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Abstract
We present prediction and variable importance (VIM) methods for longitudinal data sets

containing continuous and binary exposures subject to missingness. We demonstrate the

use of these methods for prognosis of medical outcomes of severe trauma patients, a field

in which current medical practice involves rules of thumb and scoring methods that only use

a few variables and ignore the dynamic and high-dimensional nature of trauma recovery.

Well-principled prediction and VIM methods can provide a tool to make care decisions in-

formed by the high-dimensional patient’s physiological and clinical history. Our VIM param-

eters are analogous to slope coefficients in adjusted regressions, but are not dependent on

a specific statistical model, nor require a certain functional form of the prediction regression

to be estimated. In addition, they can be causally interpreted under causal and statistical as-

sumptions as the expected outcome under time-specific clinical interventions, related to

changes in the mean of the outcome if each individual experiences a specified change in

the variable (keeping other variables in the model fixed). Better yet, the targeted MLE used

is doubly robust and locally efficient. Because the proposed VIM does not constrain the pre-

diction model fit, we use a very flexible ensemble learner (the SuperLearner), which returns

a linear combination of a list of user-given algorithms. Not only is such a prediction algorithm

intuitive appealing, it has theoretical justification as being asymptotically equivalent to the

oracle selector. The results of the analysis show effects whose size and significance would

have been not been found using a parametric approach (such as stepwise regression or

LASSO). In addition, the procedure is even more compelling as the predictor on which it is

based showed significant improvements in cross-validated fit, for instance area under the

curve (AUC) for a receiver-operator curve (ROC). Thus, given that 1) our VIM applies to any

model fitting procedure, 2) under assumptions has meaningful clinical (causal) interpreta-

tions and 3) has asymptotic (influence-curve) based robust inference, it provides a compel-

ling alternative to existing methods for estimating variable importance in high-dimensional

clinical (or other) data.
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Introduction
Modern medical care is awash in a sea of data. The advent of new monitors, better diagnostics,
electronic medical record keeping and the ideal of the quantified self has resulted in patients
who are more completely measured than at any other time in medical history. While purported
to allow for more complete evaluation and diagnosis our current data intense medical environ-
ment often leaves clinicians overwhelmed by the dimensionality and quantity of data. Indeed,
despite the current ability to continuously measure and track multiple physiologic, demo-
graphic and biologic variables measure a patient’s clinical history in detail, clinicians still make
care decisions based on a few non relational variables (they can keep in their) head combined
with rules of thumb and clinical gestalt. Medical decisions therefore fail to take into consider-
ation the possible intricate relations between all the patient’s underlying factors squandering
data and missing important prognostic relationships. Fortunately, advances in the fields of bio-
statistics and bioinformatics have developed mathematical and computational tools that can
allow optimal care decisions based on the entirety of the patient’s data, which are beyond the
computational ability of the clinician at the bedside.

A primary goal in evidence-based medicine is to design and implement prognosis tools that
take into account an extremely large set of measured characteristics in order to predict a pa-
tient’s most likely medical outcome. An equally important goal is to establish at each given
time point which of these numerous measured characteristics is decisive in the development of
the predicted outcome. These two goals have been traditionally called prediction and variable
importance analysis, respectively. In addition to understanding the underlying biological
mechanisms related to positive medical outcomes, the joint use of these tools can help doctors
devise the optimal treatment plan according to the specific characteristics of the subject, simul-
taneously taking into account hundreds of variables collected for each patient.

Because of the large number of variables and the complexity of the relations between them,
prediction and variable importance would be impossible to achieve without the use of complex
statistical algorithms accompanied by powerful computers able to carry out a large number of
computations. Such methods are aimed at helping doctors make the better treatment decisions
using real time data.

Prediction and variable importance are different goals whose optimal achievement requires
the use of different tools. The objective of a prediction algorithm is to accurately predict the
outcome, whereas the objective for estimating variable importance measures (VIM) is to esti-
mate the degree to which changes in the outcome are caused by changes in each of the predic-
tor variables; VIM’s optimally supply doctors with tools for making treatment decisions [1].
This difference between prediction and VIM has two main consequences. First, VIM problems
are of a causal nature, whereas prediction problems do not try to distinguish the relative contri-
bution of variables to the variation observed in an outcome. Second, in order to help the deci-
sion making process, VIM parameters should have, as much as possible, a clinically relevant
interpretation, such as the expected change in the outcome under a given intervention. As ex-
plained below, a meaningful interpretation can only be obtained through an intelligible charac-
terization of VIM as a statistical (or causal) parameter defined as a mapping from a tenable
(thus usually very large) statistical model into simple low-dimensional parameter(s) (a Euclide-
an space, e.g., differences in “adjusted”means).

Current practice in biostatistics and bioinformatics involves the use of machine learning al-
gorithms for prediction. However, measures of VIM have been via estimated coefficients, for
instance, in a penalized regression (e.g., LASSO [2]). Alternatively, measures of VIM (such as
returned by random forest or neural nets [3–6] are not necessarily specific to a particular
model fitting routine, but are related to the added fit (or reduced estimated risk) of a “full”
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model versus one without the variable. Those based on procedures like LASSO are based on ar-
bitrary statistical models (e.g., linear with main effects), so the model is likely to misspecified
and thus the interpretation of the resulting coefficients problematic. On the other hand, con-
sider the case of regression and classification trees (e.g., random forests), where the VIM for a
variable X is defined as the difference between prediction error when X is perturbed versus the
prediction error otherwise [3,7]. Though such a measure does not require a relatively simple
parametric model, the clinical relevance of this quantity as a measure of VIM is unclear be-
cause: 1) it does not represent a statistical or causal parameter, 2) it does not have a potential
interpretation in terms of the mechanistic process that generates the data, and thus 3) the
translation of the estimate into the impact of potential intervention is problematic. As an ex-
ample of the technical difficulties arising from this practice, [6] discuss the “bias” of random
forest VIM measures, missing the fact that bias can only be defined in terms of a statistical pa-
rameter, which is never specified in the random forest VIM analysis. We present a new VIM
that 1) puts no constraints on the statistical model, so that the resulting estimate is relatively
unbiased, 2) has an interpretation that is analogous to a “slope” (change in a mean for a change
in the variable of interest, and 3) under further assumptions has a “causal” interpretation of
great clinical relevance. Thus, it provides the virtue of more accessible regression coefficients,
but is appropriate for the new powerful machine learning technology for creating more accu-
rate diagnostic predictors.

Previous work has taken the approach we outline here [1, 8]. Whereas that work accom-
plished the goals of a causal VIM in a semiparametric model, the predictors were required to
be discrete, preferably binary. Defining VIM parameters in terms of potential causal associa-
tions for “continuous” variables poses additional technical challenges. When researchers using
causal inference methods are faced with exposures of continuous nature, the most common ap-
proach is to dichotomize the continuous exposure and consider the effect of its binary version
on the outcome. This approach suffers from various flaws. First, the causal parameter does not
answer questions about plausible modifications to the data generating mechanism. For exam-
ple, the additive causal effect of a dichotomized exposure compares an intervention by which
the exposure is truncated below the dichotomization threshold with an intervention by which
the exposure is truncated above it [9]. In addition, for most of the variables we discuss below,
such interventions are not practical, so the resulting estimates too far removed
from practicality.

In this paper we present variable importance measures that can be used to rank a list of both
continuous and binary variables in terms of their importance on an outcome. The approach we
present differs from other approaches in the literature [1] in that we also address estimation of
VIM for continuous variables, as opposed to only binary ones. We use state-of-the-art machine
learning coupled with causal inference methods to address VIM estimation and illustrate the
use of our methods for analyzing the determinants of death in severe trauma patients.

The paper is organized as follows. We start by describing the problem that motivates the de-
velopment of the tools presented in this paper, and then move to an introduction of the causal
inference tools used to define the variable importance measures. We then present various esti-
mators for the variable importance parameters previously defined and discuss their asymptotic
properties; we also briefly describe the super learner [10], an ensemble learner whose asymptot-
ic performance is optimal for prediction. We finish by presenting the details of the data analysis
and some concluding remarks.
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Background
Trauma is the leading cause of death between the ages of 1 and 44. The vast majority of these
deaths take place quickly and much of the initial resuscitative and decision-making action
takes place in the first minutes to hours after injury [11,12]. In addition, it is clear that as pa-
tients progress through their initial resuscitation, the relative attention paid to different physio-
logic and biologic parameters and indeed the interventions themselves are dynamic. Different
variables are important and drive future outcome in the first few minutes after injury than at
24 hours when a patient has survived long enough to receive large volume resuscitation, opera-
tive intervention and ICU care. While these dynamics are intuitive, most practitioners do not
have the ability to know which variables are important at any given time point. As a result,
often the same vital signs and markers are followed throughout the patient’s hospital course in-
dependent of whether they are currently relevant. This results in practitioners who are often
left making care decisions without knowledge of the current patient physiologic state and
which parameters are important at that moment. Left with this uncertainty and awash in con-
stantly evolving multivariate data, practitioners make decisions based on clinical gestalt, a few
favorite variables, and rules of thumb developed from clinical experience. To aid in prediction,
the medical literature is filled with scoring systems and published associations between these
variables (physiology, biomarker, demographic, etc.) and outcomes of interest [13–17]. While
numerous, these published statistical associations, given the reported methodology, often re-
port misspecified and overfit models. In addition most of these statistical predictive models do
not account for the rapidly changing dynamics of a severely injured patient, and fail to take
into account the statistical issues discussed in the previous paragraphs. An ideal system would
mimic the clinical decision making of an experienced practitioner by providing dynamic pre-
diction (changing prediction at iterative time points) while evaluating the dynamic importance
of each variable over time [18]. This then would mimic the implicit understanding a clinician
brings to a patient where it is clear that the necessary focus of care must change over time.

Trauma Data
The data that motivated the methods developed in this paper were collected as part of the Acti-
vation of Coagulation and Inflammation in Trauma (ACIT, see e.g., [19–21]) study, which is a
prospective cohort study of severe trauma patients admitted to a single level 1 trauma center.
Several physiological and clinical measurements were recorded at several time points for each
patient after arrival to the emergency room. These variables include demographic variables
(e.g., age, gender, etc.), baseline risk factors (e.g., asthma, chronic lung disease, Glasgow coma
scale, diabetes, injury mechanism, injury severity score, etc.), longitudinally measured variables
that account for the patient’s treatment and health status history (e.g., respiratory and heart
rate, platelets, coagulation measures like prothrombin time and INR, activated protein C, etc.),
and an indicator of the occurrence of death at each time interval. Because these data are often
collected in a high-stress environment, it is common that some variables are missing for some
patients at a given time point. The list of variables we analyzed is presented in S1 Table
Table of the Supporting Information.

Classical Regression Approaches
In order to estimate the effect of a variable A on an outcome Y controlling for a set of variables
W, it is common practice among data analysts to estimate the parameter β in a parametric re-
gression model E(YjA,W) =m(A,Wjβ) for a known functionm, for example,

EðY jA;WÞ ¼ b0 þ b1Aþ b2W: ð1Þ
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Under model (1), the estimate of β1 is interpreted as the expected change in Y given a change
of one unit in A:

b1 ¼ EfEðY jAþ 1;WÞ � EðY jA;WÞg: ð2Þ
Small violations to the assumptions of model (1) (e.g., an interaction term) would yield an esti-
mate of β1 that cannot be interpreted as in (2). Therefore, in this paper we define parameters in
terms of characteristics of the probability distribution of the data under a non-parametric
model, as in Equation (2). This practice allows the definition of the parameter of interest inde-
pendently of (possibly) misspecified parametric models, and avoids dealing with different in-
terpretations of regression parameters under incorrect model specifications.

The causal interpretation of statistical parameters (e.g., Equation (2)) requires additional
untestable assumptions about the distribution of counterfactual outcomes under hypothetical
interventions. Such counterfactual outcomes may be defined using the potential outcomes
framework of a structural equation model (NPSEM [22]). In the remaining of the section we
describe the observed data, and define the variable importance measures using an NPSEM. If
the assumptions encoded in the NPSEM do not hold, the estimates do not have a causal inter-
pretation and must not be used to make treatment decisions. In that case, there are two main
uses of these estimates. First, they can be used as tools for determining the best set of predictors
variables by ruling out those whose with a zero non-significant variable importance. Second,
they may be used as a tool for formulating causal hypothesis that may be tested in a subsequent
randomized study or in an observational study in which the necessary causal assumptions
are met.

Methods

Notation
Assume that observations on each patient are recorded at times t0,t1,. . .,tJ, where t0 = 0, and let
T denote the time of death of a patient. The observed data for each patient is given by the ran-
dom variable

O ¼ ðL0;C1; L1;Y1; . . . ;CJ ; LJ ;YJÞ;

where L0 denotes a set of baseline variables recorded at admission to the hospital, Lj = (Lj1,. . .,
LjK) denotes a set of variables measured at time tj, Cj = (Cj1,. . .,CjK) where Cjk denotes an indi-
cator of missingness of Ljk, and Yj = I(tj < T� tj+1) denotes an indicator of death occurring in
the interval (tj,tj+1], for j = 0,. . .,J−1. Once death occurs the random variables in the remaining
time points of the vector O become degenerate so that this structure is well defined.

For the analysis of the ACIT data we have classified the variables Ljk in two non-mutually
exclusive categories: baseline and treatment variables. Baseline variables (L0) are causally relat-
ed to the outcome but can seldom be manipulated by the physician and are rarely of interest as
possible care targets. Although baseline variables are not of interest in themselves, controlling
for them is crucial when estimating the effect of treatment variables, which are often longitudi-
nal variables that represent possible targets for clinical care. The label of each variable accord-
ing to this classification is shown in S1 Table Table of the Supporting Information.

We define VIM measures in terms of the effect of Ljk on Yj0, for all j0 � j and for all k. That
is, we are interested in importance of a variable recorded at time point tj on the hazard of death
in each of the subsequent time intervals (tj,tj+1],. . .,(tJ−1,tJ]. This approach has the advantage
that VIM can be seen as a dynamic process in which the factors that are decisive for develop-
ing/predicting a clinical outcome change as a function of time.
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Causal model
We encode the assumptions necessary to make causal claims in terms of the non-parametric
structural equation model [22]:

L0 ¼ fL0ðUL0
Þ

Cjk ¼ fCjkðCj�1; Lj�1; L0;UCj
Þ j ¼ 1; . . . ; J; k ¼ 1; . . . ;K

Ljk ¼ CjkfLjkðCj�1; Lj�1; L0;ULj
Þ j ¼ 1; . . . ; J; k ¼ 1; . . . ;K

Yj ¼ fYjð�Cj; �Lj; L0;UYj
Þ j ¼ 1; . . . ; J;

ð3Þ

where, for a random variable X, fX denotes an unknown but fixed function, UX denotes all the
unmeasured factors that are causally related to X, and �Xj ¼ ðX1; . . . ;XjÞ denotes the history of
X up until time tj. As pointed out by [22], this model assumes that the data O for each patient
are generated by the mechanistic process implied by the functions fXj

with a temporal order dic-
tated by the ordering of the time points tj. In addition, this NPSEM encodes two important
conditional independence assumptions:

Ljk ?? Ljk� jðL0; Lj�1Þ 8j; k� 6¼ k; ð4Þ

Ljk ?? �Lj�2jðL0; Lj�1Þ 8j; k: ð5Þ

Assumption (4) means that the variables Ljk at time tj are drawn simultaneously as a function
of the past only, and that, given the past, contemporary variables do not interact with each
other. This is an assumption that must be taken with caution since the causal structure of the
relation between contemporary measurements of physiological characteristics of trauma pa-
tients is not well understood yet. Assumption (5) is a standard Markov independence assump-
tion stating that Ljk is independent on covariate past conditional on the most recent
measurements Lj−1 and baseline L0.

As a consequence of these assumptions, the problem of estimating the causal effect of each
Ljk on each Yj0 for j0 � j can be seen as a series of cross-sectional problems as follows. Note that
Ljk� for k� 6¼ k are not confounders of the causal relation between Ljk and Yj0. To illustrate this,
consider the NPSEM encoded in the directed acyclic graph of Fig. 1, in which for simplicity we
assume that all covariates are observed (i.e., C variables are not present) and that J = K = 2. It
stems from the graph that the variable L22 plays no role as a confounder of the causal effect of
L21 on Y2. The problem of variable importance for these data can thus be transformed into a se-
ries of cross-sectional problems as follows. For each patient still at risk at tj0, denote

A � Ljk

C � Cjk

W � ðL0;Cj�1; Lj�1Þ
Y � Yj0 ;

ð6Þ

and

�QðA;C;WÞ � EðY jA;C;WÞ; gðAjC;WÞ � PðAjC;WÞ
�ðCjWÞ � PðCjWÞ; QWðWÞ � PðWÞ:

Without loss of generality we assume that the variable A is either binary or continuous in the

interval (0,1). For fixed j, j0 � j, and k, and for each patient still at risk at tj0, using the notation
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introduced in (6), it suffices to consider the following simplified NPSEM:

W ¼ fWðUWÞ; C ¼ fCðW;UCÞ; A ¼ CfAðW;UAÞ; Y ¼ fYðA;C;W;UYÞ; ð7Þ

where the U variables denote all the exogenous, unobserved factors associated to each of the
observed variables, and the functions f are deterministic but unknown and completely unspeci-
fied. Some additional consequences of NPSEM (7) are:

1. The missingness indicator C is allowed to depend on the covariates measured in the previ-
ous time point. In this way we take into account that a variable can be missing as a result of
the previous health status of the patient, and also that it can be correlated with previous
missingness indicators. Other approaches to handle missing data such as multiple imputa-
tion may be used here, each requiring their own assumptions. However, we favor this ap-
proach because i) it is embedded within the same causal inference framework in which we
define the VIM parameters, and ii) the validity of the results does not depend on the correct
specification of a multiple imputation model.

2. Missingness is informative. A patient’s missingness indicator C is allowed to affect the way
Y is generated, therefore acknowledging that missingness can contain information about the
health outcome (e.g., sicker patients who die earlier might be more likely to have missing
values because information stops being recorded during life-threatening situations).

We now define the variable importance for continuous and binary outcomes separately.
Continuous Variables. Consider an intervened system in which the variables are generat-

ed by the following system of equations

W ¼ fWðUWÞ
CI ¼ 1

AI ¼ fAðW;UAÞ þ d

YI ¼ fYðAI ;CI ;W;UYÞ;

ð8Þ

which, for a small positive δ, can be interpreted as a model in which there is no missingness,
and the distribution of the exposure variable AI is shifted to the right by δ units. This type of in-
tervention has been previously discussed in the literature [23], and belongs to a wider class of
interventions known as stochastic interventions [24–26]. The parameter E(YI)−E(Y) can be
causally interpreted as the expected reduction in mortality rate gained by an increase of δ units

Fig 1. Directed acyclic graph, the arrows in blue and red denote the relations that confound the causal
effect of L21 on Y2.

doi:10.1371/journal.pone.0120031.g001
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in the variable A for each patient. Since the counterfactual data OI = (W,CI,AI,YI) are not ob-
served, E(YI) is not estimable without further untestable assumptions. Under the randomiza-
tion assumption [22, 27]

ðC;AÞ ? YIjW; ð9Þ

and the positivity assumption

g0ðAjWÞ > 0; and �0ð1jWÞ > 0 for all A and W; ð10Þ

the expectation E(YI) is identified as EðYIÞ ¼ EWEf�QðAþ d;C;WÞjC ¼ 1;Wg, and the pa-
rameter of interest is defined as

Ccð�Q;QW ; gÞ � EWEgf�QðAþ d; 1;WÞjC ¼ 1;Wg � EðYÞ: ð11Þ

A proof of this result under the randomization assumption is presented in [23]. That proof fol-
lows the arguments for identification of general causal parameters given in [22], who provides
a unified framework for identification of counterfactual parameters as function of the observed
data generating mechanism.

Binary Variables. For binary variables, following the structural causal model described in
(7), the VIM parameter is defined according to the following intervened system:

W ¼ fWðUWÞ
CI ¼ 1

AI ¼
(
1 with probability gð1j1;WÞ þ d

0 with probability gð0j1;WÞ � d

YI ¼ fYðAI;CI ;W;UYÞ;

where 0< δ< supw g(0j1,w) is a user-given value. Under randomization assumption (9), and
the positivity assumption

0 < g0ð1jWÞ < 1; and �0ð1jWÞ > 0 for all W; ð12Þ

the expectation of YI is identified as a function of the observed data generating mechanism as
EðYIÞ ¼ EWEf�QðA;C;WÞjC ¼ 1;Wg þ dfE½�Qð1; 1;WÞ � �Qð1; 0;WÞ�g, and the parameter
of interest is defined as

Cbð�Q;QW ; gÞ � EWEgf�QðA;C;WÞjC ¼ 1;Wg
þ dfE½�Qð1; 1;WÞ � �Qð1; 0;WÞ�g � EðYÞ;

ð13Þ

The true values ofCc andCb will be denoted ψc,0 and ψb,0, respectively.
Comparability. Since the previous variable importance will be used to provide a ranking

of the variables mixing continuous and binary ones, we provide a heuristic argument that they
are comparable up to first order. First of all, note that, under the appropriate differentiability
assumptions, for continuous A we have

Ccð�Q;QW ; gÞ � EWf�QðA; 1;WÞjC ¼ 1;Wg

þ d
d
dd

EWEf�QðAþ d; 1;WÞjC ¼ 1;Wgjd¼0:
ð14Þ

This expression and (13) both have the form a+δ×b, where b can be seen as the appropriate
slope of Ef�QðA;C;WÞg as a function of A.
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To illustrate this, let us consider the following scenarios. First, consider a continuous vari-
able A1 distributed as Beta(2,2)×0.8+0.1, and a binary variable A2 distributed as Ber(A1), where
Ber(p) is the Bernoulli distribution with probability p. If the outcome is continuous, with no
missingness, and �QðA1;A2Þ ¼ A1 þ A2, it is straightforward to see that ψc,0 = ψb,0 = δ, for any
0< δ< 0.1. Equality of these parameters is a consequence of the comparability argument
above, and the fact that the approximation (14) is exact for linear �Q. Consider now a nonlinear
case, with Y binary distributed as Ber(expit(A1+A2)). In this case, Monte Carlo computation of
the integrals involved yields ψc,0 = 0.0019 and ψb,0 = 0.0020 for δ = 0.01, providing an example
of the comparability argument described above.

In the following sections we discuss doubly robust estimation methods for these parameters
for continuous and binary variables.

VIM estimation
In order to define semi-parametric VIM estimates that have optimal asymptotic properties we
first need to talk about the efficient influence function. The efficient influence function is a
known function D of the data O and P0, and is a key element in semi-parametric efficient esti-
mation, since it defines the linear approximation of all efficient regular asymptotically linear es-
timators [28]. This means that the variance of the efficient influence function provides a lower
bound for the variance of all regular asymptotically linear estimators, analogously to the
Cramer-Rao lower bound in parametric models. The efficient influence functions of parame-
tersCc andCb are presented in Section S1 TMLE Algorithm of the Supporting Information.

We use targeted minimum loss based estimators (TMLE)[29,30] of the parametersCc andCb.
TMLE is a substitution/plug-in estimation method that, given initial estimators ð�Qn;QW;n; gnÞ of
ð�Q;QW ; gÞ, finds updated estimators ð�Q�

n;Q
�
W;n; g

�
nÞ to define the estimator ofC as

cn ¼ Cð�Q�
n;Q

�
W;n; g

�
nÞ:

TMLE is an estimation method that enjoys the best properties of both G-computation estimators
[31] and the estimating equation methodology (see e.g., [32, 33]). On one hand, TMLE is similar to
G-computation estimators (e.g.,Cð�Qn;QW;n; gnÞ) in that it is a plug-in estimator, and therefore

produces estimates that are always within the range of the parameter of interest (e.g., it is always in
the interval [0, 1] if the estimand is a probability). On the other hand, under regularity conditions
and consistency of ð�Qn; gn; �nÞ, it is asymptotically linear with influence function equal to the effi-
cient influence function:

cn � c0 ¼
Xn

i¼1

DðP0ÞðOiÞ þ oPð1=
ffiffiffi
n

p Þ:

As a consequence, TMLE has the following properties:

• It respects the known bounds of the target parameter.

• It is efficient if �Qn; gn, and ϕn are consistent for �Q0; g0, and ϕ0, respectively.

• It is consistent if either �Qn or both gn and ϕn are consistent. This property is referred to as
double robustness.

• It is more robust to empirical violations of the positivity assumptions (10) and (12).

In Section S1 TMLE Algorithm of the Supporting Information we describe an iterative proce-
dure that transforms the initial estimates �Qn and gn into targeted estimates �Q�

n and g
�
n such that
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Cð�Q�
n; g

�
n ;Q

�
W;nÞ is a TMLE ofCð�Q0; g0;QW;0Þ, and discuss in more detail the properties of the

TMLE.
Estimating equation (EE), Gcomp/IPMW, and unadjusted estimators. For comparison,

we compute three additional estimates of the VIM. The first estimator, based on the estimating
equation (EE) methodology, is an estimator that uses the efficient influence function of the pa-
rameter in order to define the estimator as the solution of the corresponding estimating equa-
tion. Because the EE is also asymptotically linear with influence function equal to the efficient
influence function, it is consistent and asymptotically efficient under regularity and consistency
conditions on ð�Qn;QW;n; gnÞ. However, the estimating equation that defines the EE may not

have a solution in the parameter space, in which case the EE does not exist. The second estima-
tor, a mixture of the G-computation formula and the inverse probability of missingness weight-
ed estimator IPMW (Gcomp/IPMW) represents a choice that could have been made in
common practice in statistics. The Gcomp/IPMW estimator uses initial estimators ϕn and �Qn

of ϕ0 and �Q0 obtained through step-wise regression, and is defined as

cc;n;GI ¼ 1

n

Xn

i¼1

Ci

�nðWiÞ
�QnðAi þ d; 1;WiÞ � Yi

� �

cb;n;GI ¼ 1

n

Xn

i¼1

Ci

�nðWiÞ
�QnðAi; 1;WiÞ þ d½�Qnð1; 1;WiÞ � �Qnð0; 1;WiÞ� � Yi

� �
;

forCc andCb, respectively. This estimator is consistent only if both the model for ϕ0 and the
model for �Q0 have been correctly specified. The unadjusted estimator is identical to the
Gcomp/IPMW estimator but including only the intercept term in the vectorW.

Since the consistency of the initial estimators of �Q0, g0 and ϕ0 is key to attain estimators
with optimal statistical properties (i.e., consistency and efficiency), we carefully discuss the con-
struction of such estimators in the next subsection. In particular, the next subsection deals with
the construction of an estimator for �Q0, the predictor of death in our working example.

Prediction via SuperLearner

As explained in the previous section, the consistency of the initial estimators �Qn, gn and ψn de-
termine the statistical properties of the estimators of ψc,0 and ψb,0. Common practice in statis-
tics involves the estimation of models like

logit �QðA;WÞ ¼ b0 þ b1Aþ b2W þ b3AW: ð15Þ

This approach that has gained popularity among researchers in epidemiology and biostatistics,
partly because of the analysis of its statistical properties requires simple mathematical methods,
and partly because it is readily available in statistical software. Nevertheless, as it is also well
known among their users, parametric models of the type described by (15) are rarely correct,
and their choice is often based on their continence and other subjective criteria. This practice
leads to estimator whose usefulness is highly questionable given that the assumptions it entails
(linearity, normality, link function, etc.) will rarely be theoretically supported.

In this paper we use the super learner [10] for estimation of �Q0, g0, and ψ0. Super learner is a
methodology that uses cross-validated risks to find an optimal combination of a list of user-
supplied estimation algorithms. One of its most important theoretical properties is that its so-
lution converges to the oracle estimator (i.e., the candidate in the library that minimizes the
loss function with respect to the true probability distribution), thus providing the closest ap-
proximation to the real data generating mechanism. Proofs and simulations regarding these
and other asymptotic properties of the super learner can be found in [34] and [35].

Variable Importance and Prediction for Longitudinal Problems

PLOSONE | DOI:10.1371/journal.pone.0120031 March 27, 2015 10 / 17



To implement the super learner predictor it is necessary to specify a library of candidate
predictors algorithm. In the case of the conditional expectations �Q0, ϕ0, and g0 for binary A, the
candidates can be any regression or classification algorithm. Examples include random forests,
logistic regression, k nearest neighbors, Bayesian models, etc. For estimation of the conditional
densities g0 we also use the super learner, with candidates given by several histogram density
estimators, which yields a piece-wise constant estimator of the conditional density. The choice
of the number of bins and their location is indexed by two tuning parameters. The implementa-
tion of this density estimator is discussed in detail in [36], and is omitted in this paper.

Details of Data Analysis
The sample size was n = 918 patients, and measurements of the variables described in S1 Table
Table of the Supporting Information were taken at 6, 12, 24, 48, and 72 hours after admission
to the emergency room.

The main objective of the study was the construction of prediction models for the risk of
death of a patient in a certain time interval given the variables measured up to the start of the
interval, as well as the definition and estimation of VIM measures that provide an account of
the longitudinal evolution of the relation between these physiological and clinical measure-
ments and the risk of death at a certain time point.

The data set was partitioned in 6 different data sets according to the time intervals defined
by the time points in which measurements were taken, each of these 6 datasets contained only
the patients that were at risk of death (alive) at the start of the time interval. Each of the contin-
uous covariates was rescaled by subtracting the minimum and dividing by the range so that all
of the covariates range between zero and one. The methods described in the previous sections
were applied to each variable in each of these datasets.

The candidate algorithms for prediction of death used in the super learner predictor are:

• Logistic regression with main terms (GLM)

• Stepwise logistic regression (SW)

• Bayesian logistic regression (BLR) [37]

• Generalized additive models (GAM) [38]

• MARS (MARS) [39]

• Sample mean (MEAN).

The first three represent common practice in epidemiology and statistics, and the GAM and
MARS algorithms intend to capture nonlinearities in relations between the data. The sample
mean is included for contrast.

The super learner is a “black box” prediction algorithm, constructed to minimize the prediction
error. As such, the coefficients of each candidate do not have any meaningful interpretation. To see
this, consider a hypothetical situation in which two prediction candidates provide highly correlated
predictions. In that case, the coefficients of the two candidates in the library will be highly variable,
but the prediction error and the super learner will not be affected by such variability.

Results
Table 1 shows the coefficients of each candidate algorithm in the super learner predictor of
EðYjj�Lj; �Cj; L0Þ. The variability in these coefficients shows that no single algorithm is optimal

for prediction at each time point, and that each algorithm describes certain features of the data
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generating mechanism that the others are not capable of unveiling, advocating for the need of
an automated method to choose between them.

Fig. 2 presents the ROC curves for the cross-validated super learning predictions of death,
as well as the cross-validated predictions based on a logistic model with AIC-based stepwise se-
lection of variables, for comparison with common practice. The super learner prediction meth-
od outperforms the stepwise prediction in all cases, with AUC ROC (area under the ROC
curve) differences ranging from 0.02 to 0.07. Though this differences might be small, an inter-
pretation of their meaning reveals the clinical relevance of a slight improvement in prediction.
The AUC ROC can be interpreted as the proportion of times that a patient who dies obtains a
higher prediction score than a patient who survives. In practice, an AUC ROC difference of
0.02 means that in 100 pairs of patients (pairs formed by one patient who dies and one who

Table 1. Coefficients in the Super Learner.

0–6hr 6–12hr 12–24hr 24–48hr 48–72hr 72+hr

GLM 0.0000 0.0000 0.0000 0.0318 0.0259 0.0000

SW 0.0000 0.1889 0.0000 0.0000 0.2073 0.1787

BGLM 0.3318 0.0586 0.1049 0.1329 0.0313 0.2750

GAM 0.5118 0.7525 0.8951 0.8353 0.7201 0.2487

MARS 0.1563 0.0000 0.0000 0.0000 0.0154 0.1298

MEAN 0.0000 0.0000 0.0000 0.0000 0.0000 0.1678

doi:10.1371/journal.pone.0120031.t001

Fig 2. ROC curves of cross-validated prediction for the super learner (SL) and the logistic step-wise regression (SW), for different time intervals.

doi:10.1371/journal.pone.0120031.g002
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does not) the super learner, on average, classifier correctly classifies two pairs more than the
step-wise classifier, which could potentially lead to live-saving treatments for these
two patients.

The VIM-TMLE measures that were significant at 0.05 were ranked according to their mag-
nitude. Table 2 presents the first five (whenever five or more were significant) most important
variables for prediction of death at each time interval, according to the TML estimator previ-
ously introduced. Recall that all the continuous variables were re-scaled between zero and one;
the value δ = 0.01 was used for all the estimates. The interpretation of the values in the first row
of Table 2, for example, is that if APC were to increase by 1% for every patient, the mortality
rate in the first time interval would, on average, increase by 2%. The TMLE and the EE pro-
duced generally similar results, whereas the Gcomp/IPMW estimator produced results that are
somewhat different and with greater estimated variability. Note that several of the Gcomp/
IPMW point estimates coincide with the TMLE and EE, but their p-values are generally larger.
This could be due to the fact that the TMLE and EE are locally efficient estimators, and there-
fore provide more powerful hypothesis tests. In light of the superior theoretical properties of
the TMLE and EE, we prefer to rely on estimates obtained through these methods.

Table 2. VIM estimates for the most important variables for prediction of death at each time interval according to TML estimate (p-values in paren-
theses and truncated at 0.001).

Time of death Var. Name Var. Time TMLE EE G-comp/IPMW Unadjusted

0–6 hrs.

APC 00 0.0205(0.023) 0.0183(0.043) 0.0235(0.386) 0.1063(< 0.001)

INR 00 0.0216(< 0.001) 0.0193(0.002) −0.0011(0.722) 0.0345(< 0.001)

PT 00 0.0248(< 0.001) 0.0248(< 0.001) −0.0011(0.698) 0.0400(< 0.001)

ISS 00 −0.0314(< 0.001) −0.0319(< 0.001) −0.0242(< 0.001) −0.0244(0.002)

6–12 hrs.

SBP 00 0.0041(0.010) 0.0041(0.011) 0.0020(0.108) 0.0340(< 0.001)

PT 00 0.0076(0.001) 0.0074(0.001) 0.0019(0.426) 0.0376(< 0.001)

BDE 00 0.0098(0.028) 0.0114(0.011) 0.0120(0.004) 0.0796(< 0.001)

FV 06 −0.0139(0.047) −0.0394(0.018) −0.0394(0.141) 0.0199(0.349)

ATIII 06 −0.0160(0.026) −0.0323(0.009) −0.0434(0.072) 0.0199(0.340)

12–24 hrs.

SBP 00 0.0031(0.034) 0.0030(0.037) 0.0018(0.220) 0.0317(< 0.001)

PT 00 0.0051(0.025) 0.0048(0.031) 0.0019(0.377) 0.0357(< 0.001)

FV 06 −0.0134(0.050) −0.0246(0.008) −0.0327(0.562) 0.0276(0.140)

DDIM 00 0.0140(0.042) 0.0134(0.054) 0.0142(0.331) 0.0955(< 0.001)

PC 06 −0.0224(0.001) −0.0394(0.008) −0.0286(0.349) 0.0262(0.221)

24–48 hrs.

PT 00 0.0080(< 0.001) 0.0080(< 0.001) 0.0026(0.124) 0.0313(< 0.001)

DDIM 00 0.0134(0.026) 0.0133(0.028) 0.0144(0.504) 0.0770(< 0.001)

ISS 00 −0.0229(< 0.001) −0.0232(< 0.001) −0.0211(< 0.001) −0.0155(0.020)

HR 12 0.0346(< 0.001) 0.0136(0.118) −0.0030(0.922) 0.0570(< 0.001)

APC 00 0.0429(< 0.001) 0.0432(< 0.001) 0.0226(0.310) 0.0761(< 0.001)

48–72 hrs.

CREA 00 0.0028(0.030) 0.0028(0.030) 0.0007(0.301) 0.0204(< 0.001)

PT 00 0.0089(< 0.001) 0.0089(< 0.001) 0.0017(0.210) 0.0241(< 0.001)

DDIM 12 0.0140(0.049) 0.0122(0.095) 0.0481(0.885) 0.0605(< 0.001)

PC 06 −0.0164(0.012) −0.0190(0.010) −0.0252(0.075) 0.0381(0.035)

RR 24 0.0187(0.002) 0.0148(0.012) 0.0057(0.749) 0.0644(< 0.001)

72+ hrs.

CREA 00 0.0027(0.002) 0.0027(0.002) 0.0007(0.291) 0.0168(< 0.001)

ISS 00 −0.0142(0.005) −0.0149(0.003) −0.0145(0.008) −0.0085(0.124)

PTT 00 0.0220(< 0.001) 0.0219(< 0.001) 0.0017(0.012) 0.0220(< 0.001)

doi:10.1371/journal.pone.0120031.t002
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Discussion
In this paper we address the problem of estimating variable importance parameters for longitu-
dinal data that are subject to missingness. We present variable importance parameters that
have a clear interpretation either as purely statistical parameters or as causal effects, depending
on the assumptions about the data generating mechanism that the researcher is willing to
make. These are important characteristics that advance the field in various fronts. First, unlike
VIMs derived from machine learning and data-adaptive predictors (e.g., random forests), the
VIMs defined in this paper have a concise definition as statistical parameters, which allowed
the study of its asymptotic statistical properties and ultimately led to the construction of esti-
mators with desirable statistical properties like consistency, efficiency, and asymptotic normali-
ty. Second, the assumptions required to give a causal interpretation to statistical parameters are
often concealed, and the language used attempts to imply causal relations without clearly stat-
ing the necessary assumptions. The framework we present endows the user with the necessary
tools to decide whether it is correct or not to interpret the estimates in terms of causal relations.
Additionally, the parameters that we present have a purely statistical interpretation as a mea-
sure of conditional dependence, interpretation that must be used when there is not enough
knowledge about the causal structure. We provide a methodology that can be used to compare
continuous and binary variables in terms of their effect on an outcome, guaranteeing that the
results are mathematically comparable.

We illustrate the use of the methods through the analysis of the drivers of recovery after
sever trauma. These analyses provide a significant contribution to the field of trauma injury, by
bringing state-of-the-art statistical methods to a field in which the large dimensionality of the
problem constitutes a limiting factor for understanding the intricate relations between the vari-
ables involved. We propose a “black-box” prognosis algorithm (super learner) that can take
into account the complexity of the problem, and represents an alternative to the scoring meth-
ods based on rules of thumb that are currently used in this setting. The results of the variable
importance analysis corroborate the hypothesis that recovery after severe trauma is a dynamic
process in which the decisive factors change over time, and provides provisional answers to
various questions about recovery after severe trauma. Because there is not certainty that the
structural causal assumptions required are met, the estimated VIMs can only be used as predic-
tive performance measures and used to postulate hypothesis about causal relations that can be
tested in more carefully designed studies. An additional advantage of a more carefully designed
study is the possibility of performing a detailed comparison of the trajectories of each variable,
using data that is not subject to missingness, or in which the amount of missingness
is controlled.

We proposed a TMLE and an estimating equation estimator. Both of these estimators are
doubly robust and efficient under certain regularity and consistency conditions of the initial es-
timators, but the TMLE has the additional advantages of a plug-in estimator. However, we did
not observe any relevant difference between them in the illustration example. Various authors
[23] have already compared these two estimators through a simulation study under no miss-
ingness of the treatment variable, finding no difference between them. We proposed the G-
comp/IPMW, an additional estimator that represents an easy alternative to the TMLE or EE.
Although we found various differences in the magnitude of the estimates between the TMLE
and the G-comp/EE, the main discrepancy was with respect to the standard errors and p-val-
ues. We conjecture that these differences are a consequence of the inefficiency of the G-comp/
IPMW, which results in hypothesis tests with less power. As discussed in Section S1 TMLE Al-
gorithm of the Supporting Information, the proposed TMLE is defined by an iterative proce-
dure that involves numerical integration of super learning predictions at each step. This
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represents a drawback of the estimator in terms of scalability when compared to the estimating
equation (EE) methodology. Because the estimating equation methodology involves only com-
putation of predicted values from three super learners (outcome, missingness mechanism, and
treatment mechanism), and averaging of a function of these predictions, its computational
time is expected to be of the order of the computational time of the learners considered in
the library.

Finally, given the flexibility of this general approach, and the ability to automate the algo-
rithms, these type of variable importance measures promise great benefit in high dimensional
clinical and other longitudinal settings.

Supporting Information
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(PDF)

S1 TMLE Algorithm. TMLE Algorithm.
(PDF)
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