3 is localized in the mitochondria
and plays important roles in regulating metabolism and ROS
production, maintaining mtDNA integrity and preventing
aging. Analysis of the liver acetylome from the Clock-deficient
mouse revealed that a large number of mitochondrial proteins
influenced by circadian acetylation are involved in amino acid
and fatty acid metabolism, glycolysis and gluconeogenesis, and
the citric acid cycle (189). The core clock regulates circadian
oscillation of SIRT3 activity together with oxidative enzyme
activity by driving changes in NAD+ levels. In Clock119 mice,
the rhythms of SIRT3 activity are disrupted in young mice
(190). MEFs and livers from Bmal1-deficient mice show impaired
mitochondrial function due to decreased fatty acid oxidation
(FAO), glucose oxidation and NAD+ concentrations, whereas
Cry1- and Cry2-deficient mice show the opposite trend (140).
The low NAD+ concentrations in the livers of Bmal1 KO
mice are correlated with impaired SIRT3 activity, resulting in
enhanced protein acetylation and decreased enzymatic activity
of SIRT3 targets, including OTC, MCAD, LCAD, MnSOD,
and IDH2 (140). NAD+ supplementation with nicotinamide
mononucleotide (NAN) restores SIRT3 activity and thereby
mitochondrial oxidative capacity (140). A later study showed
that both circadian and feeding rhythms coordinated the
liver acetylome, including mitochondrial protein rhythmic
acetylation, by impacting NAD+-dependent SIRT3 deacetylase
activity (191). SIRT3 expression decreases in aged rats (192). As
ROS are the main cause of aging and increased SIRT3 expression
has been considered to contribute to human longevity, the

circadian clock may influence cellular senescence and organic
aging through SIRT3. In addition, SIRT3 interacts with Ku70 and
deacetylates it, thus protecting cardiomyocytes from aging and
stress-induced death (193). As mentioned above, the circadian
clock protein also interacts with Ku70; hence, SIRT3 may be
involved in circadian oscillator-mediated DNA damage/repair
responses. Further studies on the circadian role of SIRT3 in the
lung are needed.

SIRT6 and Partitioning Circadian
Transcription
SIRT6 is uniquely located in the nucleus and constitutively
binds to the chromatin (183, 194). The genome-wide occupancy
of SIRT6 is mainly at TSSs of active genomic loci, which
are also binding sites for serine 5 phosphorylated RNA
polymerase II (195). The chromatin binding of SIRT6 is
reported to be dynamic in response to stimuli (196, 197).
SIRT6 deacetylates H3K9 and H3K56 in a NAD+-dependent
manner, regulating gene expression, genome stability and
telomere maintenance, thereby impacting metabolic diseases,
heart disease and cancer (198, 199). DNA microarray analysis
of liver-specific Sirt1 KO mice and liver-specific Sirt6 KO
mice revealed that SIRT6 significantly regulates hepatic CCG
expression, which is exclusive to CCGs regulated by SIRT1
(59). SIRT6 interacts with the BMAL1/CLOCK complex and is
responsible for chromatin recruitment of the BMAL1/CLOCK
complex to the promoter regions of CCGs (59). Furthermore,
SIRT6 governs circadian SREBP-1 chromatin recruitment,
leading to circadian regulation of genes such as Fasn that
are implicated in fatty acid and lipid metabolism (59). SIRT6
inhibits pulmonary fibrosis by inactivating the TGFβ1/Smad3
signaling pathway (200). Lung-targeted Sirt6 delivery via
injection of adeno-associated virus-Sirt6 attenuates bleomycin-
induced pulmonary fibrosis (200). Moreover, SIRT6 can inhibit
human bronchial cell (HBEC) senescence by inactivating
the TGFβ1/Smad3 signaling pathway (201). SIRT6 induces
apoptosis of HBECs by attenuating the IGF-Akt-mTOR
signaling pathway, which contributes to the prevention
of CSE-induced HBEC senescence (202). As CSE-induced
HBEC senescence has been implicated in the pathogenesis
of COPD, SIRT6 is supposed to be a protective factor in
chronic airway diseases (202). Consistent with this hypothesis,
SIRT6 levels are positively correlated with FEV1/FVC, and
its expression in the lungs of COPD patients is decreased
(202). SIRT6 is speculated to be a protective factor in the
diabetic lung.

Of the seven members of the Sirtuin family, only SIRT1,
SIRT3, and SIRT6 have been implicated directly in circadian
clock regulation, but their roles in pulmonary pathophysiology
and the interactions of these Sirtuins with circadian clock
are largely unknown. The majority of Sirtuins are implicated
in metabolic regulation, oxidative stress, inflammation, DNA
damage/repair response, and telomere length regulation, which
are mainly related to aging processes as well as lung
disease. Circadian rhythms are intimately related to pulmonary
pathophysiology. There should be an interaction of Sirtuins and
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the circadian clock in lung disease, especially in metabolism-
related lung disease.

CONCLUSIONS AND FUTURE
DIRECTIONS

In summary, we gave a mechanistic perspective about the
role of circadian clock and Sirtuins in diabetic lung based
on the strengths of their roles in metabolic disturbance,
oxidative stress, inflammation, and cellular DNA damage/repair
responses. However, our understanding of the diabetic lung
is still poor. Further studies are still needed to elucidate the
following the questions. (1) Although we have summarized
the potential interactions of the circadian clock and Sirtuins,
the exact roles of these two systems underlying diabetic lung
remain unknown. Clock genes or Sirtuins tissue-specific knock
out or transgenic animals need to be used to evaluate the
definite role of these molecules in diabetic lung. (2) With the
development of high-throughput and epigenetic methodologies,
more clearly molecular regulatory network will be identified.
Therefore, more cell omic sequencing methods, which include
single cell sequencing (scRNA-seq) can be used to analysis
expression differences in different types of pulmonary cells
and further elucidate roles of these cells in the development
of diabetic lung. Moreover, assay for transposase-accessible
chromatin with high-throughput sequencing (ATAC-seq) can
be used to analyze epigenetic mechanisms of clock genes or
Sirtuins. (3) Given the apparent roles of the circadian clock and
Sirtuins in regulating a series of pathophysiologic processes and
the subsequent demonstration of therapeutic value in animal
models, the utility of natural or synthetic small molecules that

can activate or inhibit one or more clock genes and Sirtuins
would grow increasingly broader. Sirtuin-activating compounds
(STACs), such as resveratrol, SRT1720 and SRT2183 (203),
and synthetic REV-ERB and ROR ligands, such as GSK4112,
SR9009, and SR9011 (204), have been well-documented in vivo.
These small molecules provide potential treatment strategies for
diabetic lung.
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