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Airway epithelial cells play a major role in initiating inflammation in response to bacterial pathogens. S. aureus is an important
pathogen associated with activation of diverse types of infection characterized by inflammation dominated by polymorphonuclear
leukocytes. This bacterium frequently causes lung infection, which is attributed to virulence factors. Many of virulence deter-
minants associated with S. aureus-mediated lung infection have been known for several years. In this paper, we discuss recent ad-
vances in our understanding of known virulence factors implicated in pneumonia. We anticipate that better understanding of novel
functions of known virulence factors could open the way to regulate inflammatory reactions of the epithelium and to develop ef-
fective strategies to treat S. aureus-induced airway diseases.

1. Introduction

Although a relatively unspectacular, nonmotile coccoid bac-
terium, Staphylococcus aureus is a dangerous human patho-
gen in both community-acquired and nosocomial infections.
A fundamental biological property of this bacterium is its
ability to asymptomatically colonize healthy individuals.
S. aureus carriers are at higher risk of infection, and they are
presumed to be an important source of the S. aureus strains
that spread among individuals [1].

The pathogen can cause a wide variety of infections,
which can be divided into three types: (i) superficial lesions
such as wound infection, (ii) toxinoses such as food poison-
ing, scalded skin syndrome and toxic shock syndrome, and
(iii) systemic and life-threatening conditions such as endo-
carditis, osteomyelitis, pneumonia, brain abscesses, menin-
gitis, and bacteremia [2].

S. aureus carries a wealth of pathogenic determinants,
which promote tissue colonization, tissue damage, and dis-
tant diseases [3–5]. S. aureus is able to survive inside host cells

and can invade in vitro a variety of nonprofessional phago-
cytes, including fibroblasts [6], osteoblasts [7], endothelial
[8], and epithelial cells [9, 10]. After internalization, S. aureus
may either persist, escaping host defenses and antibacterial
agents, or multiply and further disseminate. This behavior is
orchestrated by global regulators, which sense environmental
modifications, such as bacterial density, and may or may not
trigger the secretion of proteins that lyse the host cells and
allow the bacteria to propagate [11–14]. Thus, invading host
cells might not only provide a therapeutic sanctuary, but also
be part of a subtle hide-and-seek strategy, as observed with
enteric bacteria [15].

To prevent colonization by inhaled microorganisms, the
respiratory epithelium maintains an effective antimicrobial
environment by mucociliary clearance and by producing an-
timicrobial peptides, surfactant proteins, complement, che-
mokines, and cytokines mediating immune cell recruitment
and inflammation [16–18]. All of the innate defense mech-
anisms of the mammalian airways appear to be directly or
indirectly activated by contact of bacterial factors with the
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epithelial cell surface receptors, which may activate various
intracellular signaling pathways. It has long been recognized
that S. aureus evokes an intense host response dominated
by polymorphonuclear leukocytes (PMNs). The induction
of genes encoding the proinflammatory cytokines requires
activation of mitogen-activated protein kinases (MAPKs)
and the transcription factors activator protein-1 (AP-1)
and nuclear factor κB (NF-κB) [19–22]. The virulence of
S. aureus is attributed to many factors. Some of them are
implicated in lung infection and have been known for several
years. However, the information published in the recent past
demonstrated a new pathogenic properties related to known
virulence determinants of S. aureus. Better understanding of
functions and mechanisms of action of each virulence factor
is important for improving prognosis of individuals suffering
from pneumonia.

In this paper, we summarize recent advance in our under-
standing of known virulence factors and their role in the
initiation of lung inflammation.

2. S. aureus Is a Pathogen Implicated
in Pneumonia

Over the past 90 years, S. aureus has been increasingly rec-
ognized as an important cause of pneumonia in both adult
and pediatric populations [23–25]. Along with bacteremia,
S. aureus pneumonia is one of the most prevalent methicillin-
resistant S. aureus- (MRSA-) related diseases, and the inci-
dence of severe pneumonia caused by MRSA strains rises [26,
27]. Previously, MRSA infections were largely nosocomial
infections and a common cause of ventilator-associated
pneumonia (VAP), a subtype hospital-acquired pneumonia
characterized by high morbidity and mortality [28, 29].
However, in the last few years, there was a dramatic increase
in the incidence of community-associated MRSA (CA-
MRSA) infections in otherwise healthy individuals and in
patients who do not establish risk factors for MRSA, and
now, CA-MRSA becomes a common and serious health
problem [29]. CA-MRSA strains can cause a necrotizing
pneumonia, a specific disease entity that often follows an
influenza infection. The necrotizing pneumonia is a rapid
progressive form of extensive pneumonia leading to acute
respiratory distress with pleural effusion, hemoptysis and
leucopenia [24]. Moreover, pneumonia caused by S. aureus
is a serious complication in individuals with cystic fibrosis
and patients affected by immunosuppressive therapy [22, 26,
30, 31].

A characteristic manifestation of S. aureus-caused pneu-
monia is the intense host inflammatory response character-
ized by a rapid and excessive recruitment of neutrophils to
the site of infection [32, 33]. In fact, accumulating evidence
suggests that disease progression in bacterial pneumonia is
largely mediated by the dysregulated and exaggerated host
inflammatory response to infection that causes lung injury
[34, 35]. Because of the high incidence of pneumonia accom-
panying with high mortality, it is important to gain more
insight into the pathogenesis of this prominent infectious
disease.

3. Virulence Factors of S. aureus

The broad range of infections caused by S. aureus is related to
a number of virulence factors that allow it to adhere to sur-
face, invade or avoid the immune system, and cause harm-
ful toxic effects to the host [3, 36].

3.1. Adherence Factors (Adhesins). The attachment of
S. aureus to the host cell surface initiating the colonization
process is mediated by several adhesins. One major class of
S. aureus adhesins comprises proteins covalently anchored to
cell peptidoglycans (via the threonine residue in the sorting
signal motif at their C-terminus), which specifically attach
to the plasma or extracellular matrix (ECM) components
and collectively are termed the microbial surface component
recognizing adhesive matrix molecules (MSCRAMMs) [4,
37–39]. These molecules recognize the most prominent com-
ponents of the ECM or blood plasma, including fibrinogen,
fibronectin, and collagens [3, 40–42].

Typical members of the MSCRAMM family are staphylo-
coccal protein A (SpA), fibronectin-binding proteins A and B
(FnbpA and FnbpB), collagen-binding protein, and clump-
ing factor (Clf) A and B proteins [3, 4].

3.2. S. aureus Exoproteins. Nearly all strains of S. aureus
secret a group of exoproteins such as exotoxins and enzymes,
including nucleases, proteases, lipases, hyaluronidase, and
collagenase. The main function of these proteins may be to
convert local host tissue into nutrients required for bacterial
growth [5].

S. aureus produces exotoxins that possess cytolytic activ-
ity. Cytolytic toxins form β-barrel pores in the plasma mem-
brane and cause leakage of the cell’s content and lysis of
the target cell [43]. S. aureus secrets several cytolytic tox-
ins, among them α-hemolysin, β-hemolysin, γ-hemolysin,
leukocidin, and Panton-Valentine leukocidin (PVL) [44].
α-hemolysin became inserted into the eukaryotic mem-
brane and oligomerizes into a β-barrel that forms a pore
which causes osmotic cytolysis and is particularly cytolytic
toward human platelets and monocytes [45]. PVL is clas-
sified as a bicomponent cytolysin (LukF-PV and LukS-PV)
that insert itself into the host’s plasma membrane and hetero-
oligomerize to form a pore. PVL exhibits a high affinity
toward leukocytes, while other bicomponent toxins, γ-he-
molysin and leukocidin, are cytotoxic toward erythrocytes
and leukocytes, respectively [44].

S. aureus produces additional group of exotoxins, which
include the toxic shock syndrome toxin-1 (TSST-1), the
staphylococcal enterotoxins (SEA, SEB, SECn, SED, SEE,
SEG, SEH, and SEI) and the exfoliative toxins (ETA and
ETB). Among them, TSST-1 and the staphylococcal entero-
toxins belong to the group of toxins known as pyrogenic
toxin superantigens (PTSAgs) [46, 47]. The best character-
ized property of this group is superantigenicity, which refers
to the ability of this toxin to stimulate proliferation of T-lym-
phocytes. These toxins cause toxic shock syndrome and
food poisoning. ETA and ETB are involved in staphylococcal
scalded skin syndrome (SSSS) [48]. The exfoliative toxins
have been recognized for long time to possess mitogenic
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activity toward T lymphocytes [49], but it remains still con-
troversial, whether they should be implicated as superanti-
gens.

S. aureus has also other specific proteins that can have
profound impact on the innate and adaptive immune system.
Examples of such kind of proteins are the staphylococcal
complement inhibitor (SCIN), chemotaxis inhibitory pro-
tein of S. aureus (CHIPS), staphylokinase (SAK), extracellu-
lar fibrinogen binding protein (Efb), extracellular adherence
protein (Eap), and formyl peptide receptor-like-1 inhibitory
protein (FLIPr). SCIN is a C3 convertase inhibitor, which
blocks the formation of C3b on the surface of the bacterium
and, thereby, the ability of human neutrophils to phago-
cytose S. aureus [50]. CHIPS and FLIPr block neutrophil
receptors for chemoattractants [51, 52], Epa blocks migra-
tion of neutrophils from blood vessels into the tissue [53],
SAK binding to α-defensins abolishes their bactericidal prop-
erties [54], while Efb inhibits both classical and alternative
pathways of complement activation [55, 56].

The virulence of S. aureus is generally considered to be
multifactorial and due to the combined action of several
virulence determinants. One exception is the toxinoses, such
as toxin shock syndrome, SSSS, and staphylococcal food
poisoning, which are caused by toxic shock syndrome toxin,
exfoliative toxins A and B, and different staphylococcal
enterotoxins, respectively [3].

In S. aureus-induced VAP, multiple virulence factors are
implicated. Through the action of LTA, PepG, MSCRAMMs,
particularly Fnbp and SpA, and α-toxin, S. aureus is able to
adhere to respiratory epithelium, to damage the alveolocap-
illary barrier, and to attract PMN [57]. In turn, necrotizing
pneumonia is associated with an action of SpA, α-toxin,
and β-toxin, which cause cell damage and play a role in
inflammation and necrosis of the respiratory epithelium
[32, 35, 58]. The role of PVL in necrotizing pneumonia is
controversial.

3.3. Regulation of Virulence Factors in S. aureus. The patho-
genicity of S. aureus is a complex process involving a diverse
array of extracellular and cell wall components that are
coordinately expressed during different stages of infection
(i.e., colonization, avoidance of host defense, growth and cell
division, and bacterial spread) [59, 60].

The coordinated expression of diverse virulence factors
in response to environmental cues during infections (e.g.,
expression of adhesins early during colonization versus pro-
duction of toxins late in infection to facilitate tissue spread)
hints at the existence of global regulators in which a single
regulatory determinant controls the expression of many
unlinked target genes [61]. These regulators help bacteria to
adapt to a hostile environment by producing factors enabling
the bacteria to survive and subsequently to cause infection at
the appropriate time.

Among the environmental signals, changes in nutrient
availability, temperature, pH, osmolarity, and oxygen tension
have the greatest potential to influence the expression of vir-
ulence factors [60]. Production of S. aureus virulence deter-
minants is controlled by several global regulatory loci, such
as accessory gene regulator (agr) [62, 63], staphylococcal

accessory regulator (sarA) [64, 65], sae [66], sigB [67, 68],
arl [69], and number of sarA homologues [70, 71]. These
regulators are parts of an important network modulating the
expression of S. aureus virulence genes. One target virulence
gene can be under the influence of several regulators that
“cross talk” to ensure that the specific gene is expressed only
when conditions are favorable. For instance, in vitro studies
have demonstrated that agr negatively regulates the ex-
pression of spa, which encodes SpA [71], whereas SarS binds
to the spa promoter and activates its expression [72]. Inter-
estingly, agr downregulates sarS expression [65, 72]. Thus, it
has been proposed that agr downregulates spa expression by
suppressing the expression of its activator, sarS [72]. There-
fore, virulence gene regulators could affect the expression
of target genes directly, by binding to their promoters, or
indirectly, via other regulators.

4. Known Virulence Factors of S. aureus and
Their Novel Functions in Pneumonia

The majority of initial inflammatory responses to inhaled
bacteria is signaled by mucosal cells lining the respira-
tory tract. S. aureus has a potential to activate the host
inflammatory response in several different ways: through the
adherence of intact bacteria to the host epithelial cells, by
internalization of the bacteria and by direct interaction of
bacterial adhesins and toxins with the mucosal epithelium.
The main virulence factors that have potential to cause tissue
injury and inflammation in the lung are SpA, α-toxin, β-
toxin, and PVL [24, 32, 73–75].

4.1. SpA. SpA is a good example of one of known and well-
characterized S. aureus virulence factors that have recently
revealed new properties and play a chief role in the induction
of pneumonia. Since many years, SpA is known to be a 42-
kDa protein covalently anchored in the bacterial cell wall.
It belongs to the MSCRAMM family, because it can bind to
the von Willebrand factor, a large glycoprotein that mediates
platelet adhesion at sites of endothelial damage [42]. SpA
comprises five repeated domains (E, D, A, B, and C), each
of them binding with high affinity to the Fc region of im-
munoglobulin (Ig) G and to the Fab region of Ig of the
VH3 subclass [76, 77]. The interaction with Fc of IgG
hinders phagocytosis, because bacteria coated with IgG in
an inappropriate conformation becomes not recognizable by
the Fc receptor on PMN [43]. An additional consequence of
the ability of SpA to bind to B lymphocytes displaying IgM
bearing VH3 heavy chains is the induction of proliferation
resulting in depletion of a significant part of the B cells reper-
toire [78, 79].

Although the interactions between SpA and Ig chains
have long been recognized, only recent studies reveled the
central importance of SpA in the pathogenesis of S. aureus-
induced pneumonia [32, 80, 81]. The absence of SpA reduces
pneumonia incidents and associated mortality in a mice
model of infection [32].

Apart of SpA interfering with opsonization by binding
to the Fc portion of immunoglobulins, SpA was postulated
to have a direct effect on the respiratory epithelial cells even
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Figure 1: Role of SpA in TNFR1 regulation. (a) SpA is recognized
by TNFR1 and the signaling cascade is initiated through the adaptor
proteins TRADD/RIP/TRAF2, which subsequently activate MAPK
kinases (p38 and JNK 1/2) and induce translocation of transcription
factors AP-1 and NF-κB into the nucleus. Activation of AP-1 and
NF-κB leads to transcription of genes encoding proinflammatory
cytokines and chemokines. (b) SpA through interaction with EGFR
and activation of c-Src-Erk1/2 stimulates the activity of TACE
(ADAM-17), which cleaves and releases TNFR1 from the airway
surface. TNFR1 is then available to neutralize free SpA and TNF-
α ligands. AP-1, activator protein 1; ATF-2, activating transcription
factor 2; EGFR, epidermal growth factor receptor; NF-κB, nuclear
factor κB; RIP, receptor-interacting protein; TACE, tumor necrosis
factor-α-converting enzyme; TNFR1, tumor necrosis factor recep-
tor 1; TRADD, tumor necrosis factor receptor- (TNFR-) associated
death domain; TRAF2, tumor necrosis factor receptor-associated
factor 2.

in the absence of IgG. In the infection of the airways where
serum components are lacking, SpA plays a chief role in the
pneumonia by induction of interleukin- (IL-) 8 expression,
and recruitment of PMN into the airway [32]. Although
several receptors for SpA, including von Willebrand factor
and the platelet protein Gc1qR/p33, have been reported, they,
however, are not responsible for the accumulation of PMN
in the airways. Tumor necrosis factor- (TNF-) α receptor
1 (TNFR1) is widely expressed at the airway epithelium,
and its accessibility on the epithelial surface makes it an
attractive candidate for mediating host response induced by
SpA. An exciting recent study of Gómez et al. [32] showed
that SpA interacts directly with TNFR1 and mimics TNF-
α proinflammatory signaling by recruitment of the adaptor
molecules the TNFR-associated death domain (TRADD),
receptor-interacting protein (RIP), and TNFR-associated
factor (TRAF) 2 to the receptor and the activation of the
mitogen-activated protein kinases (MAPKs) p38 and c-Jun

NH2-terminal kinases 1 and 2 (JNK1/2), which induces
translocation and activation of transcriptional factor NF-
κB and mediates IL-8 gene expression. Moreover, SpA-
TNFR1 interaction leads to phosphorylation of the acti-
vating transcription factor 2 (ATF-2), a component of the
AP-1 transcription complex that is regulated through phos-
phorylation by p38 and JNK1/2 MAPKs (Figure 1(a)). Addi-
tionally, TNFR1-deficiency results in reduced morbidity and
mortality in a mouse S. aureus pneumonia model [32].
Interestingly, in dominant-negative Toll-like receptor (TLR)2
and TLR4 mutants, SpA still induces NF-κB activation in the
airway epithelial cells, suggesting that SpA is not TLR2 or
TLR4 agonist [32].

4.1.1. Regulation of Inflammation by TNFR1 Shedding. The
abundance of TNFR1 is controlled by its mobilization from
intracellular stores and cleavage from the cell surface [82–
86]. During staphylococcal pneumonia, TNFR1 is specifi-
cally mobilized to the apical surface of the airway epithelial
cells, providing access to inhaled staphylococci [36]. Cleavage
of TNFR1 is known to be mediated by the TNF-α converting
enzyme (TACE), a central regulator of TNF-α signaling [82,
87, 88].

TACE (also known as a disintegrin and metalloprotease
(ADAM) 17) is a member of the ADAM family of proteases
involved in release of several cell surface proteins, including
receptors for TNF-α, the epidermal growth factor (EGF) and
IL-6 [87]. TACE plays an important role in the regulation
of inflammation by its ability to cleave and release the ex-
tracellular portion of TNFR1 from the surface of airway
epithelial cells and macrophages. Shed of TNFR1 from the
epithelial surface prevents ongoing signaling and serves to
neutralize free TNF-α as well as SpA in the airway lumen,
and, consequently, the loss of the receptor from the cell
surface prevents further epithelial activation.

SpA also induces TACE-dependent cleavage of TNFR1
into the extracellular compartment [32]. Activation of TACE
depends on a discrete interaction between SpA and EGF
receptor (EGFR), which in turn induces TACE phosphoryla-
tion through a c-Src-Erk1/2-mediated cascade (Figure 1(b))
[89]. While TACE is highly expressed on the apical surface
of the airway epithelial cells, the substrate, TNFR1, has to
be mobilized to the surface, where it colocalizes with
TACE. Interaction between EGFR and bacterial SpA and
the consequent activation of TACE serve to counteract the
proinflammatory consequences of TNFR1 signaling, PMN
recruitment and activation. Thus, activation of the TNFR1
pathway not only stimulates mobilization of PMN, but also
provides a mechanism to regulate SpA-induced recruitment
of neutrophils [32].

Therefore, SpA is involved in the S. aureus pneumonia
by activating TNFR1 and inducing PMN infiltration that
is deleterious to the host. The discovery of the new SpA-
TNFR1 signaling axis highlights additional molecular targets
to modulate the host immune response and to treat S. aureus-
caused pneumonia.

4.2. Toxins of S. aureus. S. aureus α-toxin, β-toxin, and PVL
play an essential role in pneumonia and lung injury. Both,
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α-toxin and PVL, are pore-forming toxins, which exaggerate
the host inflammatory response by inducing the expression
of proinflammatory cytokines and lysing inflammatory cells
to release additional inflammatory mediators. Thus, these
toxins have both direct and indirect means to cause a lung
damage [73, 90–92]. However, little is known about the sig-
nificance of these toxins in S. aureus-induced pneumonia and
lung injury.

4.2.1. α-Toxin (α-Hemolysin). α-toxin is the major cytotoxic
agent released by S. aureus, and it was the first bacterial exo-
toxin to be identified as a pore former [93]. Pore formation
on susceptible host cell membranes triggers alterations in ion
gradients, loss of membrane integrity, activation of stress-
signaling pathways, and cell death [93, 94].

S. aureus α-toxin is known to play an important role in
the pathogenesis of staphylococcal diseases, as S. aureus mu-
tants lacking hla display reduced virulence in invasive disease
models [95]. Interestingly, the dosage of the toxin can result
in two different modes of activity. Low concentrations bind
to specific cell surface receptors and form a heptameric pore.
This pore allows the exchange of monovalent ions, resulting
in DNA fragmentation and, eventually, in apoptosis [96].
High concentrations result in the toxin absorbing nonspecif-
ically to the lipid bilayer [97, 98] and forming large, Ca2+-
permissive pores. This results in massive necrosis and other
secondary cellular reactions triggered by the uncontrolled
Ca2+ influx [96].

α-toxin is secreted as a water-soluble monomer that un-
dergoes a series of conformational changes to generate a
heptameric, β-barrel structure in host membranes. Struc-
tural maturation of Hla depends on its interaction with a
previously unknown proteinaceous receptor. Recently, Wilke
and Wanderburg [99] reported that α-toxin binding to eu-
karyotic cell requires ADAM 10 expression to initiate the
sequence of events (see below).

α-toxin possesses additional biological functions such as
binding to a putative glycoprotein receptor on host cells, acti-
vation of intracellular signaling, and modulation of several
processes [91–93, 96, 100]. It was recently described, that α-
toxin facilitates the secretion of newly synthesized chemoki-
nes into the airway and exaggerates neutrophil-mediated
inflammatory lung injury through syndecan-1 ectodomain
shedding (see below) [58].

4.2.2. ADAM 10 in S. aureus α-Toxin-Mediated Cytotoxicity.
Recently, it has been reported that α-toxin-ADAM 10 in-
teraction identifies ADAM 10 as the likely proteinaseous cel-
lular receptor for the toxin, which is required for α-toxin-me-
diated cytotoxicity when the toxin is present at low con-
centrations. Multiple lines of evidence confirm the impor-
tance of the membrane lipid environment in α-toxin-in-
duced injury, because the membrane opposed region of the
toxin interacts with phosphatidylcholine [101], and choles-
terol/sphingomyelin-rich membrane domains [102]. It has
been shown that clustered phosphocholine head groups serve
as the high-affinity binding site for α-toxin and provide
a mechanistic view of the assembly of α-toxin, suggesting
that its initial interaction with ADAM10 and the plasma

membrane directs the assembly of the α-toxin-ADAM10
complex in cholesterol/sphingolipid-rich caveolar rafts. This
clustering likely increases the local concentration of α-toxin,
permitting caveolin 1-directed oligomerization of the toxin
and providing accessibility to caveolae-associated proteins
FAK and Src, which mediate the biologic effects of α-toxin.
Focal adhesion disruption by the α-toxin-ADAM10 complex
provides a mechanism by which the toxin may perturb cel-
lular barriers to cause invasive disease and facilitate super-
antigen permeation through impenetrable stratified cell
layers [103].

4.2.3. β-Toxin (β-Hemolysin). Among S. aureus toxins, the
least is known about the function of β-toxin in pneumonia
and lung injury. Based on literature data, S. aureus β-toxin is
a Mg2+-dependent neutral sphingomyelinase that hydrolyzes
sphingomyelin of the host cell plasma membrane to generate
phosphocholine and the bioactive secondary messenger,
ceramide [104–106]. Depending on the chain length of their
fatty acids or the mode of metabolism, these ceramides
may have a number of effects in eukaryotic cells, including
stimulation of second messenger systems, activation of
MAPKs, changes in cell shape, and even apoptosis [107, 108].

β-toxin does not lyse most types of host cells but leaves
them susceptible to a number of other lytic agents, such
as α-toxin and PVL [35]. In fact, the cytotoxic effect of
β-toxin is cell type-specific and species-specific, suggesting
that its primary virulence activity is to modulate host
processes that affect pathogenesis, rather than to directly kill
host cells [35]. Study of Hayashida et al. [35] uncovered a
previously unknown in vivo function of β-toxin in S. aureus
pneumonia. S. aureus β-toxin has been shown to maximize
lung injury not through its cytotoxic activity, but rather
through its capacity to enhance PMN infiltration in a syn-
decan-1-dependent manner (see below). Moreover, this
toxin can activate different, as yet unknown, cell signaling
pathways involved in the induction of c-Fos expression
through the NF-κB and p38 MAPK signaling cascades [94,
109–111].

4.2.4. Activation of Syndecan-1 Ectodomain Shedding by S.
aureus α- and β-Toxins. Ectodomain shedding is a prote-
olytic mechanism of releasing the extracellular domains of
cell surface proteins as soluble ectodomains that can regulate
many pathophysiological processes, such as microbial patho-
genesis, inflammation, and tissue repair [112, 113]. The
diverse list of shed proteins includes cytokines, growth fac-
tors, and cell adhesion molecules, including TNF-α, trans-
forming growth factor-α (TGF-α), EGF, L-selectin, CD44,
and syndecans. S. aureus and other bacterial pathogens acti-
vate ectodomain shedding of cell surface molecule syndecan-
1 to enhance their virulence [35, 58, 100]. Syndecan-1 is
the major heparan sulfate proteoglycan of epithelial cells,
which binds and regulates a wide variety of biological mol-
ecules through its heparan sulfate chains [114]. Both
α-toxin and β-toxin shed syndecan-1 ectodomains through
stimulation of the host cells shedding machinery [35, 58,
100]. Several independent lines of evidence suggest that the
primary function of syndecan-1 in α- and β-toxin-induced
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inflammation is to facilitate PMN infiltration through the
generation of chemotactic signals [35, 58].

Forming the small discrete pores by α-toxin may trigger
syndecan-1 shedding [91, 100]. α-toxin does not directly
shed syndecan-1 ectodomains, but rather stimulates an
endogenous mechanism which involves protein tyrosine
kinases (e.g., Syk), but not protein kinase C and MAPK sig-
naling pathways, that enhance the cleavage of syndecan-1
ectodomains by host cell metalloproteinase [100]. Staphylo-
coccal β-toxin enhances syndecan-1 shedding by activating
ceramide production in the alveolar epithelial cells and by
implicating protein tyrosine kinases Syk and JAK2, Erk-type
MAPKs, and metalloproteinase [115, 116].

The mechanism of syndecan-1 shedding was well char-
acterized in a mouse model. In bleomycin-induced acute
inflammation and lung injury, shedding of syndecan-1 by
metalloproteinase-7 generates a chemokine gradient that
attracts PMN into the alveolar compartment [117]. Lung
injury caused by bleomycin induces the expression of the
CXC chemokine KC (CXCL1, mouse functional homologue
of human IL-8) and metalloproteinase-7. Newly synthesized
KC binds to the heparan sulfate proteoglycans of syndecan-
1, and shedding of the syndecan-1/ectodomain-KC complex
by metalloproteinase into the alveolar space generates a
chemokine gradient across the alveolar epithelial border.

Both S. aureus toxins exaggerate lung injury and inflam-
mation through its capacity to enhance neutrophil infiltra-
tion [35, 58]. Thus, the shedding of syndecan-1 mediated by
α- and β-toxins may be a critical mechanism in development
of a broad range of acute inflammatory disorders.

4.3. PVL. Panton-Valentine leukocidin is one of several ex-
tracellular cytotoxins produced by S. aureus. The toxin was
first described by Van de Velde (1894), but only in 1932
Panton and Valentine associated the leukotoxin with skin and
soft-tissue infection. Clinical studies propose the exotoxin
PVL being a virulence factor in necrotizing diseases [24, 118].

Previous studies revealed that human and rabbit neu-
trophils are highly sensitive to the pore-forming properties
of PVL and rapidly undergo cell death [119]. Furthermore,
it is generally accepted that myeloid cells are the prime
target of PVL and that low concentrations of the toxin
cause apoptosis, whereas higher amounts induce lysis of
neutrophils [120].

Pore formation requires the presence of the two com-
ponents of the toxin, LukS-PV and LukF-PV. This pore is
an octameric β-barrel molecular complex perpendicular to
the plane of the cell membrane, similar to that made by
S. aureus α-toxin [121, 122]. Sublytic concentrations of
purified PVL induce pronounced histamine release from
human basophils and stimulate human neutrophils to release
enzymes (β-glucuronidase and lysozyme), chemotactic com-
ponents (leukotriene-B4 and IL-8), and oxygen metabolites
[121, 123, 124].

4.3.1. PVL Role in Pneumonia. More than 20 years ago, it was
suggested that this lytic toxin functions as a virulence factor
in cutaneous infection [125, 126]. Necrotizing pneumonia
has long been recognized, but the association with PVL was

made by Gillet et al. [24], and numerous cases have been
reported worldwide [24, 26, 118, 127–131]. Patients with
PVL-positive S. aureus in their lungs develop necrotizing
pneumonia and have exceedingly high mortality rates, indi-
cating that PVL might be an important virulence factor [24].
However, several studies that used a diversity of animal
models have created conflicting results concerning the role
of PVL in pneumonia.

In one study applying a mouse acute pneumonia
model, Labandeira-Rey et al. [73] suggested PVL to be a
major virulence factor. Using purified toxin or a laboratory
strain of S. aureus that overexpressed PVL via a plasmid
containing luk-PV operon, PVL was shown to affect mouse
survival in a pneumonia model. The mice showed symptoms
of severe illness. It is of interest that when comparing isogenic
S. aureus strains lysogenized with either wild-type øSLT
or mutated øSLT in which the lukPV operon was deleted,
no difference in mouse survival was found [73], indicating
that PVL does not exhibit a lethal effect when expressed
from a single transgenic copy. Labandeira-Rey et al. ascribed
to PVL a pronounced global gene regulatory effect [73],
with the regulatory changes reminiscent of disrupting the
accessory gene regulator agr [132]. They showed that the
expression of PVL induces global changes in transcriptional
levels of genes encoding secreted and cell-wall-anchored
staphylococcal proteins, including SpA [73]. It should be
mentioned that this statement is controversial: Diep and
Otto [133] explained that misinterpretation of the data due
to the apparent lack of confirmatory experiments might
have led to the model in which PVL plays a role in global
gene regulation. Also, other groups fail to detect any patho-
genic function of PVL in murine model of pneumonia. Using
isogenic Δpvl mutants in the MW2 and USA300 back-
grounds, and when overexpressing PVL in S. aureus strain
Newman, no significant contribution of PVL to lethal pneu-
monia was found using mice [75, 134]. Moreover, it was
suggested that Hla, but not PVL, was essential for the patho-
genesis of staphylococcal pneumonia [75]. Passive immu-
nization with anti-PVL immune sera also failed to protect
mice against challenge with USA300 in the murine pneumo-
nia model [95], indicating that PVL is not necessary for the
pathogenesis of pulmonary disease.

4.3.2. Role of TLR in PVL-Mediated Lung Inflammation.
Despite the role of PVL as a virulence factor in the lungs is
controversial, the pulmonary immune response to PVL, es-
pecially responsiveness of alveolar macrophages to this toxin,
is known [135]. The recent study of Zivkovic et al. [135]
showed that PVL induced a highly specific inflammatory
transcriptional response in alveolar macrophages. The alve-
olar macrophages are considered to represent the first line
of defense against pathogens and express receptors, includ-
ing TLRs, which recognize pathogen-associated molecular
patterns [136]. Activation of TLRs triggers the MAPK and
NF-κB signaling pathways. These pathways further modu-
late proinflammatory gene expression, which is crucial in
shaping the innate immune response within the respiratory
tract [137]. The idea that TLRs could play an important
role in bacterial toxin recognition is not uncommon. Other
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pore-forming toxins have been shown to mediate inflam-
mation via TLRs, particularly via TLR2 and TLR4 [138,
139]. Zivkovic et al. [135] demonstrated that PVL directly
binds to the extracellular domain of TLR2 and induces
immune response via NF-κB in a TLR2, CD14, MyD88, IL-1
receptor-associated kinase 1, and TRAF6-dependent manner.
However, in contrast to data showing that LukF from S.
aureus is able to induce inflammation in a TLR4-dependent
manner in bone marrow-derived dendritic cells [140], the
study of Zivkovic et al. [135] demonstrated that the active
component of the toxin is LukS, because the stimulation of
macrophages with LukS, but not with LukF, resulted in an
inflammatory response in vitro and in vivo. Furthermore,
overexpression of TLR2, but not CD14, is sufficient for LukS
to induce an inflammatory response, indicating that CD14
can act only as a coreceptor.

The ability of PVL to induce inflammatory gene expres-
sion is independent of pore formation [135]. These data are
in line with previous observations, showing that both sub-
units of PVL are required to perform a pore [122]. Interest-
ingly, although single subunits are incapable of forming the
pore, LukS is capable of inducing TNF-α gene expression.
Furthermore, single submit LukS, but not LukF, is able to
induce an inflammatory response, suggesting that inflamma-
tory gene expression relies on cellular pathways independent
of pore formation [135].

5. Eradication of Infection of S. aureus in
the Lungs

S. aureus deploys a combination of virulence factors, includ-
ing adhesins, toxins, and immunomodulatory molecules,
that facilitate infection of different host tissues [141, 142].
The knowledge about host factors, which facilitate eradica-
tion of S. aureus in the lungs, is limited.

Surfactant protein A (SP-A) is the major protein compo-
nent of pulmonary surfactant. It is involved in organization
of large aggregates of surfactant phospholipids lining the
alveolar surface and acts as an opsonin for pathogens [143].
Previous studies established that SP-A modulates macro-
phage phagocytosis and a host pro- and anti-inflammatory
responses that help in eradication of infection [144–148].
Recent study of Sever-Chroneos et al. [149] demonstrated the
role of SP-A in opsonization and clearance of S. aureus. Ma-
crophage receptor SP-R210 is implicated in the ability of SP-
A to coordinate the clearance of pathogens and apoptotic
cells, and to participate in temporal control of inflammation
in the lungs [145]. SP-R210 mediates also binding of SP-A-
opsonized S. aureus by macrophages [149]. Phagocytosis of
SP-A-opsonized S. aureus via SP-R210 is coordinated with
secretion of TNF-α and suppression of bacterial growth in
macrophages. Furthermore, expression of the staphylococcal
adhesin Eap is necessary for both SP-A binding and enhanced
phagocytosis of SP-A-opsonized bacteria by SP-R210. Finally,
Sever-Chroneos et al. [149] revealed previously unknown
link between expression of SP-R210 isoforms and the scav-
enger receptor SR-A. Binding of SP-A to SP-R210S induces
phagocytosis and release of anti-inflammatory mediators

via association with SR-A, leading to an enhanced bacterial
killing and resolution of the infection.

Based on previous findings, SP-R210 [150] and SR-A
[151] may coordinate secretion of IL-10, TGF-β, and hydro-
gen peroxide in alveolar macrophages. Importantly, it is pro-
posed that temporal control of inflammatory responses via
SP-R210S and SR-A contributes to the proper recruitment
and activation of neutrophils, facilitating eradication of
S. aureus infection in the lungs. However, moderate levels
of hydrogen peroxide may suppress inflammation through
inactivation of NF-κB [152, 153] and enhance bacterial
killing through activation of NADPH oxidase [154] during
the resolution phase of the disease.

6. Conclusion

The innate defense of the airway epithelial cells against S.
aureus includes a regulated secretion of cytokines and che-
mokines, and involves different signalling pathways. Induc-
tion of the airway inflammation can be mediated by several
staphylococcal determinants and corresponding receptors
and is not necessarily dependent on the expression of a par-
ticular virulence factor that is crucial for the pathogenesis of
S. aureus infection in other body sites.

Among many virulence factors produced by S. aureus,
SpA, α-, and β-toxins play an important role in the of path-
ogenesis of staphylococcal pneumonia. The role of PVL in
lung infection is debated due to conflicting data.

The shedding of the plasma membrane proteins repre-
sents an important mechanism underlying S. aureus prop-
erties in the lungs. α-toxin and β-toxin of S. aureus activate
ectodomain shedding of host components to promote bac-
terial pathogenesis. In addition, the airway epithelial cells
regulate their own signaling capabilities by shedding some
epithelial receptors (e.g., TNFR1) that serves to bind and
neutralize inflammatory cytokines released by immune cells.

Considerable progress has been made in our under-
standing of known virulence factors and their implication
in pneumonia in the last few years. Several new properties
of S. aureus virulence determinants have been identified. A
detailed analysis of function and mechanisms of action of
each virulence factor could open the way to control the
proinflammatory response in the lung by using specific
inhibitors and may be helpful for the development of novel
therapies for S. aureus-caused pulmonary diseases.

Abbreviations:

CHIPS: Chemotaxis inhibitory protein of S. aureus
Clf A, B: Clumping factor A and B
Eap: Extracellular adherence protein
Efb: Extracellular fibrinogen-binding protein
ET A, B: Exfoliative toxins A and B
FLIPr: Formyl peptide receptor-like-1 inhibitory

protein
IL: Interleukin
EGF: Epidermal growth factor
EGFR: Epidermal growth factor receptor
MAPKs: Mitogen activated protein kinases



8 Journal of Pathogens

MSCRAMMs: Microbial surface component recognizing
adhesive matrix molecules

PVL: Panton-Valentine leukocidin
PTSAgs: Pyrogenic toxin superantigens
RIP: Receptor-interacting protein
SAK: Staphylocinase
SCIN: Staphylococcal complement inhibitor
SpA: Staphylococcal protein A
SP-A: Surfactant protein A
TACE: Tumor necrosis factor-converting enzyme
TLR: Toll-like receptor
TNF-α: Tumor necrosis factor alpha
TNFR1: Tumor necrosis factor alpha receptor 1
TRADD: Tumor necrosis factor alpha receptor-as-

sociated death domain
TRAF: Tumor necrosis factor alpha receptor-as-

sociated factor
TSST-1: Toxic shock syndrome toxin-1.
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hart, and C. Wolz, “Direct quantitative transcript analysis
of the agr regulon of Staphylococcus aureus during human
infection in comparison to the expression profile in vitro,”
Infection and Immunity, vol. 68, no. 3, pp. 1304–1311,
2000.
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