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Automation of a Rule-based Workflow to Estimate Age from Brain
MR Imaging of Infants and Children Up to 2 Years Old Using

Stacked Deep Learning
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Purpose: Myelination-related MR signal changes in white matter are helpful for assessing normal
development in infants and children. A rule-based myelination evaluation workflow regarding signal
changes on T1-weighted images (T1WIs) and T2-weighted images (T2WIs) has been widely used in
radiology. This study aimed to simulate a rule-based workflow using a stacked deep learning model and
evaluate age estimation accuracy.

Methods: The age estimation system involved two stacked neural networks: a target network-to extract
five myelination-related images from the whole brain, and an age estimation network from extracted T1-
and T2WIs separately. A dataset was constructed from 119 children aged below 2 years with two MRI
systems. A four-fold cross-validation method was adopted. The correlation coefficient (CC), mean absolute
error (MAE), and root mean squared error (RMSE) of the corrected chronological age of full-term birth, as
well as the mean difference and the upper and lower limits of 95% agreement, were measured.
Generalization performance was assessed using datasets acquired from different MR images. Age estima-
tion was performed in Sturge–Weber syndrome (SWS) cases.

Results: There was a strong correlation between estimated age and corrected chronological age (MAE:
0.98 months; RMSE: 1.27 months; and CC: 0.99). The mean difference and standard deviation (SD) were
−0.15 and 1.26, respectively, and the upper and lower limits of 95% agreement were 2.33 and −2.63 months.
Regarding generalization performance, the performance values on the external dataset were MAE of 1.85
months, RMSE of 2.59 months, and CC of 0.93. Among 13 SWS cases, 7 exceeded the limits of 95%
agreement, and a proportional bias of age estimation based on myelination acceleration was exhibited
below 12 months of age (P = 0.03).

Conclusion: Stacked deep learning models automated the rule-based workflow in radiology and achieved
highly accurate age estimation in infants and children up to 2 years of age.
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Introduction

In humans, the nervous system rapidly develops during
infancy and childhood.1 In the brain, the myelination of
axons by oligodendrocytes enables high-speed and long-
distance transmission of electrical signals.2 Monitoring the
progression of myelination is used as an indicator of neuro-
development in infants and children.3

MRI is a valuable diagnostic tool for visualizing signal
changes associated with myelination progression in white
matter. The development of myelination is reflected in

1Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan

*Corresponding author: Department of Radiology, Juntendo University School of
Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Phone: +81-3-
5802-1230, Fax: +81-3-3816-0958, E-mail: a-wada@juntendo.ac.jp;

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives
International License.

©2021 Japanese Society for Magnetic Resonance in Medicine

Received: May 6, 2021 | Accepted: October 23, 2021

Magn Reson Med Sci 2023; 22; 57–66
doi:10.2463/mrms.mp.2021-0068 Published Online: December 10, 2021

Magnetic Resonance in Medical Sciences | Vol. 22, No. 1 57



white matter signal changes in T1-weighted images (T1WIs)
and T2-weighted images (T2WIs), and signal changes in
each type of image are independent. Brain MRI of neonates
with diffuse high signals on T2WIs and low signals on
T1WIs develops into low signals on T2WIs and high signals
on T1WIs with the progression of myelination.4 These
changes are associated with a shortening of relaxation time
because of an increase in lipids (cholesterol and galactocer-
ebroside) associated with myelin sheath formation, as well as
a decrease in water content.4–10 The signal changes asso-
ciated with myelination in the brain follow various rules in
terms of location, time, and direction. These signal changes
progress from inferior to superior, posterior to anterior, and
from central to the peripheral in the pediatric brain, where
T1WI changes precede T2WI.11–16 Barkovich et al. pro-
posed a timetable of MR signal changes in the pediatric
brain with milestones in the pons, midbrain, internal cap-
sule, corpus callosum, and deep and subcortical white
matter.11 This timetable is convenient and is still used by
radiologists and pediatricians more than 30 years after its
proposal. However, although the process is relatively sim-
ple, manually matching MR signals to a timetable is time-
consuming. In addition, the determination of signal changes
can vary among individuals. In 1993, Staudt et al. proposed an
objective system for estimating the age of myelination by
staging the MR signal pattern in each myelination-related
region.17 The age predicted by their system correlated with
average growth and revealed delayed myelination in several
neurological diseases.17,18 Although their proposed rule-based
approach to myelination age estimation exhibited excellent
performance, it has not been widely adopted because it is not
automated.

In recent years, machine learning and intense convolu-
tional neural networks (CNNs) have assisted manual meth-
ods in image recognition and classification. Regarding age
estimation of infants and children, two studies have
reported a deep learning approach for brain MRI.19,20 One
study used sagittal T1WIs of the whole brain, and the other
used single T1- and T2WIs at the level of the corpus
callosum. The former only uses T1WI features, and the
latter only uses one section of the brain. We hypothesized
that the age estimation model could be improved by incor-
porating already established rules and workflow in radiol-
ogy regarding myelination estimation in MRI into deep
learning. The current study involved the simulation of the
traditional rule-based myelination evaluation workflow for
pediatric brain MRI with a deep learning age estimation
model and evaluated its accuracy and generalization
performance.

Materials and Methods

Participants
This retrospective, noninvasive, and non-interventional
study was approved by the Juntendo University Hospital

Institutional Review Board, with an opt-out alternative
to obtaining informed consent from participants.
Candidate participants were infants and children up to
2 years of age and below were examined at two MRI
units from January 2014 to December 2015. A total of
908 infants and children up to 2 years of age were
potentially eligible for inclusion in the study. The can-
didate selection and exclusion process from 908 partici-
pants are shown in Fig. 1. Based on preliminary clinical
information in the MR study, we excluded 51 very low
birth weight infants (< 1500 g), 12 infants with severe
birth hypoxia, 32 infants with intractable epilepsy, and
32 infants with delayed motor development. Diagnostic
reports from one of the two board-based neuroradiolo-
gists (MS and MH, each with at least 15 years of
experience) excluded 320 tumors, 59 vascular diseases,
12 encephalitis or meningitis, 82 chromosomal disorders
or neurocutaneous syndromes, and 96 malformations, as
well as 12 unexplained abnormal white matter signals
and 14 unacceptable artifacts from the description.
Among 174 eligible candidates, 55 cases with suspected
neurological diseases were excluded by tracking medical
records until 2 years after MRI examination. Of the 119
subjects, 40 were boys and 79 were girls; 44% (52/119)
were preterm infants with less than 37 weeks of gesta-
tion, with a mean birth weight of 2040 g (1674–2406 g).
The gestational age at birth was 36.1–40.8 weeks, with a
mean gestational age of 38.5 weeks. In all participants,
chronological age was corrected by converting gestational
age to a full 40 weeks, and the corrected ages ranged
from −1.71 to 23.54 months (Fig. 2). Fourteen samples
(aged 14 days to 24 months of age) acquired with four
different MR systems at our institution from 2018 to 2019
were adopted to evaluate the general performance. Thirteen
Sturge–Weber syndrome (SWS) patients aged 15 days–18
months, examined using the same MRI parameters during
the current study period, were selected to evaluate the
response of our model in comparison to non-normal parti-
cipants. SWS is a neurocutaneous disorder reported to
involve accelerated myelination up to 1 year of age, with
a slowdown of myelination occurring beyond that age.21–23

MRI protocol
For the training data, whole-brain 2D T1WI and T2WI were
obtained from 95 participants using a 3T MR unit (Achieva;
Philips Healthcare, Best, the Netherlands) and from 24 par-
ticipants using a 1.5T MR unit (MAGNETOM Avanto;
Siemens Healthineers, Erlangen, Germany). In addition,
the external test data were obtained from four MRI systems
(1.5 T Ingenia [Philips Healthcare], 3T MAGNETOM Skyra
[Siemens Healthineers], Discovery 750w [GE Healthcare,
Chicago, IL, USA], and Vantage Centurian [Canon Medical
Systems, Tochigi, Japan]). Details of the sequence parameters
and the number of participants for each MR unit are shown in
Table 1.
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Image dataset construction
All MR images were converted from Digital Imaging
and Communications in Medicine format into 8-bit
grayscale Portable Network Graphics format and

resampled to 128 × 128 pixels. Two whole-brain data-
sets were constructed from 30 pairs of T1WIs and
T2WIs. In cases with fewer than 30 images, the missing
data were compensated for by including blank images.
The 119 datasets were divided into four groups with an
equal distribution of corrected ages to apply the four-
fold cross-validation method. For the construction of the
training dataset for the target image extraction model,
five images containing myelination-related changes
(pons, midbrain, basal ganglia, centrum semiovale, and
subcortical white matter) were selected by a neuroradiol-
ogist with 25 years of clinical experience (AW). As the
dataset for the second age estimation model, 10 MR
images consisting of 5 pairs of T1-and T2WIs output
by the first pre-trained image extraction model were
adopted. In each training event, image data augmenta-
tion was performed randomly with left–right flipping,
scaling (0.95–1.05), and rotation (−0.15–0.15 radians),
using the Image Data Augmentation layer provided with
the neural network software.

Machine learning models
Our deep learning models were designed using the open-
source Neural Network Console ver. 1.5 deep learning
library, which was developed by Sony Network

Fig. 1 Study flowchart.

Fig. 2 A histogram of participants’ age at the time of MR examina-
tion. Participants’ ages are corrected for a full-term birth.
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Communications (Tokyo, Japan, https://dl.sony.com/) and is
based on the Python programming language (version
3.6.2; Python Software Foundation, Wilmington, DE,
USA), running on a computer (Windows 10 operating
system) with an Intel Core i7 2.2 GHz processor, 32
GB RAM, and an NVIDIA GeForce GTX 1070 graphics
processing unit. Our deep learning age estimation model
was constructed by the stacking of two neural networks
that were trained separately (Fig. 3). The first neural
network was constructed using a Long Short-Term
Memory network (LSTM) with an attention module
(Figs. 4 and 5).24–26 This network took in 30 whole-
brain 2D images as continuous data and extracted five
characteristic images of myelination. The second age
estimation neural network was constructed using the
Pyramid network (PyramidNet). PyramidNet is an
improved version of the residual neural network
(ResNet) and fully connected layers (Fig. 6).27 The five
pairs of T1- and T2WIs produced from the output of the
LSTM are input to two PyramidNets, and the features of
T1- and T2WIs were individually extracted and trans-
ferred to the fully connected layers, which then per-
formed regression analysis to predict the age. As the
loss function of training of image extraction and age
estimation networks, the absolute error was employed.
The learning parameters were a maximum epoch of
100 in the image extraction network and a maximum
epoch of 1000 in the age estimation network, and the

optimizer selected was Adam (initial learning rate = 0.001,
α: 0.001, and β: 0.9).

Performance evaluation of the machine learning
model
In evaluating age estimation accuracy, the mean absolute
error (MAE), root mean square error (RMSE), and correla-
tion coefficient (CC) between the estimated age and the
corrected chronological age were assessed using four-fold
cross-validation. Because the age of the 119 participants was
not found to be normally distributed in the Shapiro–Wilk
normality test (P = 0.747 × 10-11), a nonparametric method
was adopted for statistical analysis. Spearman’s rank-order
correlation test was used to evaluate the correlation, and the
statistical significance was determined with a significance
threshold of P < 0.05. The mean difference, standard devia-
tion (SD), and the limits of 95% agreement between the
estimated age and the corrected chronological age were
evaluated using Bland–Altman analysis. Statistical analyses
were performed with SPSS (IBM SPSS Statistics 37; IBM,
Armonk, NY, USA).

Results

Our stacked model of LSTM and PyramidNets showed high
accuracy with CC of 0.99 (P < 0.01), MAE of 0.98 months,
and RMSE of 1.27 months for internal validation data
extracted from the same population as training data

Fig. 3 Deep learning model simulating the rule-based workflow to the pediatric brain. The LSTM network extracts five regions from the
whole brain (left). The PyramidNet and fully connected layers extract features of T1- and T2WIs and estimate the age (right). LSTM, Long
Short-Term Memory network; PyramidNet, Pyramid network; T1WI, T1-weighted image; T2WI, T2-weighted image.
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Fig. 4 The internal structure of the LSTM unit. Our LSTM unit contained three gates: forget, input, and output (a). The forget and input
gates coordinated the long-term memory represented as “C” in the figure, referring to the current input “xt” and transferred short-term
memory “ht-1”. The output gate produced “ht” and moved to the following network. Each gate was constructed with a three-layer neural
network with convolution, batch normalization, and activate functions (b). LSTM, Long Short-Term Memory network; ReLU, rectified
liner unit.

Fig. 5 The attention module
selectedone image from30 images
of the whole brain. The attention
module consisted of two1×1 con-
volution layers and an activation
function. The output of the LSTM
network to the similarity to the tar-
get image was converted, and the
one-hot representation was multi-
plied to select the most suitable
image from 30 images. Conv, con-
volutional layer; LSTM, Long Short-
TermMemory network; ReLU, rec-
tified liner unit.
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(Fig. 7). The mean difference between the estimated age and
the corrected chronological age was −0.15 months, with an
SD of 1.26 months, and the upper and lower limits of 95%
agreement (mean ± 1.96 SD) were 2.33 and −2.63 months,
respectively.

The generalization performance evaluation with external
data from different magnetic field strengths, models, and
vendors MRI showed a decrease in CC to 0.93, an increase
in MAE to 1.85 months, and an increase in RMSE to 2.59
months (Fig. 8). The Bland–Altman plot of SWS cases
showed that 7 of the 13 patients exceeded the 95% limits of
agreement (LOA). In particular, the difference in patients
between 6 and 12 months of age was higher than the mean
+ 1.96 SD (Fig. 9). A paired samples t-test showed a positive
proportional bias up to 12 months of age (P = 0.03).

Discussion

In infants and children up to 2 years of age, the myelina-
tion-related signal change in brain MRI is a valuable
indicator for confirming normal neurological develop-
ment. In the current study, we successfully automated
the age estimation model from myelination-related MR
signals by constructing a deep learning model that simu-
lated the radiology workflow and training with brain MRI
without abnormalities.

To simulate the workflow of the myelination-related MR
signal evaluation in radiology using deep learning, we separated

the workflow into two tasks: extraction of regions with a
myelination-related signal change from the whole brain, and
feature extraction of T1- and T2WI and regression analysis of
age estimation. The first task, in which five images, including
the pons, midbrain, internal capsule, corpus callosum, and
white matter, were extracted from 30 whole-brain images, can
be regarded as specific scene extraction from a movie, consid-
ering the 30 images as continuous movie data. We selected the
LSTM network, a variant of the recurrent neural network
architecture, to simulate this task. The recurrent neural network
was suitable for handling continuous data, such as text, audio,
and movies, using its characteristic “memory transmission”
function (Fig. 4).24,25,28 For image extraction of a single region,
the LSTM receives continuous input of 30 T1WIs from bottom
to top and outputs the similarity to the target region. Based on
the similarity, only one image was selected via the attention
module with a one-hot and multiplication process (Fig. 5).26

Five independently trained LSTMs built a dataset consisting of
five pairs of T1- and T2WIs and transmitted the data to the
following age estimation network. The second step was feature
extraction of myelination-related findings on T1- and T2WIs
using an adapted PyramidNet, which is an advanced type of
ResNet.27,28 ResNet was designed by combining a multilayer
CNN with a skip connection.29–31 The skip connection is a
short-circuit in the convolutional layer. Placing a skip connec-
tion in multiple convolution units can provide a potentially
large number of feature transfer paths in the network, and its
ensemble effect contributes to the high image recognition

Fig. 6 The architecture of ResNet and PyramidNet. The structure of ResNet (left) is a stack of multilayers convolutional units, and the
number of filters increases after downsampling. In PyramidNet (right), the number of filters in the convolutional layer rises gradually.
PyramidNet, Pyramid network; ResNet, residual neural network.
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accuracy of ResNet. However, in ResNet, using the same
number of channels in multilayer convolutional layers is not
beneficial for feature extraction in image recognition. In

PyramidNet, this disadvantage is improved by gradually
increasing the number of channels, like the base of a pyramid
(Fig. 6).27 In our model, two parallel PyramidNets extracted the

Fig. 8 Correlation between estimated age and corrected chron-
ological age in external MR data. The CC was 0.93, MAE was
1.27 months, and RMSE was 2.59 months. CC, correlation
coefficient; MAE, mean absolute error; RMSE, root mean square
error.

Fig. 7 Correlation between estimated age and corrected chronolo-
gical age. The CC was 0.99, MAE was 0.98 months, and RMSE was
1.85 months. CC, correlation coefficient; MAE, mean absolute
error; RMSE, root mean square error.

Fig. 9 Scatter diagram of estimated age and corrected chronological age in SWS patients and Bland–Altman plot of 119 participants (●) and
13 SWS patients (×). In SWS patients, the estimated age was higher than the corrected age until 1 year (a). Seven of the 13 SWS patients (×)
were beyond the limits of 95% agreement from −2.63 to 2.33 months (mean difference ± 1.96 SD) (b). SD, standard deviation; SWS,
Sturge–Weber syndrome.
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features of T1- and T2WIs independently, and the following
fully connected layer output the predicted age. Finally, the
stacked deep learning model with an individually trained
LSTM network and PyramidNets provided a fully automatic
age estimation system (Fig. 3).

The previous two studies have reported age estimation
from brain MRI using deep learning in infants and children
up to 2 years of age.19,20 Hong et al. constructed an opti-
mized 10-layer 3D CNN with whole-brain sagittal T1WI
and reported MAE of 67.6 days (2.3 months), RMSE of
96.1 days (3.2 months), and CC of 0.9685, and the mean
difference and the upper and lower limits of 95% agreement
(mean difference ± 1.96 SD) between the estimated age
and the corrected chronological age were 4.16 ± 73.5 days
(0.14 ± 2.45 months), respectively, in Bland–Altman
analysis.19 Moreover, Kawaguchi et al. constructed a multi-
layer CNN consisting of six convolutional layers and fully
connected layers with independent inputs of single T1- and
T2WI at the level of the corpus callosum splenium.20 They
reported an MAE of 8.2 weeks (1.9 months), RMSE of
12.6 weeks (2.9 months), and CC of 0.94, and Bland–
Altman analysis was only adopted to compare the perfor-
mance of humans and artificial intelligence. The current
results revealed an MAE of 0.98 months, RMSE of 1.27
months, CC of 0.99, and a mean difference ± 1.96 SD of
−0.15 ± 2.48 months, exhibiting a higher CC and smaller
error values compared with the previous studies. We consider
that simulating the radiology workflow of focusing on the
location and progression of myelination-related MR signals
in T1- and T2WIs contributed to these results. However, it is
not appropriate to compare regression models trained on dif-
ferent data only using CCs and error values. Anomaly detec-
tion trials of machine learning models trained only on
normal data can be considered as one performance indica-
tor. In our model, 7 of the 13 cases of SWS were beyond the
LOA of the Bland–Altman plot, and myelination accelera-
tion below 12 months of age exhibited a proportional error.
Kawaguchi et al.’s model estimated a younger age than the
corrected chronological age in six of the seven cases of
myelination delay.20 Hong et al. did not validate their
model with myelination abnormalities.19 Another proposed
method of comparison is to evaluate the general perfor-
mance with external data. Our model’s MAE, RMSE, and
CC values were worsened from 0.98, 1.27, and 0.99 to 1.85,
2.59, and 0.93, respectively, with external data validation in
MR systems with different static magnetic field strengths.
The previous two studies mentioned above did not examine
accuracy with comparable external data.

The current study involved several limitations. First, our
dataset was biased and was not an ideal sample of healthy
participants. Approximately half of the participants were pre-
term infants with less than 37 weeks’ gestation, and the aim of
theMRI examination was to screen at the full-term equivalent.
The other participants had a clinical course for which the
pediatrician ordered a screening head MRI. Although

abnormal participants were excluded wherever possible on
the basis of medical records up to 2 years after the examina-
tion, the inclusion of unhealthy participants cannot be ruled
out. Second, the size of our dataset was relatively small
because it is ethically challenging to justify obtaining a large
amount of brain MRI data from infants and children, who
typically need to be sedated to undergo scanning. However,
our sample size was close to the median value of recent
machine learning research in medical imaging reported in a
recent review of machine learning studies.32

Conclusion

An automated age estimation model from brain MRI was
constructed using stacked deep learning simulating the
rule-based workflow in radiology and achieved highly
accurate age estimation in infants and children up to
2 years of age.
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