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discovery against new variants
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Shreya Paithankar,1 Eugene Chekalin,1 Mei-Sze Chua,5 Surender Rajasekaran,1,6 Chien-Te Kent Tseng,4,7

Mingyue Zheng,3 Seungtaek Kim,2,* and Bin Chen1,8,9,11,*

SUMMARY

The molecular manifestations of host cells responding to SARS-CoV-2 and its
evolving variants of infection are vastly different across the studied models
and conditions, imposing challenges for host-based antiviral drug discovery.
Based on the postulation that antiviral drugs tend to reverse the global host
gene expression induced by viral infection, we retrospectively evaluated hun-
dreds of signatures derived from 1,700 published host transcriptomic profiles
of SARS/MERS/SARS-CoV-2 infection using an iterative data-driven approach.
A few of these signatures could be reversed by known anti-SARS-CoV-2 inhi-
bitors, suggesting the potential of extrapolating the biology for new variant
research.We discovered IMD-0354 as a promising candidate to reverse the signa-
tures globally with nanomolar IC50 against SARS-CoV-2 and its five variants. IMD-
0354 stimulated type I interferon antiviral response, inhibited viral entry, and
down-regulated hijacked proteins. This study demonstrates that the conserved
coronavirus signatures and the transcriptomic reversal approach that leverages
polypharmacological effects could guide new variant therapeutic discovery.

INTRODUCTION

Since early December 2019, the newly emerged SARS-CoV-2 virus has infected more than 600 million peo-

ple globally and claimed more than 6 million deaths (as of September 2022). In addition, severe COVID-19

has caused irreversible organ injuries in a large number of patients (Abbasi, 2021; Ankit et al., 2020; Nal-

bandian et al., 2021). The systems of host cells responding to SARS-CoV-2 infection under various models

(cell lines, organoids, animals, and patients) and conditions (dosages, times, and patient severity) have

been molecularly characterized using diverse omics profiling and perturbation technologies, often result-

ing in a list of candidate targets in individual studies (Blanco-Melo et al., 2020; Bojkova et al., 2020;

Daniloski et al., 2020; Delorey et al., 2021; Demichev et al., 2021; Desai et al., 2020; McClain et al., 2021;

Overmyer et al., 2021; Yang et al., 2021). Small molecules modulating these targets were subsequently pro-

posed to treat COVID-19 (Chu et al., 2021; Samelson et al., 2022, p. 2). Together with phenotypic screening

hits, more than 200 candidates surfaced in publications. However, few studies fully appreciated the

complexity and variation of the virus-induced molecular changes in host cells (Dittmar et al., 2021; The

COVID-19 Gene and Drug Set Library, 2020) and the prevalence of polypharmacological effect of small

molecules (Lin et al., 2019), partially accounting for the moderate efficacy of repurposing candidates.

Rapidly emerging variants still impose increasing threats because of their higher transmissibility, high-

lighting the pressing need of untangling the complexity and variation of transcriptional programs in

host cells to aid the discovery of drugs for new variants and future pandemics.

Recent studies revealed that published anti-SARS-CoV-2 drugs share similar transcriptional programs (Xing

et al., 2021) and 16 viruses tend to present conserved transcriptional regulation modules of immune re-

sponses (Zheng et al., 2021), suggesting the prevalence of underlying molecular mechanisms connecting

antivirals and host responses. In cancer, reversal of transcriptional expression correlates with drug efficacy

(Chen et al., 2017). We thus first sought to answer if published anti-SARS-CoV-2 drugs tend to reverse the

global gene expression of infected host cells as observed in cancer. The central idea of the reversal

1Department of Pediatrics
and Human Development,
Michigan State University,
Grand Rapids, MI 49503, USA

2Zoonotic Virus Laboratory,
Institut Pasteur Korea,
Seongnam-si, Gyeonggi-do,
13488, Korea

3Drug Discovery and Design
Center, State Key Laboratory
of Drug Research, Shanghai
Institute of Materia Medica,
Chinese Academy of
Sciences, Shanghai 201203,
China

4Departments of
Microbiology and
Immunology, The University
of Texas Medical Branch,
Galveston, TX 77555, USA

5Department of Surgery,
Stanford University School of
Medicine, Palo Alto, CA, USA

6Helen DeVos Children’s
Hospital, Grand Rapids, MI
49503, USA

7Center of Biodefense and
Emerging Infectious
Diseases, The University of
Texas Medical Branch,
Galveston, TX 77555, USA

8Department of
Pharmacology and
Toxicology, Michigan State
University, Grand Rapids, MI
49503, USA

9Department of Computer
Science and Engineering,
Michigan State University,
East Lansing, MI 48824, USA

10These authors contributed
equally

11Lead contact

*Correspondence:
seungtaek.kim@ip-korea.org
(S.K.),
chenbi12@msu.edu (B.C.)

https://doi.org/10.1016/j.isci.
2022.105068

iScience 25, 105068, October 21, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:seungtaek.kim@ip-korea.org
mailto:chenbi12@msu.edu
https://doi.org/10.1016/j.isci.2022.105068
https://doi.org/10.1016/j.isci.2022.105068
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105068&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Virus structural &
accessory proteins

Replication

Translation & Assembly

ER
Stress

Nucleus

IFN

ISGs

Immune
Response

Ubiquitin
Proteasome

Translation

Vehicle
Drug

Cell line Cell line

Drug induced
gene expression change

(LINCS)

CoV
infection
signature

Drug candidate
profiles

SARS
MERS

SARS-CoV-2

Up

Down

RNA
seq.

✓ X X

Test antiviral IC50 in vitro

Reversal ~ antiviral efficacy

Drug
SARS-CoV-2

or
Variants

A

B

4.5 5.0 5.5 6.0 6.5 7.0 7.5
pEC50

4

5

6

7

pC
C

50

100-fold safety

1 μM

harringtonine alvocidib

pevonedistat

ethaverine

tyrphostin

ouabaindarunavir

Published Anti-CoV Compounds (139)

Good efficacy
Low toxicity

C

Mick
_p

ati
en

ts

Lie
be

rm
an

_p
ati

en
ts_

2

Lie
be

rm
an

_p
ati

en
ts_

1

Wink
ler

_m
ice

_D
2

Sing
h_

pa
tie

nts

Blan
co

-M
elo

_p
ati

en
ts

Wink
ler

_m
ice

_D
4

Gill_
pa

tie
nts

Le
_g

ut_
org

an
oid

s

Ove
rm

ye
r_p

ati
en

ts

Wink
ler

_m
ice

_D
7

Blan
co

-M
elo

_A
54

9_
2

Blan
co

-M
elo

_A
54

9_
1

Blan
co

-M
elo

_A
54

9_
3

Le
_p

ati
en

ts

Yua
n_

Cac
o2

Blan
co

-M
elo

_C
alu

3

Blan
co

-M
elo

_N
HBE

Published COVID-19 Signatures

Interferon Alpha Response
Interferon Gamma Response
TNF-alpha Signaling via NF-kB
E2F Targets
G2-M Checkpoint
Hypoxia
IL-6/JAK/STAT3 Signaling
Inflammatory Response
Cholesterol Homeostasis
Apoptosis
Epithelial Mesenchymal Transition
Allograft Rejection
Complement
KRAS Signaling Up
Myc Targets V1
Glycolysis
Mitotic Spindle−2

0

2

D

0.0 0.5
−7

−6

−5

An
tiv

ira
l l

og
10

 E
C

50

Blanco-Melo_A549_1
Cor = -0.54

0.0 0.5
−7

−6

−5

Blanco-Melo_A549_2
Cor = -0.29

0.0 0.5
−7

−6

−5

Blanco-Melo_A549_3
Cor = -0.50

0.0 0.5
−7

−6

−5

Blanco-Melo_Calu3
Cor = -0.59

−0.5 0.0 0.5
−7

−6

−5

Blanco-Melo_NHBE
Cor = -0.41

−0.2 0.0 0.2
−7

−6

−5

Blanco-Melo_patients
Cor = -0.15

−0.25 0.00 0.25
−7

−6

−5

An
tiv

ira
l l

og
10

 E
C

50

Gill_patients
Cor = 0.21

−1 0
−7

−6

−5

Le_gut_organoids
Cor = -0.23

−0.25 0.00 0.25
−7

−6

−5

Le_patients
Cor = -0.03

−1 0 1
−7

−6

−5

Lieberman_patients_1
Cor = -0.02

−0.25 0.00 0.25
−7

−6

−5

Lieberman_patients_2
Cor = 0.29

−0.25 0.00 0.25
−7

−6

−5

Mick_patients
Cor = -0.03

−0.5 0.0
Compound sRGES

−7

−6

−5

An
tiv

ira
l l

og
10

 E
C

50

Overmyer_patients
Cor = 0.04

−0.2 0.0 0.2
Compound sRGES

−7

−6

−5

Singh_patients
Cor = 0.39

0.0 0.2
Compound sRGES

−7

−6

−5

Winkler_mice_D2
Cor = 0.01

−0.5 0.0
Compound sRGES

−7

−6

−5

Winkler_mice_D4
Cor = 0.01

−0.2 0.0 0.2
Compound sRGES

−7

−6

−5

Winkler_mice_D7
Cor = 0.05

−0.25 0.00 0.25
Compound sRGES

−7

−6

−5

Yuan_Caco2
Cor = -0.08

ll
OPEN ACCESS

2 iScience 25, 105068, October 21, 2022

iScience
Article



approach (or called systems-based approach) is that the antiviral drugs could suppress the over-expressed

genes and activate the repressed genes, regardless of drug mechanisms and biological systems involved

(Figure 1A). Next, we asked if the findings could guide the identification of a robust transcriptional program

that could drive the discovery of drugs for new SARS-CoV-2 variants.

We first surveyed published COVID-19 host signatures and observed that most of them were not reversed

by known anti-SARS-CoV-2 drugs. We then interrogated the biological processes implicated in the 374 raw

coronavirus (CoV) signatures derived from 1,700 open host transcriptomic samples of SARS, MERS, and

SARS-CoV-2 infection and found that only 6% of them could be reversed by anti-SARS-CoV-2 drugs, sug-

gesting the challenge of direct deployment of these raw signatures without denoizing the signal. We pro-

posed a novel data-driven approach to tease out a set of robust CoV signatures by distilling knowledge

from compounds effective against other species in the coronaviridae. Reversal of these signatures identi-

fied a potent drug candidate, IKK2 Inhibitor V (IMD-0354), against SARS-CoV-2 and five variants with nano-

molar IC50 in vitro. RNA-seq profiling and systems biology analysis further confirmed it reversed a global

host transcriptional program through targeting multiple virus-altered pathways rather than interacting

with the primary target IKK2.

RESULTS

Reversal of published COVID-19 signatures correlates poorly with antiviral efficacy

We compiled 18 COVID-19 signatures from the supplementary materials of nine studies, which profiled the

host transcriptomic changes in lung cell lines, organoids, mice, and patients with SARS-CoV-2 infection

(Table S1). Pathway enrichment analysis suggested that most of the published signatures displayed

induced interferon and inflammatory responses, whereas some showed diverse or even contradictory pat-

terns (Figure 1B). For example, the cholesterol homeostasis genes are up-regulated in an organoid model

but down-regulated in a Calu-3 cell line model (Figure 1B). In addition to model differences, varying bio-

logical conditions could drive the diversity, as supported by the separation of the signatures derived from

the same mouse model under different days (Figure 1B).

Because these signatures were developed to answer specific biological questions, to verify if they could be

adopted for the systems-based drug discovery (Figure 1A) we then sought to leverage approximately 200

anti-SARS-CoV-2 repurposing candidates identified through the collective efforts worldwide. Most of the

hits showed moderate activity or toxicity (Martinez, 2021; Singh et al., 2020) (Figures 1C and S1A, and Data

S1), indicating a need for drugs to arrest viral infection effectively and safely, especially for new variants. Of

note, compounds selectively inhibiting viral proteins (e.g., 3CL) or viral entry receptors (e.g., ACE2 and

TMPRSS2) might not present transcriptomic reversal of the dysregulated genes in the infected cells. By

mapping to a few published screening results (Brimacombe et al., 2020), 38 positive compounds in our

collection were found active to inhibit 3CL or Spike-ACE2 binding (efficacy >50% and AC50< 50 mM,

Data S1). However, their antiviral activities at the cellular level are not always consistent with the target

inhibitory activities, suggesting that targets related to host transcriptional programs were involved. Be-

sides, 92 compounds in our list exhibit no obvious inhibition of the three targets, indicating they might

act on the host targets. Among all 18 published COVID-19 signatures, only one showed a significant pos-

itive correlation between compound antiviral EC50 values and the scores of CoV signature reversal (sRGES)

(Figure 1D) and only five could enrich positive hits (Figure S1B). A few even displayed a negative correlation

and a negative enrichment (Figures 1D and S1B), meaning these signatures could lead to a hit rate even

lower than random selection. This initial survey of published signatures suggests their considerable varia-

tion and a mixed-signal of informing drug discovery, thus a systematic investigation of all published tran-

scriptome profiles is needed.

Figure 1. Systems-based drug discovery through targeting host transcriptional signature of CoV infection

(A) Examples of biological processes involved in viral infection and the illustration of a drug-disease transcriptome reversal approach for drug discovery.

LINCS: Library of Integrated Network-based Cellular Signatures.

(B) Heatmap of enriched MSigDB Hallmark pathways in published COVID-19 signatures. Color code depicts p values (Fisher exact test, log10 transformed,

inversed for up-regulation), with red representing up-regulation and blue representing down-regulation.

(C) Summary of the efficacy and cytotoxicity of published in vitro anti-CoV hits. pEC50: -log10 EC50 in Molar; pCC50: -log10 CC50 in Molar.

(D) The scatter plot and correlation of compound anti-CoV efficacies and CoV signature reversal scores. The signature names and Spearman coefficients are

shown above the plots. Grey: negative correlation; black: not significant; blue: positive correlation. sRGES: summarized Reversal of Gene Expression Score.

See also Table S1 and Figure S1.

ll
OPEN ACCESS

iScience 25, 105068, October 21, 2022 3

iScience
Article



A data-driven pipeline to generate robust CoV signatures from rich transcriptomic samples

and antiviral drug profiles

To select valid disease signatures that capture the pathological biology of CoV infection, we developed a

data-driven pipeline utilizing known antiviral compound-induced transcriptomic profiles. Of note, for

emerging crises caused by SARS-CoV-2 and its variants, the infected host profiles and active drugs are

not often readily available; thus, we aim for a robust model trained from known virus variants data that

could be extrapolated to respond to future variants. For example, existing host gene expression profiles

of samples infected by SARS-CoV or MERS-CoV might approximate those infected by SARS-CoV-2 based

on their high genomic similarity (Lu et al., 2020). The high correlation of in vitro drug efficacy between anti-

SARS-CoV and anti-MERS-CoV (Spearman correlation coefficient: 0.6, Figure S1C) further confirmed that

drugs active against SARS-CoV or MERS-CoV might provide knowledge in SARS-CoV-2 drug screening.

In this pipeline (Figure 2A), we first processed microarray and RNA-seq data from different published

studies of SARS-, MERS- and SARS-CoV-2-induced host gene expression change, including both preclin-

ical models and COVID-19 patient samples, which generated various comparisons between infection and

control or different infection stages. Based on their reversal pattern to the transcriptomic profiles of known

small molecule CoV inhibitors, we defined valid CoV disease signatures, which were subsequently verified

in multiple COVID-19 patient cohorts. Then a consensus prediction using valid CoV signatures was per-

formed to propose potent drug candidates against SARS-CoV-2 and its variants of concern (VOC) followed

by in vitro validation. Finally, we investigated its antiviral mechanism based on RNA-seq profiling and sys-

tems biology.

In total, 1696 host RNA-seq and microarray samples related to SARS/MERS/SARS-CoV-2 infection were

collected from 57 published studies (Data S2). SARS-CoV-2 profiles account for more than half of all sam-

ples, much more than SARS and MERS samples (14%) because of the improved profiling technology and

the greater impact of SARS-CoV-2 (Figure 2B). We considered COVID-19 patient samples (47.2%) spanning

several severity levels (asymptomatic, mild, and severe, Figure S2A) and different tissue of origins (primarily

from blood and lung) as well as preclinical (52.8%) samples including human cell lines (human airway

epithelial (HAE) cells and other CoV susceptible cells like Calu-3), organoids, and mouse/ferret in vivo

models (Figures 2B and S2B). An integrative analysis of these samples from diverse patient cohorts and

experimental settings is deemed to provide a comprehensive picture of CoV-induced host responses.

Again, most of the raw signatures implied over-activated interferon and inflammatory responses of the

host (Figure 2C), which are natural defensive reactions for viral infection blockade and should not be sup-

pressed by antiviral drugs. The patterns of other pathway enrichment are diverse across raw CoV signa-

tures, corroborating with the survey of published signatures. For example, NF-kB, JAK/STAT, and choles-

terol homeostasis could be both up- and down-regulated in different experiments. Together, reversing

one or a few of the raw CoV signatures might not lead to a potent antiviral drug candidate.

To explore the potential of this pipeline in anti-CoV compound discovery, we evaluated its performance

when (1) predicting SARS-CoV-2 inhibitors from SARS and MERS data only and (2) predicting external

SARS-CoV-2 inhibitors from data of all three viruses.

For the first task, 430 samples from public repositories, representing infections by MERS-CoV or SARS-CoV

(and a few other strains for comparison) in different models (e.g., cell line and mouse models) across mul-

tiple time points were used to create raw disease signatures (Figure 2A and Table S2). Their expression pro-

files were generated using either microarray or RNA-seq. Data processing and signature creation methods

were tailored for different profiling platforms (see STAR Methods). We enumerated all possible compari-

sons (Figure 2A), including (1) comparisons between infection and mock groups at each time point, and (2)

comparisons between different time points within individual infection or mock groups (e.g., time point 1

versus time point 0, time point 2 versus time point 1). Each comparison resulted in a raw disease signature

used to characterize the infection status, followed by calculating the sRGES of different drug transcriptomic

profiles from the LINCS project (Subramanian et al., 2017). To evaluate the quality and pathologic relevance

of each raw disease signature, we used positive drugs identified from in vitro MERS/SARS-CoV testing (38

positive drugs with known LINCS profiles, 29 with EC50 values; Figure S1C, Table S3 and Data S1). Among

215 MERS-CoV or SARS-CoV infection signatures, 13 signatures (i.e., robust CoV signature v1) were able to

recover these positive control drugs (which were highly enriched at the top of the predicted drug lists; Fig-

ure S3, Data S3 and S4). Moreover, the EC50 of these drugs was also significantly correlated with sRGES
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Figure 2. A pipeline of identifying robust CoV signatures and predicting new anti-CoV drugs

(A) Workflow of infection signature identification from hundreds of transcriptomic profiles, drug antiviral effect evaluation, and mechanism interpretation.

CoV: coronavirus. MoA: mechanism of action.

(B) Summary of CoV-induced host transcriptomic change datasets, including different viruses, models, and patient sample categories.

(C) Heatmap of enriched MSigDB Hallmark pathways in each raw CoV signature. Color darkness depicts p-values (Fisher’s exact test, log10 transformed,

inversed for up-regulation), with red representing up-regulation and blue representing down-regulation. See also Figure S2.
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Figure 3. Valid CoV signatures and their performance in predicting CoV inhibitors

(A) Top: Performance of five valid SARS signatures (green), eight valid MERS signatures (blue), and 198 invalid signatures (grey) evaluated with 30 anti-SARS-

CoV-2 compounds. Middle: the receiver operating characteristic (ROC) curve of published SARS-CoV-2 inhibitors based on their predicted ranking in the
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(Figure S3). In contrast, we did not observe significant enrichment of positive control drugs using H1N1

infection signatures. We also confirmed the predictive power of this pipeline using 52 compounds with re-

ported anti-SARS-CoV-2 in vitro efficacy (Data S1). Although derived from SARS and MERS profiles, each

valid signature still enriched positive compounds (EC50< 10 mM) at the top, whereas the invalid signatures

could not (Figure 3A). Also, the average rank could recall the published SARS-CoV-2 inhibitors with an AU-

ROC of 0.78, and it correlated with reported anti-SARS-CoV-2 EC50 (Spearman R = 0.51, p = 1.21E-04) (Fig-

ure 3A). For prospective validation, a drug repurposing library including 1720 bioactive compounds with

their LINCS profiles was screened against the valid CoV signatures for COVID-19 drug discovery based

on a consensus score of the median rank of each drug across different CoV signatures (Data S5). In this pilot

screening, seven out of ten compounds proposed by this pipeline prevented the SARS-CoV-2-induced

cytopathic effect (CPE) within 10 mM (Table S4). These results indicated that the selected SARS and

MERS signatures capture the essential CoV pathological biology and the strategy of reversing them is

applicable for drug discovery against COVID-19 caused by SARS-CoV-2.

GeneOntology (GO) enrichment analysis suggested common pathways among the 13 valid CoV signatures

(Figure 3B, Data S6). Host regular activities that were inhibited by CoV infection include protein phosphor-

ylation and modification (GO:0001934 and GO:0006464), intracellular signal transduction (GO:1902533),

and DNA transcription (GO:0045893). The viruses also developed immune evasion (Kasuga et al., 2021)

to suppress cytokine-mediated signaling (GO:0019221) and host defense response (GO:0031349). Gene

products located at endosomes and lysosomes (GO:0010008 and GO:0005764) were also down-regulated,

probably because the viruses hijacked these organelles for their own manufacturing. Meanwhile, the host

protein biosynthesis machinery was highly activated for the viral replication, such as macromolecule

biosynthesis (GO:0034645), cotranslational protein targeting to the membrane (GO:0006613), peptide

biosynthesis (GO:0043043), large ribosomal subunit (GO:0015934), and mitochondria (GO:0005759) (Gatti

et al., 2020; V’kovski et al., 2021). In line with our previous study (Xing et al., 2021), the microtubule cytoskel-

eton system was utilized for viral transportation. Of interest, cell cycle pathways were also up-regulated,

including DNA replication and repair (GO:0006260 and GO: 0006281), mitotic cell cycle transition

(GO:1901990), and P53 signaling (GO:1901796).

For the second task, 49 RNA-seq datasets of SARS-CoV-2 infection were incorporated to generate valid

SARS-CoV-2 signatures, yielding a set of 23 valid SARS/MERS/SARS-CoV-2 infection signatures in total

(i.e., robust CoV signatures v2, Figure 3C, Data S7). In an external positive drug set (Data S1), the reversal

of CoV signatures v2 could predict known CoV inhibitors (AU-ROC = 0.76) and significantly correlated with

drug EC50 values (Spearman R = 0.47, p = 0.005, Figure 3C). Most of the invalid CoV signatures showed no

enrichment of positive drugs (grey curves in Figures 3A and 3C), suggesting their irrelevance with anti-CoV

drug discovery. Of interest, several invalid CoV signatures enriched the positive drugs at the right end,

which indicates the mimicking of host antiviral response by those host-targeting drugs. Similar patterns

were observed in the published CoV signatures as well.

The valid CoV signatures captured essential biology of how CoVs hijack the host cell machinery. Through

GO enrichment analysis on the updated CoV signatures (Data S6), we observed that general pathway

enrichment patterns remained similar to CoV signatures v1, i.e., inhibiting host activity and antiviral

response (Kasuga et al., 2021; Lei et al., 2020; Schroeder et al., 2021; Xia et al., 2020) while boosting protein

and RNA biosynthesis (Figure 3D). More specific than v1, the CoV signatures v2 highlighted down-regula-

tion of cell migration (GO:0030335) and neutrophil-mediated immunity (GO:0002446). Another minor

difference is that virus hijacked ATP synthesis on mitochondria inner membrane (GO:0042775) was more

significant in v2 signatures, whereas v1 enriched genes were expressed in the mitochondrial matrix. The

valid CoV signatures (v2) maintain some diversity in biological pathways and form complementary clusters

(Figure S4A). Compared with the abovementioned published COVID-19 signatures, the selected valid CoV

signatures are richer in pathway presentation (Figure S4). Unlike the published signatures, which mainly

Figure 3. Continued

entire drug profile library. Bottom: the correlation between log10 transformed EC50 (in Molar) and the predicted ranking of compounds with reported

SARS-CoV-2 inhibitory effect. The validation dataset sizes are annotated in the X axis title.

(B) Gene Ontology terms enriched across the valid CoV signatures v1. Color darkness depicts false discovery rate (FDR) (log10 transformed, inversed for up-

regulation), with red representing up-regulation and blue representing down-regulation.

(C) Performance of valid CoV Signatures v2 on an external positive compound set.

(D) Gene Ontology terms enriched across the valid CoV signatures v2. See also Tables S2–S4, Figures S3–S5.
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focus on interferon pathway over-activation, the valid signatures proposed in this work captured the im-

mune evasive nature of these CoVs at the early stage of infection (Figures S4C and S4D), which is essential

in regulating host antiviral processes to fight against different variants.

We also sought to answer the question of why, among hundreds of infection versus control comparisons,

only 23 were informative for drug screening. First, CoV infection dysregulated pathways showed diverse

and complicated dynamic patterns over different time points and varied across different research models

(Figure S5A), meaning not all comparisons are valid for drug screening. Second, by examining the SARS-

CoV-2-induced transcriptomic changes in different tissues, we found that infection profiles of lung and

PBMC followed similar patterns with the CoV meta-signature v2 (Spearman Rho: 0.62 and 0.48), whereas

no obvious pattern was observed in liver, kidney, and heart samples (Figure S5B). Because the lung is

the primary target organ for COVID-19, and PBMCs circulating in the blood are highly exposed to

SARS-CoV-2, the transcriptomic changes in these two organs are considered appropriate to characterize

the viral infection. These observations emphasize the power of data-driven approaches in teasing out use-

ful signals for therapeutic discovery.

The CoV signature genes separate COVID-19 patients from controls

To confirm that the selected disease signatures capture essential COVID-19 pathological processes, we

first created a summarized CoV meta-signature based on the 13 valid signatures (v1), with 88 genes having

a positive effect size and 43 genes having a negative effect size. Furthermore, we collected 14 studies

comprising 21 patient cohorts (Data S8) with 560 whole-transcriptomic samples from different organs

(e.g., lung, heart, and blood) of COVID-19 patients, healthy donors, and patients who had died of non-in-

fectious diseases. For each cohort, principal component analysis (PCA) was performed using the 131 CoV

signature genes or 131 random genes to visualize the separation of COVID-19 patient samples from others

(Figure 4A). As expected, the CoV signature genes significantly outperformed random genes in separating

COVID-19 samples from those of healthy donors or other diseases (Figure 4B, within the 2D space defined

by the first two principal components). For example, in a study of lung autopsies of deceased patients, CoV

signature genes correctly classified 90% of the COVID-19 patients, whereas the randomgenes only showed

a 70% accuracy (Figure 4C, dataset SRP261138). Note that when two groups of samples present distinct

transcriptomic profiles, even the random genes could separate them although the set of CoV signature

genes performs better. The CoV signature genes were also found to associate with symptom severity. Us-

ing data from a study of lung autopsy (SRP265869), we observed 95% and 90% of classification accuracy

were achieved by the selected genes for degree 2 and 3 lung damaged patients, yet the separation was

reduced to 86% in degree 1 (Figure 4C). Using the data from a whole-blood study (SRP274382), the sepa-

ration accuracy increased as severity elevated (the accuracies in severity degree of 0, 1, and 2 were 50%,

82%, and 85%, respectively) (Figure 4C). Similarly, in studies SRP279280 and SRP293106, the CoV signature

performed better in intensive care unit (ICU) patients than in non-ICU patients and better in hospitalized

patients than in non-hospitalized patients (Figure 4C). Similarly, we evaluated the CoV meta-signature us-

ing data from SARS-CoV-2 infected preclinical models (cell lines and organoids) and found the separation

was also significant (Figure S6). These results suggested that the proposed CoV meta-signature success-

fully characterized the critical features of SARS-CoV-2 infection.

The CoV signatures led to the discovery of IMD-0354 as a potent candidate against SARS-

CoV-2 and its variants

Next, we applied the valid CoV signatures v2 to drug prediction for SARS-CoV-2 variants. The candidate

ranking list was also updated (Data S9), with IMD-0354 (IKK-2-inhibitor-V) at the top. Its transcriptomic pro-

files presented a clear reversal pattern compared with CoV meta-signature v2 (Figure 5A). In line with the

prediction, IMD-0354 demonstrated potent inhibitory activity against six variant viruses in VeroE6 cells, with

IC50 values around 50 nM for the lineage A virus (ancestral SARS-CoV-2), Alpha, Beta, Delta, and Kappa

variants, and 107 nM for the Gamma variant. With a CC50 of 14 mM, IMD-0354 showed a wide therapeutic

window of 132-folds (Figure 5B). Kato et al. (Kato et al., 2020, p. 0354) also reported its prevention of the

ancestral SARS-CoV-2-induced CPE on VeroE6/TMPRSS2 cells, confirming our results. Strikingly, IMD-

0354 is 90-fold more active than remdesivir (IC50 2–10 mM, Figure 5C) to the six variants tested. In Calu-3

cells, the antiviral IC50 of IMD-0354 was 0.52 mM with no observable cytotoxicity (Figure 5D), whereas the

IC50 of remdesivir was 1.27 mM (Figure 5E). IMD-0354 is structurally similar to niclosamide, an anthelmintic

that elicits broad-spectrum antiviral activity (Xu et al., 2020) and is under a Phase II clinical trial for COVID-19

(NCT04399356). More importantly, IMD-1041, the prodrug of IMD-0354, has completed a Phase I clinical
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trial and is under Phase II investigation for chronic obstructive pulmonary disease (COPD) (NCT00883584)

and pulmonary fibrosis (IMMDDrug Discovery Business), indicating its high safety and reasonable bioavail-

ability for lung diseases.

We also tested the cellular antiviral activity of four other compounds showing varying predicted priorities,

i.e., puromycin (ranked 22), methotrexate (ranked 110), methylene blue (ranked 148), and dasatinib (ranked

391) (Figure 5A). Consistent with the ranking, puromycin inhibited Kappa viral replication with an IC50 of

0.88 mM and inhibited other variants with IC50 values ranging from 3 to 15 mM, suggesting a moderate ac-

tivity (Figure 5F). Methotrexate and methylene blue were active only at the highest concentration tested

(Figures 5G and 5H). Dasatinib, the least prioritized one, although showed moderate activity (IC50

� 20mM), its CC50 was even lower (4.65 mM), suggesting a nonspecific inhibition to the host cell activities

instead of specifically targeting the CoV signatures (Figure 5I). These in vitro validation results confirmed
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Figure 4. Verifying the CoVmeta-signature v1 (derived from SARS- orMERS-infected host transcriptomic profiles) with COVID-19 patient cohorts

(A) Workflow of patient sample analysis for the CoV meta-signature validation.

(B) Violin plot to compare how well COVID-19 patient samples are separated from others using the CoV signature genes or random genes. Each point

indicates the classification accuracy for a patient group. The p-value was computed from the Wilcoxon rank-sum test.

(C) Examples of PCA plots of RNA-seq samples from different COVID-19 patient groups. Cohort IDs, tissues, and severities are denoted in group titles. For

each comparison, the left PCA plot was derived from a random gene expression matrix of COVID-19 patient (blue) or healthy/other disease (grey) samples,

whereas the right PCA plot was based on the CoV signature genes where orange scatters indicate COVID-19 patient samples. For each PCA plot, a dashed

line indicates the boundary between COVID-19 samples and others (derived from linear discriminant analysis, see STAR Methods), and the separation

accuracy is also labeled above the plot. PCA: principal component analysis. See also Figure S6.
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the robustness of our CoV signatures and the rationale of drug screening based on the reversal of infected

host gene expression. Together, we propose IMD-0354 or its prodrug as a drug candidate for SARS-CoV-2

and its variants.

IMD-0354 inhibits viral infection through type I interferon stimulation and other

polypharmacological mechanisms

To gain better insights into the mechanism of action (MoA) of IMD-0354 on viral inhibitory processes, we

performed RNA-seq based on three sets of experiments, including control, SARS-CoV-2 infection, and

IMD-0354 treatment followed by SARS-CoV-2 infection in Calu-3 cells (Figure 6A). We used the ribo-minus

approach for RNA-seq library preparation to capture the host mRNA as well as viral RNA. After mapping

the sequencing reads to the human transcriptome, we obtained 4089 differentially expressed (DE) genes

in the infection group compared to the control, and 4828 DE genes in the treatment compared to the infec-

tion group (Figure 6B and Data S10). The gene expression clustering presents a counteracting pattern be-

tween the summarized meta-CoV signature and the IMD-0354 treated group (Figure 6C), confirming our

initial hypothesis that IMD-0354 could reverse the COVID-19 infection-induced gene expression pattern.

We also mapped the sequencing reads to the SARS-CoV-2 genome and observed minimal/no expression

of viral genes in control and treatment samples, yet high expression of viral genes in infected samples (Fig-

ure 6D). In detail, the viral M, N, ORF7a, ORF8, ORF9b, and ORF9c showed higher expression (read counts

normalized with gene length) than other genes (Wilcox rank-sum test, p-value < 0.05, two-sided; Figure 6E);

whereas NSP11, ORF2b, ORF3b, ORF3c, and ORF7b were least expressed compared with other genes. Of

interest, in IMD-0354-treated samples, expression of all viral genes was at the same and low level, suggest-

ing complete viral inhibition (Figure 6F).

We further investigated these RNA-seq samples to delineate the MoA. With a minimal amount of viral RNA

in the treatment group, the RNA-seq profiles mainly captured the effect of IMD-0354 pre-treatment on host

cells. Compared with the merged CoV signature (v2, mean log2 fold change), several innate immune

response genes inhibited by the virus were significantly up-regulated in the IMD-0354 treated group,

including IFNB1, IL1B, IL6, and TNF (Figure 7A and Data S11). GO enrichment analysis also suggested

up-regulation of cytokine-mediated signaling, viral process negative regulation, and NF-kB transcription

factor activation (Figure 7B and Data S12). These results suggest that IMD-0354 blocks viral replication

by boosting the antiviral response in lung epithelial cells. Based on the assumption that perturbagens

with similar transcriptomic profiles share similar MoA (Figure 7C), we used the IMD-0354 RNA-seq profile

to query gene knock-down and over-expression profiles in LINCS. The transcriptomic changes induced by

over-expression of IFNG, TIRAP, or IFNB1 mimicked IMD-0354 with high RGES values of 0.83, 0.63, and

0.58, respectively (Data S13). Similarly, the whole-transcriptomic profiles of interferons on small airway

epithelial cells also exhibited similar patterns with IMD-0354 (RGES �0.5); whereas ruxolitinib, a JAK inhib-

itor, showed no correlation (RGES = 0.02, Figure 7D and Data S10, data source: GSE161664). By incubating

Calu-1 cells with IMD-0354 (without subsequent viral infection), we also observed increased expression of

IFN-b, CXCL10, and IL-6 with 15, 9, and 36-folds, respectively; and the activation of these genes was coun-

teracted by BX795, a TBK1/IKKε inhibitor that blocks IFN-b production (Figure 7E and Table S5). These re-

sults suggest that IMD-0354 pre-treatment activates interferon-mediated antiviral signaling, which has

been proven to inhibit SARS-CoV-2 infection (Li et al., 2021). IMD-0354 did not over-activate ACE2, a recep-

tor of SARS-CoV-2 and also an interferon-stimulated gene (log2 fold change 0.47, Data S10). IMD-0354 did

not stimulate IFN-b or IL-6 in macrophages, meaning this drugmight not worsen the cytokine storm caused

by COVID-19 (Figure S7). Although BX795 and ruxolitinib inhibit type-I interferon response, neither of them

abrogated the antiviral effect of IMD-0354 (Figure S8), suggesting other potential pathways regulated by

IMD-0354. In addition, the knock-down of CHMP2A, a core component of the endosomal sorting required

for transport complex III involved in virus budding (Votteler and Sundquist, 2013), also resembled the IMD-

0354 RNA-seq profile (RGES = 0.69, Figure 7F and Data S14). CHMP2A directly interacts with ORF9b of

SARS-CoV-2 (Gordon et al., 2020), which was found hyperactively expressed during infection but sup-

pressed by IMD-0354 treatment (Figures 6E and 6F). Thus, we reason that IMD-0354 might down-regulate

Figure 5. Selected candidates based on the reversal of valid CoV signatures and their in vitro efficacy against SARS-CoV-2 and its variants

(A) Transcriptomic profiles of five selected and two random compounds aligned to the CoV meta-signature v2. Red and blue indicate up-regulation and

down-regulation, respectively. The rank of each compound was annotated after the drug name.

(B, C, and F–I) Dose-response curves of compounds inhibiting SARS-CoV-2 and variants replication and their cytotoxicity in Vero cells. IC50 and CC50 values

are labeled on the right side. D and E, Dose-response curves of IMD-0354 and remdesivir inhibiting SARS-CoV-2 replication and their cytotoxicity in Calu-3

cells. B–I, IC50 and CC50 values were measured in duplicates.
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CHMP2A expression to block SARS-CoV-2 release to neighbor cells. Also, IMD-0354 might restore SARS-

CoV-2-hijacked genes (Gordon et al., 2020) by up-regulating BRD2 and down-regulating AP2M1, SCCPDH,

NUP88, and DDX10 (Figure 7F and Data S14). Of interest, IKBKB inhibition, the original MoA of IMD-0354,
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Figure 6. Host gene expression response upon the treatment of IMD-0354 in SARS-CoV-2 infected cells

(A) Workflow of RNA-seq library preparation to capture human and viral RNAs. Each group contains three replicates.

(B) Venn diagram showing the comparison of differentially expressed (DE) genes obtained between Infection versus Control (CT) and 0.5 mM Treatment

versus Infection.

(C) A cluster-map showing the reversal of DE genes in the meta-CoV signature (v2) as compared to the treatment group (IMD-0354 0.5 mM versus Control).

(D) Expression values of all SARS-CoV-2 viral proteins in Control, Infection, and 0.5 mM treatment samples.

(E) Viral proteins showing variations (Wilcoxon rank-sum test, p-value < 0.05) with respect to total proteins in infected cells.

(F) The expression of viral proteins is neutralized in the 0.5 mM IMD-0354 treatment group. ns: not significant (Wilcoxon rank-sum test). In (C and D), the blue

color represents down-regulated genes, and the red color represents up-regulated genes. In (E and F), box top- and bottom-edges indicate 25 and 75

percentiles, and the horizontal line inside the box indicates the median.
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Figure 7. IMD-0354 induces type I interferon, blocks viral entry, and inhibits several host proteins hijacked by the virus

(A) Scattering plot highlighting CoV signature genes reversed by IMD-0354. The X axis indicates the log2 fold changes between the treatment group and the

control group, as illustrated in Figure 6A. The Y axis indicates averaged log2 fold changes of CoV valid signatures (v2). Blue points denote genes

dysregulated by CoV infection and significantly reversed by IMD-0354 treatment.

(B) Enriched up- (red) and down- (blue) regulated pathways in IMD-0354 induced host gene expression change (treatment group versus control group as in

Figure 6A). The X axis indicates p-values (FDR corrected and -log10 transformed) computed from Fisher exact test.

(C) Illustration of the MoA query approach based on transcriptomic data. OE: over-expression.

(D) Transcriptomic changes induced by IMD-0354, interferons, and ruxolitinib. Whole transcriptomic data of IMD-0354 were generated as shown in

Figure 6A, and other treatment profiles were downloaded fromGEO (GSE161664). Values in brackets denote RGES of a treatment profile compared with the

IMD-0354 profile. IFN: interferon.

(E) RT-qPCR results on the expression change (log2 transformed) of IFN-b, CXCL10, and IL6 by different compound treatments compared with DMSO in

Calu-1 cells without viral infection. Each dot represents a replicate, each bar represents the average of three replicates. Error bars denote standard

deviations (n = 3). *: p-value < 0.05; **: p-value < 0.01, ns: not significant; Student’s t test.
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might not contribute to its antiviral effect (Figure 7F). Moreover, IMD-0354 inhibits TMPRSS4 (Kang et al.,

2013), one of the crucial enzymes for SARS-CoV-2 entry (Zang et al., 2020), which could partially explain its

higher EC50 in Calu-3 cells than VeroE6 (Figures 5B and 5D), as TMPRSS4 is elevated in Calu-3. Taken

together, we propose that IMD-0354 inhibits SARS-CoV-2 replication mainly through inducing type I inter-

feron-mediated antiviral response, together with multiple polypharmacological mechanisms including

TMPRSS4 inhibition mediated viral entry blockade, CHMP2A down-regulation mediated virus budding in-

hibition, and regulation of host proteins hijacked by the virus (Figure 7G).

DISCUSSION

SARS-CoV-2 induces variable responses in humans, causing highly diverse pathological symptoms. Thus, a

therapeutic agent that targets only a single pathway or gene may only lead to weak inhibition. System-

based approaches hold great promise to complement the traditional target-based approaches and

have been employed to propose drug repurposing candidates for COVID-19 (Bocci et al., 2020; Le

et al., 2021; Zhou et al., 2020). One of the system-based strategies is to propose drugs to reverse disease

gene expression (Qu and Rajpal, 2012), which has demonstrated successes in drug repurposing in various

diseases (Chen et al., 2021a; Dhindsa et al., 2021; Mun et al., 2020; Qu and Rajpal, 2012). More than 1,000

RNA-seq profiles of SARS-CoV-2 infected patients and preclinical models are publicly available, forming a

rich resource of COVID-19 signatures for repurposing drugs. However, the pathological relevance of the

CoV infection signature is critical for antiviral drug discovery. For example, those COVID-19 signatures

focusing on over-activated host immune response do not present a clear pathological effect of virus hijack-

ing the host cell machinery or immune escaping. We found the raw CoV signatures displayed diverse pat-

terns of enriched pathways, and only 6% of them could recover published anti-SARS-CoV-2 active com-

pounds, which motivated us to develop a computational system-based framework to select disease

signatures relevant to therapeutic discovery against SARS-CoV-2 and its current and emerging variants.

Inspired by the high correlation of in vitro drug efficacy data between SARS-CoV and MERS-CoV, we

distilled knowledge from published inhibitors of related coronaviruses to evaluate the pathological rele-

vance of the CoV signatures and applied the valid signatures to drug discovery against new variants.

Because SARS-CoV, MERS-CoV and SARS-CoV-2 have highly similar genomes (Lu et al., 2020), it is likely

that they elicit similar dysregulations of cellular machinery that affect host genes and pathways. The

positive enrichment of the SARS-CoV-2 inhibitors in the hits predicted from the valid SARS and MERS sig-

natures further supported that drug candidates identified with this method would be active against new

variants. Indeed, the promising in vitro results of the top candidate IMD-0354 in the inhibition of SARS-

CoV-2 and six VOC supported our hypothesis. Thus, by using legacy profiles from the same virus family

and compound efficacy against previous viruses, we can quickly narrow down the candidate list for

emerging viruses whose profiles are often not readily available.

Among hundreds of possible signatures, only a small fraction of them are informative in drug prediction.

Our data-driven approach elegantly teased out those informative signatures, resulting in a robust meta-

signature of CoV-hijacking host transcriptomic change. Although this signature was initially derived from

SARS and MERS data, it retains the power to reclassify the SARS-CoV-2 infected and control patient sam-

ples in multiple independent datasets. Furthermore, the valid SARS-CoV-2 signatures were merged with

SARS-CoV and MERS-CoV signatures to create a refined CoV signature. Pathway analysis of these valid

signatures revealed the dysregulation of several known viral pathways. For example, the antiviral immune

response was down-regulated in our signatures and was in concordance with previous reports (Kasuga

et al., 2021; Xia et al., 2020). In addition, replication, mitochondrial ATP synthesis, translation, and pep-

tide synthesis-related pathways required for viral multiplication were up-regulated in these signatures

(Chen et al., 2021b; deBreyne et al., 2020; Gatti et al., 2020; V’kovski et al., 2021). A drug candidate ex-

hibiting strong antiviral effects against SARS-CoV-2 is expected to target one or multiple dysregulated

pathways.

Figure 7. Continued

(F) Transcriptomic changes induced by IMD-0354 and shRNA perturbagens. Settings are the same as D except that shRNA profiles were from the LINCS

L1000 dataset (landmark genes only). In B, C, D, and F, red indicates up-regulation, blue indicates down-regulation and white indicates missing values.

(G) Proposed antiviral mechanism of IMD-0354, including type I interferon response induction, viral entry blockade via TMPRSS4 inhibition, and viral budding

blockade through CHMP2A down-regulation, together with regulating host proteins hijacked by the virus. Main antiviral mechanisms are highlighted with

colors. Circles indicate SARS-CoV-2 proteins directly interacting with host proteins. See also Table S5, Figures S7 and S8.
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The RNA-seq analysis of our drug-treated samples and SARS-CoV-2 infected samples showed the inverse

relationship on different pathways, in agreement with our hypothesis that IMD-0354 targets multiple path-

ways dysregulated by the virus. In addition, the viral gene expression analysis depicted the hyperactivation

of SARS-CoV-2 proteins, includingM, N, ORF7a, ORF8, ORF9b, and ORF9c in infected samples. TheM pro-

tein and ORF7a are known for assembling and budding viral particles and are involved in recruiting struc-

tural proteins to ER-Golgi intermediate compartments (Nelson et al., 2005; Voss et al., 2009). The N protein

is involved in genome protection, viral RNA replication, virion assembly, and immune evasion (including

IFN-I suppression) (Cubuk et al., 2021; Mu et al., 2020, p. 1; Wang et al., 2021). The ORF8 protein is crucial

in viral assembly and immune invasion via inhibiting type I interferon signaling (Li et al., 2020, p. 6; Zhang

et al., 2021, p. 6). The ORF9b protein dysregulates mitochondrial function (Shi et al., 2014; Wu et al., 2021),

and the ORF9c protein interacts with various host proteins including Sigma receptors, implying involve-

ment in lipid remodeling and the ER stress response (Gordon et al., 2020). The absence of these genes

in IMD-0354 treated cells suggests a complete viral infection inhibition under 0.5 mM.

The comparison of the merged CoV signature and IMD-0354-induced transcriptomic profiles revealed that

IMD-0354 activated interferon pathway-related genes (e.g., IFNB1, IL1B, IL6, and CXCL8). Several studies

suggested that type I interferon activation leads to the blockage of SARS-CoV-2 infection (Kim and Shin,

2021; Lei et al., 2020; Pierce Carl et al., 2020; Schroeder et al., 2021; van der Wijst Monique et al., 2021;

Xia et al., 2020). Independent validation by qPCR further confirmed that IMD-0354 stimulated the interferon

pathway even without any viral challenge. This was also supported by the analysis of viral proteins, where

we observed activation of viral N protein, an interferon inhibitor, in infected samples but down-regulation

of viral N protein in the IMD-0354 treated samples. In addition, down-regulation of CHMP2A could lead to

viral inhibition as it is a member of the endosomal sorting complex required for transport (ESCRT), a cellular

machinery hijacked by the virus for its replication and release (Calistri et al., 2021). TMPRSS4 and a similar

serine protease TMPRSS2mediate SARS-CoV-2 entry into cells with an additive effect by inducing cleavage

of the S protein and enhancingmembrane fusion (Wruck and Adjaye, 2020; Zang et al., 2020), and TMPRSS2

blockage resulted in SARS-CoV-2 inhibition (Hoffmann et al., 2020). In addition, the knock-down profile of

several host proteins hijacked by the virus such as AP2M1 and NUP88 also showed significant correlations

with the IMD-0354-induced profile. Collectively, the inhibition of these proteins by IMD-0354 would effec-

tively inhibit viral replication, as evidenced by the negligible viral gene expression in the RNA-seq results of

drug-treated samples, which resembled uninfected control samples (Figure 6D). Together, these suggest

the efficiency of our system-based host-transcriptome-targeting approach in the discovery of novel anti-

viral drugs with polypharmacological effects. Our robust CoV signatures would be instrumental in the

future also to discover novel anti-CoV drugs even with very limited transcriptomic profiles.

In conclusion, by incorporating the knowledge of published CoV inhibitors and aggregating the disease

signatures of SARS-CoV, MERS-CoV, and SARS-CoV-2 in a data-driven fashion, we provide a collection

of robust CoV signatures to enable drug discovery for new variants, which led us to discover a potent

drug candidate, IMD-0354, with anti-SARS-CoV-2 activity, which also showed enhanced potency against

several variants. Our MoA analysis suggests that IMD-0354 activates type I interferon antiviral response

and targets multiple pathways involved in the viral life cycle, suggesting the power of this system-based

approach for drug discovery and the importance of robust pathological relevant CoV signatures. This pipe-

line might provide more robust CoV signatures as a forward-looking tool to enable drug discovery for new

variants and future potential pandemics by iteratively updating CoV infection profiles and anti-CoV drug

profiles.

Limitations of the study

Here are some limitations of our work and how they can be overcome. Because we used the transcriptome

profiles from different in vivo and in vitro models, which might add the biases and limitations in their dis-

ease signatures, to overcome the limitation of technical variations, we created the disease signatures of all

datasets with one pipeline and made comparisons within individual studies. In addition, diverse in vivo and

in vitro models were included to capture all possible transcriptional dysregulated profiles and only those

that could inform drug discovery were selected to create a robust disease signature for SARS-CoV-2.

Although our pipeline offers a unique approach to discovering potent drug candidates for future pan-

demics, it requires prior knowledge of transcriptomics profiles and active compound profiles of any of

the family members related to the infection particle. This limitation could be overcome with the advance-

ment and wide availability of sequencing technologies. The drug reversal analysis used the drug profiles
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from the LINCS, which are based on cancer cells and only cover 978 landmark genes. Although this data-

base has already been successfully applied for drug predictions in various non-oncology diseases, a drug

profile library database specific to viral perturbation is expected to improve performance. Lastly, the IMD-

0354 prodrug IMD-1041 is even more promising because it is orally available and has been investigated for

COPD, a group of lung diseases that block airflow and make it difficult to breathe. However, because this

drug is currently owned by a private company and relevant information, including chemical structure, is not

available, it is not feasible to immediately launch animal studies to fully evaluate its candidacy.
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Mure, F., Gruffat, H., Chavatte, L., and Ohlmann,
T. (2020). Translational control of coronaviruses.
Nucleic Acids Res. 48, 12502–12522. https://doi.
org/10.1093/nar/gkaa1116.

Delorey, T.M., Ziegler, C.G.K., Heimberg, G.,
Normand, R., Yang, Y., Segerstolpe, Å.,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-SARS-CoV-2 N protein Sino Biological Inc. (Beijing, China)

Alexa Fluor 488 goat anti-rabbit IgG (H + L)

secondary antibody

Molecular Probes (Eugene, OR) Cat# A-11008, RRID:AB_143165

Bacterial and virus strains

bCoV/KOR/KCDC03/2020

(ancestral SARS-CoV-2)

Korea Disease Control and Prevention Agency (KDCA)

hCoV-19/Korea/KDCA51463/2021 (alpha) Korea Disease Control and Prevention Agency (KDCA)

hCoV-19/Korea/KDCA55905/2021 (beta) Korea Disease Control and Prevention Agency (KDCA)

hCoV-19/Korea/KDCA95637/2021 (gamma) Korea Disease Control and Prevention Agency (KDCA)

hCoV-19/Korea/KDCA119861/2021 (delta) Korea Disease Control and Prevention Agency (KDCA)

hCoV-19/Korea/KDCA105288/2021 (kappa) Korea Disease Control and Prevention Agency (KDCA)

Chemicals, peptides, and recombinant proteins

IMD-0354 MedChemExpress (Monmouth Junction, NJ) HY-10172

Puromycin MedChemExpress (Monmouth Junction, NJ) HY-B1743A

Methotrexate MedChemExpress (Monmouth Junction, NJ) HY-14519

Methylene blue MedChemExpress (Monmouth Junction, NJ) HY-14536

Dasatinib MedChemExpress (Monmouth Junction, NJ) HY-10181

Bortezomib Selleckchem (Houston, TX) S1013

Tyloxapol Selleckchem (Houston, TX) S4578

Nisoldipine Selleckchem (Houston, TX) S1748

Nvp-bez235 Selleckchem (Houston, TX) S1009

Fluvastatin Selleckchem (Houston, TX) S1909

Alvocidib Selleckchem (Houston, TX) S1230

Chloroquine Cayman Chemical (Ann Arbor, MI) 14194

Remdesivir MedChemExpress (Monmouth Junction, NJ) HY-104077

Ruxolitinib MedChemExpress (Monmouth Junction, NJ) HY-50856

diABZI MedChemExpress (Monmouth Junction, NJ) HY-123943

BX795 MedChemExpress (Monmouth Junction, NJ) HY-10514

Critical commercial assays

MagMAXTM mirVanaTM Total RNA Isolation

Kit

ThermoFisher A27828

KAPA RNA HyperPrep Kit Roche

RNA extraction reagent Vazyme, Nanjing, China R401-01

HiScript II Q RT SuperMix Vazyme, Nanjing, China R223-01

ChamQ SYBR qPCR Master Mix Vazyme, Nanjing, China Q331-02

HiScript III RT SuperMix Vazyme, Nanjing, China R323-01

Deposited data

RNA-seq data for control, SARS-CoV-2 infected,

and IMD-0354 treated Calu-3 samples

This paper GEO: GSE187420

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Bin Chen (chenbi12@msu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The authors declare that all data used in this study are available within the article and its supplemental in-

formation files. Additional Supplemental Items are available from Mendeley Data: https://doi.org/10.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

African green monkey: Vero cells AmericanType Culture Collection

(ATCC, Manassas, VA, USA)

CCL-81; CRL-1586

Human: Calu-3 cells AmericanType Culture Collection

(ATCC, Manassas, VA, USA)

HTB-55

Human: Calu-1 cells AmericanType Culture Collection

(ATCC, Manassas, VA, USA)

HTB-54

Human: THP-1 cells AmericanType Culture Collection

(ATCC, Manassas, VA, USA)

TIB-202

Oligonucleotides

Primers for human ACTB:

Forward: catgtacgttgctatccaggc

Reverse: ctccttaatgtcacgcacgat

This paper

Primers for human IFNB:

Forward: cagcatctgctggttgaaga

Reverse: cattacctgaaggccaagga

This paper

Primers for human CXCL10:

Forward: ccacgtgttgagatcattgct

Reverse: tgcatcgattttgctcccct

This paper

Primers for human IL6:

Forward: ttcggtccagttgccttctc

Reverse: tacatgtctcctttctcagggc

This paper

Software and algorithms

R (3.5.1) https://www.r-project.org/

Python (3.7) https://www.python.org/

ggplot2 https://ggplot2.tidyverse.org/

Pheatmap https://www.rdocumentation.org/packages/pheatmap/

versions/1.0.12

Matplotlib https://matplotlib.org/

Seaborn https://seaborn.pydata.org/

Sci-kit learn https://scikit-learn.org/stable/index.html

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

edgeR Robinson et al., 2010 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

Prisim 7 (GraphPad) San Diego, CA

Columbus Perkin Elmer,Waltham, MA

OCTAD Zeng et al., 2021 http://octad.org/
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17632/wg8mwn4c9j.1 Other specific files can be provided by the corresponding author upon reasonable

request. The code is available at GitHub (https://github.com/Bin-Chen-Lab/wars). RNA-seq data for con-

trol, SARS-CoV-2 infected, and IMD-0354 treated samples are available at GEO: GSE187420.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Vero cells were maintained at 37�C with 5% CO2 in Dulbecco’s Modified Eagle’s Medium, supplemented

with 10% heat-inactivated fetal bovine serum (FBS) and 1X Antibiotic-Antimycotic solution. Calu-3 used in

this study is a clonal isolate, which shows a higher growth rate compared to the parental Calu-3 obtained

from the AmericanType Culture Collection (ATCC HTB-55). Calu-3 was maintained at 37�C with 5% CO2 in

Eagle’s Minimum Essential Medium, supplemented with 20% heat-inactivated fetal bovine serum (FBS), 1X

MEM-NEAA and 1X Antibiotic-Antimycotic solution. Calu-1 cells were cultured in McCOY’s 5A medium

supplemented with 10% Fetal Bovine Serum (FBS) and 2.2 g/L NaHCO3. Calu-1 cells were incubated at

37�C under 5% (v/v) CO2 atmosphere. For the pilot screening, Vero E6 cells [CRL:1586, ATCC] were grown

in Eagle’s minimal essential medium (EMEM) supplemented with penicillin (100 units/mL), streptomycin

(100 mg/mL), and 10% fetal bovine serum (FBS).

METHOD DETAILS

Experimental design

This study aims to discover drug repurposing candidates for COVID-19 and emerging VOC using a compu-

tational system-based approach, which ranks drugs based on their predicted potency to reverse the CoV

host response signature (i.e., host gene expression dysregulated in COVID-19 samples). We made tremen-

dous efforts to decipher the complexity and variance of host responses through large-scale analysis of pub-

lished data. When collecting and processing the CoV transcriptomic profiles, we used the same pipeline to

process all the raw sequence data and made the comparison within the same study to minimize the batch

effect. Sample annotation followed the original study, and no samples were purposely excluded from the

analysis. Published anti-CoV compounds (i.e., positive controls) were divided into a calibration set and a

testing set to select and validate CoV signatures for drug discovery. We screened the LINCS drug-treated

transcriptomic profiles to prioritize repurposed candidates that can reverse the robust CoV infection sig-

natures. The experimental validation of the repurposed drug candidates for inhibiting SARS-CoV-2 and

its VOC was performed on two frequently used cell lines, namely Calu-3 and Vero-E6. The MoA of the

most potent drug was also explored based on RNA-seq profiling and perturbagen connectivity scoring,

followed by independent q-PCR confirmation. Technical and biological replicates in each experiment

were used to check the robustness of the results.

MSigDB hallmark gene enrichment analysis

Fisher exact tests were performed to calculate the p value of a gene set enrichment in the up- or down-

regulated genes from a published COVID-19 signature or a raw CoV signature. The background was

defined as a union of all genes annotated in MSigDB Hallmark dataset. For improved visualization, the p

values were transformed by -log10 for up-regulation enrichment and by +log10 for down-regulation enrich-

ment, and we took the one with a larger absolute value as the final direction.

Computation of infection signatures

SARS-CoV, MERS-CoV, and SARS-CoV-2 related data were retrieved from ArrayExpress, Gene Expression

Omnibus (GEO), and Sequence Read Archive (SRA). The meta information of each sample was manually

curated, including virus strain, model, organism, and time point. The expression matrix for each microarray

data was downloaded via the GEOquery R package. The matrix was further filtered by removing the probes

with expression in only half of the samples. Expression values were normalized using quantile normaliza-

tion, and log2 transformation was applied for each matrix. The probe values were merged based on Entrez

Gene ID. The Significance Analysis of Microarrays (SAM) method was used to compute differentially ex-

pressed (DE) genes with criteria log2 fold change R1 or % �1 and false discovery rate (FDR) < 0.05.

Gene symbols of other organisms were converted to HUGO gene symbols using the biomaRt package.

For RNA-seq datasets, raw sequence data were downloaded from SRA and processed with the TOIL pipe-

line (Liu et al., 2019; Vivian et al., 2017). EdgeR (Robinson et al., 2010) was used to compute DE genes using

the same criteria as used for microarray data, except that log2 fold change threshold was set to 0.585

(zlog21.5) for SARS-CoV-2 samples because of fewer DE genes. For the infection group, we enumerated
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all the comparisons across all time points, and corresponding comparisons were performed in the mock

group. The DE genes that were uniquely present in the infection group were selected for further analysis.

We also compared DE genes between infection and mock groups at each time point, together with consis-

tently dysregulated genes from the first to last time point.

Computation of drug signatures

Druggeneexpression profiles havebeenwidely used in our previous studies. Briefly, a fullmatrix comprising

476,251 signatures and 22,268 genes including 978 landmark genes (as of September 2013) was down-

loaded from the LINCS website (https://clue.io). The meta-information of the signatures (for example,

cell line, treatment duration, treatment concentration) was retrieved via LINCS Application Program Inter-

faces. The matrix and metadata are now available via GSE92742 in GEO. The signature derived from the

comparison of gene expressions between the perturbagen- or vehicle control-treated samples represents

gene expression changes upon treatment. We further downloaded the LINCS drug information from the

Drug Repurposing Hub. Only small molecules with high-quality gene expression profiles (is_gold = 1, anno-

tated in the meta information) and listed in the Drug Repurposing Hub were further analyzed.

Reversal correlation

The computation of Reversal of Gene Expression Score (RGES) and the summarization of RGES (to give the

summarized RGES, or sRGES) were detailed elsewhere and recently implemented as a standalone R pack-

age (Zeng et al., 2021). In short, we quantified the reversal of disease gene expression as RGES, a measure

modified from the connectivity score developed in other studies (Sirota et al., 2011; Subramanian et al.,

2017). To compute RGES, we first ranked genes based on their expression values in each drug profile.

An enrichment score for each set of up- and down-regulated disease genes was computed separately using

a Kolmogorov–Smirnov-like statistic, followed by merging scores from both sets (up/down). The score is

based on the extent to which the provided genes (up or down-regulated disease genes) are located at

either the top or bottom of the ranked drug expression profile. One compound might have multiple

expression profiles because they were tested in various cell lines, drug concentrations, treatment dura-

tions, or occasionally different replicates, resulting in multiple RGES for one disease prediction. We set

a reference condition (i.e., concentration of 10 mM and treatment duration of 24 h) and used a model to

estimate a new RGES if the drug profile under the reference condition was not available. We summarized

these scores as sRGES without weighting the cell lines. We considered predictions to be insignificant if the

maximum of the absolute sRGES is <0.25.

Selection of valid infection signatures

Drugswith known in vitro activity against any of the threeCoVs (i.e., SARS-CoV,MERS-CoV andSARS-CoV-2)

served as positive controls to select valid infection signatures (Data S1). When selecting the first version (V1)

of valid signatures, we used all positive drugs reportedbefore February 2020. After updating published anti-

SARS-CoV-2 hits, the positive drugs were equally distributed to a calibration set and an external test set.

Only the calibration set was used to select valid signatures. Qualified signatures should meet the following

criteria: (1) derived fromCoV infection experiments; (2) the number of DE genesmapped to LINCS was > 50

(not applied to SARS-CoV-2 signature selection because of generally fewer DE genes); (3) themaximum ab-

solute sRGES prediction was > 0.25; (4) the sRGES of positive drugs was enriched at the top (one side Wil-

coxon rank-sum test p < 0.05, FDR < 0.25); (5) the sRGES and the average EC50 value of positive drugs were

highly correlated (SpearmanRho>=0.4, p< 0.05; not applied to SARS-CoV-2 signature selectionbecauseof

the highly varied experimental settings).

Quantifying the separation of patient and control samples using a subset of transcriptome

Transcripts per million (TPM) values were used to quantify the transcription of N selected genes (e.g., CoV

signature genes) in every sample. For a cohort with M1 patient samples and M2 control samples (from

healthy donors or patients diagnosed with other diseases), an N * (M1 + M2) matrix was transformed using

PCA. Then the first and second PCs were used as input features to fit a linear discriminant analysis (LDA)

model. The fitted model assigned a predicted label of ‘‘patient’’ or ‘‘control’’ to each sample. Finally, to

quantify the separation, we calculated the balanced accuracy score based on the true label and predicted

label of each sample in this cohort.
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Dose-response curve (DRC) analysis by immunofluorescence

All compounds were purchased fromMedChemExpress (Monmouth Junction, NJ) and dissolved in DMSO.

Six SARS-CoV-2 variants A, alpha, beta, gamma, delta and kappa (bCoV/KOR/KCDC03/2020, hCoV-19/Ko-

rea/KDCA51463/2021, hCoV-19/Korea/KDCA55905/2021, hCoV-19/Korea/KDCA95637/2021, hCoV-19/

Korea/KDCA119861/2021, hCoV-19/Korea/KDCA105288/2021, respectively) were provided by Korea Dis-

ease Control and Prevention Agency (KDCA) andwas propagated in Vero cells. Viral titers were determined

by plaque assays in Vero cells. All experiments using SARS-CoV-2 were performed at Institut Pasteur Korea

in compliance with the guidelines of the Korea National Institute of Health (KNIH), using enhanced

Biosafety Level 3 (BSL-3) containment procedures in laboratories approved for use by the Korea Centers

for Disease Control and Prevention (KCDC). Ten-point DRCs were generated for each drug. Vero cells

were seeded at 1.2 3 104 cells per well in DMEM, supplemented with 2% FBS and 1X Antibiotic-

Antimycotic solution (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) and Calu-3 cells were seeded

at 2.0 3 104 cells per well in EMEM, supplemented with 20% FBS, 1X MEM-NEAA (Gibco) and 1X

Antibiotic-Antimycotic solution (Gibco) in black, 384-well, mClear plates (Greiner Bio-One, Kremsmünster,

Austria), 24 h prior to the experiment. Ten-point DRCs were generated, with compound concentrations

ranging from 0.003–50 mM. For viral infection, plates were transferred into the BSL-3 containment facility

and SARS-CoV-2 was added at a multiplicity of infection (MOI) of 0.025 or 0.1 for Vero and Calu-3 cells,

respectively. The cells were fixed at 24 hpi with 4% PFA and analyzed by immunofluorescence. The acquired

images were analyzed using Columbus software (Perkin Elmer, Waltham, MA, USA) to quantify cell

numbers and infection ratios, and antiviral activity was normalized to positive (mock) and negative (0.5%

DMSO) controls in each assay plate. DRCs were generated in Prism7 (GraphPad, San Diego, CA, USA) soft-

ware, with Dose-response-inhibition nonlinear regression analysis. IC50 and CC50 values were measured in

duplicates. Mean values of independent duplicate experiments were used for analysis. Each assay was

controlled by the Z0-factor and the coefficient of variation in percent (%CV).

RNA-seq sample preparing and data processing

Calu-3 cells were seeded onto a 12-well plate 5x105 cells/well in Eagle’s Minimum Essential Medium

(EMEM, ATCC), supplemented with 20% heat-inactivated fetal bovine serum (FBS), 1X MEM-NEAA (Gibco)

and 1X Antibiotic-Antimycotic solution (Gibco), andmaintained at 37�Cwith 5% CO2 for 24 h. The following

day Calu-3 cells were treated with either DMSO or IMD-0354 for 30 min prior to SARS-CoV-2 infection. Then

the cells were infected with 0.1MOI SARS-CoV-2 lineage A (bCoV/KOR/KCDC03/2020). Total RNA from the

infected cells was isolated 24 h post-infection using MagMAXTM mirVanaTM Total RNA Isolation Kit

(ThermoFisher, A27828) following the manufacturer’s protocol.

RNA samples from control, infection and treatment samples were prepared using the KAPA RNA

HyperPrep Kit and paired-end sequencing was performed in Illumina NextSeq500. The ribosomal reduc-

tion RNA-seq approach was used to capture the host and viral RNAs. Sequencing reads were mapped

on the human Hg38 transcriptome with the ENSEMBL GRCh38.p3 annotation using STAR aligner (Dobin

et al., 2013) to capture the number of reads mapped to individual genes. Mapped reads were used to

compute the DE genes using the edgeR package (Robinson et al., 2010) implemented in the OCTAD pack-

age (Zeng et al., 2021). The genes with criteria log2 fold changeR1 or%�1 with FDR <0.05 were defined as

DE genes. Additionally, to compare the viral genes among each other, the number of reads mapped was

normalized with the gene length and total reads. One sample with exceptional high viral gene expression in

the treatment group was excluded from the DE analysis.

For viral detection, we started with the unmapped reads left from the human transcriptome mapping to

align on the 11406 viral genomes. Sincemore than 99% of reads weremapped on the SARS-CoV-2 genome,

we extracted the reads mapped on the SARS-CoV-2 genome and quantified the reads mapped on each

viral gene. Further, raw read counts of each viral gene were normalized with total read counts and gene

length. Two sides Wilcox rank sums test was performed to compare viral gene expression in different sam-

ples. The p-value cut-off % 0.05 was used to identify the significant difference between the two groups.

RNA isolation, cDNA synthesis, and real-time quantitative PCR (RT-qPCR)

Calu-1 cells were treated with IMD-0354 (5 mM) alone or IMD-0354 (5 mM) plus BX795 (5 mM) for 24 h. Then

total RNA was isolated from Calu-1 cells using the RNA extraction reagent (Vazyme, Nanjing, China;

R401-01). The cDNA was synthesized using the HiScript II Q RT SuperMix (Vazyme, R223-01) according to

the manufacturer’s instructions. RT-qPCR was performed using ChamQ SYBR qPCR Master Mix (Vazyme,
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Q331-02) in CFX96TM Real Time PCR Detection System (Bio-Rad, Shanghai, China). The profile of thermal

cycling consisted of initial denaturation at 95�C for 30 s, and 40 cycles at 95�C for 5 s and 60�C for 30 s. All the

primer sequences used in this study are as follows: human ACTB forward: catgtacgttgctatccaggc, human

ACTB reverse: ctccttaatgtcacgcacgat; human IFNB forward: cagcatctgctggttgaaga, human IFNB reverse:

cattacctgaaggccaagga; human CXCL10 forward: ccacgtgttgagatcattgct, human CXCL10 reverse: tgcatc

gattttgctcccct; human IL6 forward: ttcggtccagttgccttctc, human IL6 reverse: tacatgtctcctttctcagggc.

Following this protocol, IFNB, CXCL10 and IL6 expression could be induced by 5 mM diABZI (the positive

control, a Sting agonist; Table S4). In this section, the Calu-1 cells were used instead of Calu-3, only because

the latter were out of our stock. Given the urgent situation, we proceeded with Calu-1, a male non-small cell

lung cancer cell line similar with Calu-3.

Calculation of CoV meta-signatures

The valid signature datasets were used in the MetaIntegrator package (Haynes et al., 2016), and their effect

size was calculated for the disease. The effect size cutoff of % �1 or R1 with adjusted p-value % 0.01 was

used to filter the genes with significant effect size.

Pilot drug screening by cell-based assay

Vero E6 cells [CRL:1586, ATCC] were grown in Eagle’s minimal essential medium (EMEM) supplemented

with penicillin (100 units/mL), streptomycin (100 mg/mL), and 10% fetal bovine serum (FBS). SARS-CoV-2

(US_WA-1 isolate), the 3rd passage in Vero E6 cells from the original CDC (Atlanta) material and sequence

confirmed, was used throughout the pilot screening. The titer of the viral stock was 7.5 3 107 50% tissue

culture infectious doses (TCID50)/mL. All experiments involving infectious virus were conducted at the

University of Texas Medical Branch in an approved biosafety level 3 laboratory. A slightly modified Vero

E6-based standard micro-neutralization assay was used to rapidly evaluate the drug efficacy against

SARS-CoV-2 infection. Briefly, confluent Vero E6 cells grown in 96-wells microtiter plates were pre-treated

with serially 2-folds diluted individual drugs for 2 h before infection with 100 infectious SARS-CoV-2 parti-

cles in 100 mL EMEM supplemented with 2% FBS. Vero E6 cells treated with parallelly diluted dimethyl sulf-

oxide (DMSO) with or without virus were included as positive and negative controls, respectively. After

cultivation at 37�C for 4 days, individual wells were observed under the microcopy for the status of virus-

induced formation of cytopathic effect. The efficacy of individual drugs was calculated and expressed as

the lowest concentration capable of completely preventing virus-induced CPE in 100% of the wells. The

toxicity to the treated cells was assessed by observing floating cells and altered morphology of adhered

Vero E6 cells in wells under the microcopy. All compounds were ordered from Selleckchem (Houston,

TX) or Cayman Chemical (Ann Arbor, MI). All compounds were dissolved in 100% DMSO as 10 mM stock

solutions and diluted in culture media.

Drug profile heatmap visualization

We used the summarized profiles across different cellular contexts and treatment durations, as previously

published (Xing et al., 2021). Briefly, the level-5 profiles derived from the comparison of gene expressions

between the drug- or vehicle control-treated samples represent gene expression changes upon treatment.

Only 978 landmark genes were included. As one drug could be profiled under different concentrations,

treatment durations, and cellular contexts, for a specific drug, we took themedian LINCS z-scores of its pro-

files measured at 10 mM of treatment, regardless of the time and cellular context.

Gene Ontology enrichment analysis

We evaluated gene sets in the three categories of Gene Ontology, i.e., Biological Process, Molecular Func-

tion and Cellular Component. Each category was calculated separately. The gene universe (background)

was defined as a union of DE genes in all valid CoV signatures and all genes annotated in a specific cate-

gory. Then we used Fisher exact test to calculate the p value of a gene set enrichment in the up- or down-

regulated genes from a valid CoV signature. Benjamini-Hochberg procedure was performed to calculate

the FDR of each gene set within a category. For improved visualization, the FDR values were transformed

by -log10 for up-regulation enrichment and by +log10 for down-regulation enrichment, and we took the

one with a larger absolute value as the final direction. Finally, gene sets enriched in more than half of

the valid signatures (v1) or no less than 10 of the valid signatures (v2) were inspected and removed redun-

dant gene sets for biological interpretation.
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MoA query among perturbagen transcriptomic profiles

Similar to the idea of ‘‘Connectivity Map’’ (Subramanian et al., 2017), the query input was the names and

directions of the DE genes induced by a treatment, e.g., IMD-0354 induced up- and down-regulated genes

compared with the control group. The searched perturbagen (a gene knock-down or over-expression)

database was the LINCS L1000 high-quality dataset (is_gold = 1, annotated in the meta information,

GSE92742 and GSE70138). Before searching, we summarized a robust gene expression change profile

for each perturbagen by taking the median Z score of each landmark gene across different cell types

and treatment times. Of note, only consensus gene knockdown signatures (CGS) were used unless no

‘‘CGS’’ profiles were measured for a given shRNA perturbagen. This resulted in 4,370 different shRNA

and 2,878 different over-expression profiles after merging, with each profile containing expression z-scores

of 978 landmark genes. Then the correlation between the query gene sets (overlapped with the LINCS land-

mark gene set) and each perturbagen was evaluated by RGES and Wilcox rank sums test. For the Wilcox

rank sums test, one-sided p values of up- and down-regulated genes were first calculated separately

then merged as 1 – (1 – Pup) * (1 – Pdown) followed by Benjamini–Hochberg FDR correction. A positive

RGES and FDRmimic< 0.05 indicate that the perturbagen and the query treatment share similar MoA,

whereas a negative RGES and FDRreversal< 0.05 indicate the opposite MoA.

We further validated a few hits using another dataset GSE161664 with the whole transcriptome profiled.

Raw FASTQ files for SRP292952 (https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP292592) were down-

loaded from public database NCBI SRA (https://www.ncbi.nlm.nih.gov/sra). Data were processed using

RSEM (Li and Dewey, 2011) 1.3.1 + STAR (Dobin et al., 2013) 2.6.1 pipeline. The RNA-seq processing

code is available at GitHub (https://github.com/Bin-Chen-Lab/chenlab_toil). Sample metadata were ob-

tained from GEO (GSE161664). Log2 transformed (addition of pseudocount 1) read count values as gene

expression measures were employed to calculate log2 fold changes between treated (e.g. IFN-b) and con-

trol groups using the diffExp function in the OCTAD R package (Zeng et al., 2021). The correlation between

the query gene sets and each perturbagen was calculated in the sameway asmentioned above, except that

the query input was not reduced.

RNA isolation, cDNA synthesis, and real-time quantitative PCR (RT-qPCR)

Human myeloid leukemia mononuclear cells (THP-1) (ATCC, TIB-202) were cultured in RPMl Medium 1640

(Gibco, 61870–036) supplemented with 10% FBS (Gibco, 10099-141) and 0.05 mM b-mercaptoethanol

(Gibco, 21985). THP-1 cells were differentiated into macrophage-like cells (THP-1-derived macrophages)

by incubation in the presence of PMA (100 nM) for 48 h. THP-1-derived macrophages were treated with

IMD-0354 for 8 h, then total RNA was isolated using RNA extraction reagent (Vazyme, R401-01). cDNA

was synthesized using the HiScript III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, R323-01) according

to themanufacturer’s instructions. RT-qPCR was performed using ChamQ SYBR qPCRMaster Mix (Vazyme,

Q331-02) in CFX96TM RealTime PCR Detection System (BioRad, Shanghai, China). The profile of thermal

cycling consisted of initial denaturation at 95�C for 30 s, and 40 cycles at 95�C for 5 s and 60�C for 30 s.

The specificity of primers was examined by melting curve analysis and agarose gel electrophoresis of

PCR products. All the primer sequences used in this study are as follows: human ACTB forward: catg

tacgttgctatccaggc, human ACTB reverse: ctccttaatgtcacgcacgat; human IFNB1 forward: cagcatctgctggtt

gaaga, human IFNB1 reverse: cattacctgaaggccaagga; human CXCL10 forward: ccacgtgttgagatcattgct, hu-

man CXCL10 reverse: tgcatcgattttgctcccct human IL6 forward: ttcggtccagttgccttctc, human IL6 reverse:

tacatgtctcctttctcagggc.

Drug co-treatment and dose-response curve (DRC) analysis by immunofluorescence

Ten-point DRCs were generated for each drug with co-treatment of BX-795 or ruxolitinib. Calu-3 cells were

seeded at 2.0 3 104 cells per well in EMEM, supplemented with 20% FBS, 1X MEM-NEAA (Gibco) and 1X

Antibiotic-Antimycotic solution (Gibco) in black, 384-well, mClear plates (Greiner Bio-One, Kremsmünster,

Austria), 24 h prior to the experiment. Ten-point DRCs were generated for IMD-0354 and remdesivir, with

compound concentrations ranging from 0.003–50 mM. Then 0.5 or 5mM of BX-795 or ruxolitinib was added

to the DRCs. For viral infection, plates were transferred into the BSL-3 containment facility and SARS-CoV-2

was added at a multiplicity of infection (MOI) of 0.1. The cells were fixed at 24 hpi with 4% PFA and analyzed

by immunofluorescence. The acquired images were analyzed using Columbus software (Perkin Elmer, Wal-

tham, MA, USA) to quantify cell numbers and infection ratios, and antiviral activity was normalized to pos-

itive (mock) and negative (0.5% DMSO) controls in each assay plate. DRCs were generated in Prism7

(GraphPad, San Diego, CA, USA) software, with Dose-response-inhibition nonlinear regression analysis.
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IC50 and CC50 values were measured in duplicates. Mean values of independent duplicate experiments

were used for analysis. Each assay was controlled by the Z0-factor and the coefficient of variation in percent

(%CV).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were conducted in R (v3.5.1) or Python (v3.7) programming language. The ggplot2, pheatmap,

matplotlib, and seaborn packages were used for data visualization. The Student’s t test was performed for

normally distributed data, and Wilcoxon rank-sum test was used for other types of data to compute the p

value. PCA, LDA, and accuracy calculation were calculated with the Sci-kit Learn package in Python.
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