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a b s t r a c t 

In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro- 

inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet 

optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibro- 

sis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective 

and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients 

undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Stan- 

dard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed 

at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result 

of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are 

an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs 

and enhance image contrast. NP-based point-of-care systems can provide physiological information previously 

considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of 

nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose 

a new method of NP-based DKD classification that overcomes the current systems limitations. 
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Diabetes mellitus (DM) is a major public health concern with an in-

reasing prevalence in several developing countries [ 1 , 2 ]. It is strongly

ssociated with both micro and macrovascular complications and ap-

roximately 33 to 50% of diabetic patients suffer from organ and tis-

ue damage within their lifetime [3] . Regular glucose control can help

o prevent microvascular complications (4–6 mmol/l when fasting

nd < 7.8 mmol/l within 2 h of a meal) but this is not easily achieved

nd can negatively influence mortality. As such, the prevalence of mi-

rovascular complications in patients with DM is high [ 4 , 5 ]. This can

ead to the onset of chronic kidney disease (CKD) which is referred to

s diabetic kidney disease (DKD) in the presence of DM [ 6 , 7 ]. 

Thus, accelerated ageing, hypertension and hyperglycaemia are the

ore factors involved in the pathogenesis of DKD, creating a pro-

nflammatory environment that promotes fibrogenesis [8] . Kidney fibro-
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is is characterised by increased synthesis and deposition of extracellular

atrix components within the tubulointerstitial space (interstitial fibro-

is) and glomeruli (glomerulosclerosis) [9–11] . The emergence of renal

brosis is a consequence of maladaptive wound healing following tissue

nsult [11] . Interstitial fibrosis remains the main factor contributing to

enal structural deterioration and loss of function prior to the need for

ialysis ( Fig. 1 ) [11] . Thus, early diagnosis and prevention of fibrosis

ould potentially save millions of lives. 

In the last decade there has been a surge in the use of nanotech-

ology for the diagnosis and treatment of human diseases, including

M [12] . Nanoparticles (NPs) are at the forefront of this field due to

heir ability to act as theranostic tools that can carry a therapeutic load

nd/or enhance image contrast in diagnostics [13] . The application of

Ps for the diagnosis, treatment and prevention of disease is termed

anomedicine. Nanomedicine has been widely implemented in cancer

iagnosis and treatment owing to its ability to improve drug delivery
k (M.M. Yaqoob). 
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Fig. 1. Chronic kidney disease. (a) Diseases including hypertension, DM and glomerulopathies lead to loss of functional nephrons and glomerular hypertension. 

Resultant RAS activation and release of pro-inflammatory, pro-fibrotic factors including TGF- 𝛼 and EGFR contribute to nephron and podocyte hypertrophy. Podocytes 

are eventually lost due to shear stress, increasing the permeability of the glomerular basement membrane (GBM) and contributing to the development of proteinuria. 

Loss of podocytes also impairs capillary endothelial cell integrity due to loss of supportive factors including VEGF produced by podocytes. The pro-inflammatory 

environment promotes parietal epithelial cell (PEC) proliferation with fibrosis, forming ‘crescents’ crossing Bowman’s space and contributing to further podocyte 

loss (focal segmental glomerulosclerosis; FSGS). (b) Albuminuria and infiltrating immune cells cause tubular epithelial cell stress and activation, creating a pro- 

inflammatory interstitial environment. This promotes interstitial fibrosis with loss of peritubular capillaries which further stresses tubular cells by reducing oxygen 

and nutrient transfer from capillaries, contributing to tubular atrophy. Fibrosis and atrophy accelerate the progression of CKD by further increasing demand on 

remaining functional nephrons. 

t  

[  

a  

r

 

s  

f  

R  

z  

o  

d  

a  

[  

a  

c  

h  

t  

U  

s  

v

N

 

i  

a  

t  

6  

fi  

t  

n  

m  
o tumours by means of the enhanced permeability and retention effect

14] . More than twenty NPs have received FDA approval for treating

 range of cancers but their potential for diagnosing and treating DKD

emains unfulfilled [15] . 

A variety of NPs can be generated with control over size,

hape, morphology, surface to volume ratio and the capacity for

unctionalisation/bioconjugation with target moieties (e.g. antibodies,

NA, DNA and other biomolecules) [ 16 , 17 ]. Shapes of NPs include

ero-dimensional (0D) structures (e.g., quantum dots, nanospheres),

ne-dimensional (1D) structures (e.g., nanowires, nanorods), two-

imensional (2D) structures (e.g., graphene and related materials)

nd three-dimensional (3D) structures (e.g., foam, aerogels, hydrogels)

 16 , 17 ]. They have been heralded as efficient drug carriers due to their

bility to selectively direct pharmaceutical loads to diseased tissue and

an enhance drug efficacy locally whilst remaining non-toxic towards

ealthy tissues [ 18 , 19 ]. In this review we evaluate the current and po-
2 
ential uses of nanotechnology for the diagnosis and treatment of DKD.

nlike existing diagnostics, these theranostic agents could provide in-

ight into DKD progression before, during and after therapeutic inter-

ention. 

anomedicine and the kidney 

DKD is the leading global cause of end stage renal disease and mortal-

ty in DM patients [ 20 ], affecting approximately 30% of type 1 (T1DM)

nd 40% of type 2 (T2DM) patients. It has been estimated that by 2040

he global population with DM will rise from 415 million (2015) to

42 million [ 21 ], leading to a concurrent rise in DKD. In the traditional

ve-point model of DKD progression, the first stage is defined by small

races of albumin in the urine (microalbuminuria) [ 22 , 23 ]. Healthy kid-

eys normally inhibit albumin entry into the urine making it an ideal

arker to denote abnormal kidney function. As the disease and sub-
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equent kidney damage intensifies urinary albumin concentrations in-

rease (macroalbuminuria) and a decrease In glomerular filtration rate

GFR) is observed [ 24 ]. For this reason, the diagnosis and screening

f DKD is based on detection of persistent albuminuria in two out of

hree morning urine collections over a six month period [ 25 ]. In type

 DM patients albuminuria screens can be performed up to five years

ost diagnosis but immediate kidney assessment is required following

ype 2 diagnosis [ 26 ]. This is mostly attributed to type 1 subjects being

ounger and carrying fewer co-morbidities than those with type 2 DM.

his method is strongly contested amongst clinicians, however, as many,

atients with DM do not fit a classical pattern of kidney disease. In fact,

here is now a growing body of evidence suggesting that patients with

ither type of DM can exhibit an albuminuria independent reduction in

enal function even after receiving reno-protective agents [ 27–29 ]. Fur-

hermore, diabetic patients can also develop CKD independent of their

M status, and this should be considered when discussing treatment. 

Current therapeutic approaches are only moderately efficacious at

reating DKD and no curative measures are currently available. The stan-

ard treatment options include angiotensin converting enzyme (ACE)

nhibitors and angiotensin-receptor blockers (ARBs) that suppress the

enin-angiotensin system (RAS) to control hypertension and ameliorate

roteinuria [ 30 ]. Intensive treatment using anti-DM pharmaceuticals

an, however, cause hypoglycaemia, diuresis and malnutrition as a re-

ult of low caloric intake [ 31 ]. Cessation of smoking and diet control

ncluding lipid and protein reduction are also recommended to slow

rogression of nephropathy, but many patients still develop end stage

idney disease (ESKD), requiring renal transplant and or dialysis [ 32–

4 ]. In several countries renal replacement therapies are not widely

vailable with an estimated 2.3–7.1 million adults dying prematurely

ue to a lack of treatment access [ 35 ]. Thus, preventative measures and

arly-stage curative treatments are desirable. 

The study of NPs has advanced the treatment of several cancers but

o far none have received clinical approval for the treatment of renal

isease [ 36 , 37 ]. Several studies have noted poor in vivo stability and

nsufficient renal targeting when implementing this technology in prac-

ice whilst issues surrounding biodistribution and metabolism have also

een reported [ 38 ]. Despite these challenges, a plethora of pre-clinical

tudies have outlined the potential applications of NPs in renal tissue tar-

eting where an understanding of renal anatomy is critical. As shown in

ig. 2 , each renal glomerulus comprises a compact collection of blood

apillaries lined with fenestrated endothelium that is encased by either a

hick basement membrane (the GBM) or mesangium that acts as support-

ng tissue [ 39 ]. The basement membrane is in turn lined with podocyte

oot processes sized 4 to 11 nm to create a further filtration layer. Post

ntry into the glomerulus NPs may be deposited in different locations

e.g., endothelial cells, GBM etc.) according to their physiological prop-

rties including size, shape, surface charge and bioconjugates [ 40–42 ]. 

P shape 

NP shape influences their glomerular behaviour. A specific example

an be found in the difference in sieving coefficient between uncharged

extran and uncharged Ficoll. Ficoll displays a significantly lower coef-

cient than that of dextran due to the molecule’s shape [ 54 ]. Ficoll is a

ighly crosslinked copolymer formed from sucrose and epichlorohydrin

hilst dextran displays a more branched glucopyranose structure giving

ach macromolecule a spherical and prolate ellipsoid shape respectively

 54 ]. Furthermore, elongated dextran is excreted from the kidneys at a

reater rate than spherical horseradish peroxidase of identical size and

harge [ 55 ] indicating macromolecular shape also plays a key role in

enal uptake and filtration. Interestingly, a study by Ohlson et al. in-

estigated the effect of molecular shape on transglomerular passage us-

ng elongated hikunin, spherical albumin and linear hyaluronan that

ll possess a similar Stokes-Einstein radius (3.4–3.6 nm) and net charge

ut different shape [ 56 ]. Fractional clearance of linear hyaluronan (0.4–

.7) and elongated bikunin (0.1–0.25) proved to be much greater than
3 
hat of spherical albumin ( < 0.01) [ 56 ] suggesting that elongated macro-

olecules are more easily excreted from the kidney due in part to their

rictional ratio. Such information is vital to the future development of

Ps given that rate of clearance influences their ability to administer

rugs to the intended target [ 47 , 57 ]. 

P size 

To reach the luminal surface of the proximal tubule NPs need to

e sized < 7 nm and positively charged as these characteristics corre-

ate with passage through the glomerular filtration barrier [ 58 ]. Whilst

arger NPs (400 nm) have been successfully used to target proximal ep-

thelial cells little is known about how these NPs facilitate tissue en-

ry [ 53 ]. Recently, mesoscale NPs (MNPs) which are sized within this

large ” category ( ∼400 nm) were used to selectively target the proxi-

al tubules [ 59 ]. Despite their dimensions exceeding the circumference

f the GBM fenestrations MNPs were 26–92-fold more selective to the

idney than any other organ. The authors hypothesised MNPs do not

ndergo glomerular filtration and instead transcytose across the thin

 < 500 nm) endothelial layer of the capillaries, where they are then de-

osited between these capillaries and the proximal tubules. Here MNP

ptake is mediated by the tubular epithelial cells via receptor-mediated

ndocytosis as proposed by Carteria et al. [ 60 ]. Should further study

upport this hypothesis, it would likely increase the utility of MNPS for

rug delivery to the proximal tubules. 

P charge 

The GFM plays a fundamental role in kidney filtration and is sup-

orted by cells of the mesangium [ 61–63 ]. Whilst responsible for size se-

ectivity, the GFM also filters molecules according to their charge. Neg-

tively charged heparan sulphate proteoglycans present in the glomeru-

ar endothelium, the GBM (also negatively charged) and glycocalyx of

he podocytes selectively uptake cationic substances [ 64 , 65 ]. For this

eason, positively charged NPs have been found to pass through the

lomerular filtration barrier (GFB) more readily than their negatively

harged counterparts [ 66 , 67 ]. 

NP charge has been used as an independent variable for the selective

argeting of renal cells in many studies and has thus far produced incon-

istent results. For example, Wang and colleagues previously developed

mall, organic NPs named peptide amphiphile micelles (PAM) function-

lised with the zwitterionic peptide ligand, (KKEEE) 3 K [ 68 ]. Whilst

AM NPs are able to pass through the GFB for kidney accumulation, they

howed almost identical non-specific accumulation in the liver. More re-

ently in an attempt to optimise the physiochemical properties of PAM

Ps the same authors developed a library of PAMs according to size,

harge, and peptide repeats [ 69 ]. Interestingly, whilst all PAMs showed

idney accumulation, positively charged NPs, of similar size to the re-

al filtration cut ‐off (8–10 nm), conjugated to a zwitterionic peptide

equence showed greater renal accumulation. Given that kidney accu-

ulation of larger NPs with size far greater than the GFB cut off has pre-

iously been reported (e.g., polycation ‐siRNA NPs 60–100 nm, [ 70 ]),

hese results suggest an NP’s charge is just as influential on filtration as

ize. 

P focused renal targeting 

Achieving active targeting of NPs to renal destinations requires the

onjugation of ligands such as antibodies, peptides and small molecules.

hese targeted NPs are often designed to specifically bind to receptors

hat are uniquely or heavily expressed in renal tissue. For example, us-

ng 10 nm bovine albumin-based NPs (ABNPs) Wu et al. selectively tar-

eted the neonatal Fc receptor (FcRn) which is also an albumin receptor

n the surface of human podocytes [ 71 ]. ABNPs delivered methylpred-

isolone, a glucocorticoid, to in vitro human podocytes which displayed

 36-fold higher NP uptake compared to vascular smooth muscle cells
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Fig. 2. Renal filtration and accumulation of nanoparticles. (1) NPs are typically administered IV. Alternative routes include intraperitoneal administration and 

phagocytosis by macrophages, which subsequently migrate to foci of inflammation [ 43 ] and administration of NP labelled mesenchymal stem cells for theranos- 

tics [ 44 , 45 ]. (2) Renal clearable NPs must pass through the glomerular filtration membrane (GFM), comprising the capillary endothelial layer with 70–90 nm 

fenestrations, the thick GBM with 2–8 nm pores and the podocyte layer with 4–11 nm filtration slits. Each layer of the GFM is negatively charged; cationic NPs 

are therefore much more efficiently cleared by the kidney than anionic and neutral NPs. Filtration is strongly size dependant: large NPs > 90–100 nm do not pass 

through the GFM significantly whilst small NPs < 6 nm are freely filtered. Very small ( < 1 nm) NPs exhibit reduced renal clearance due to interactions with the 

endothelial glycocalyx [ 46 ] . Some intermediate size NPs (e.g. PEG-coated AuNPs < 100 nm) pass through the endothelial layer and accumulate in the mesangium, 

with potential for glomerular targeting [ 47 ] . The dependency of filtration on size and charge is further complicated by their interaction with NP shape and flexibility 

and the potential for some NPs to partially or completely disassemble to cross the GFM [ 48 ] . Renal disease causes increased GFM permeability (due to various factors 

including podocyte injury and reduced endothelial integrity) potentially allowing increased NP filtration and renal accumulation. (3) Renal-clearable NPs accumulate 

in urine in the tubules. Their precise interactions are not fully understood but several pathways for their endocytosis and accumulation within tubular epithelial cells 

have been identified, including megalin-, caveolae- and clathrin-mediated endocytosis [ 49 - 51 ] . Renal-clearable NPs may also be captured by the microvilli (e.g. 

glutathione-coated AuNPs), saturating the brush border before being eliminated in the urine [ 52 ]. (4) Non-renal-clearable NPs rarely reach the tubules; however, 

endocytosis of organic NPs 400 nm in diameter by the peritubular capillary endothelium has been studied, allowing selective accumulation in the proximal tubules 

for up to 7 days [ 53 ] . 
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hat lack FcRn [ 71 ]. Additional in vivo assays using female BALB/c mice

evealed strong kidney targeting of the nanoconjugates but with slightly

avourable liver accumulation. Similarly, Pollinger and colleagues de-

eloped cyclomodified quantum dots capable of binding to the 𝛼v 𝛽3

ntegrin on the podocyte surface, however, the therapeutic application

f these nanocarriers was not tested [ 72 ]. 

As DKD progresses the accumulation of pathogenic insults results in

n inflammatory environment that promotes further nephrotic damage.

pon pro-inflammatory stimulation, the kidney displays a specific pat-

ern of cell adhesion molecules including E-selectin and vascular cell

dhesion protein 1 (VCAM-1) making them an ideal target for NP renal

oming [ 73–76 ]. Targeting of either of these peptides has mostly been

chieved via antibody conjugation to the surface of NPs carrying a thera-

eutic load. For example, VCAM-1 conjugated lipid nanocarriers termed

SAINT-O-Somes ” have been used to target inflamed podocytes pre-

reated with tumour necrosis factor-alpha (TNF- 𝛼) [ 77 ]. Anti-VCAM-

 conjugated SAINT-O-Somes were used as a delivery platform for ra-

amycin. Rapamycin is an immunosuppressant drug prescribed to renal

ransplant patients but prolonged use results in proteinuria and progres-

ion of CKD [ 78 ]. Delivery of rapamycin to the kidney at controlled con-
4 
entrations may reduce the risk of side effects. Delivery of anti-VCAM-

-rapamycin-SAINT-O-Somes to human AB8/13 podocytes had little ef-

ect on cellular viability compared to treatment with free rapamycin

tested at 8 𝜇M and 32 𝜇M rapamycin) [ 77 ]. However, anti-VCAM-1-

apamycin-SAINT-O-Some treated cells did display 3-fold greater inhi-

ition of wound healing after 24 h exposure compared to control indicat-

ng a more effective anti-inflammatory effect with the targeted approach

 77 ]. 

E-selectin has also been used as antibody target for NP renal tar-

eting owing to its overexpression in highly inflammatory renal envi-

onments. In light of this, Asgeirsdottir et al. developed IgG conjugated

-selectin targeting liposomes (Ab Esel ) encapsulating the corticosteroid

examethasone [ 79 ]. In glomeruli, the Ab Esel liposomes (114 nm) colo-

alised with the endothelial marker CD31 and showed minimal accu-

ulation in other non-target organs such as the liver, spleen, heart and

ungs [ 79 ]. Similar studies have since been conducted using sialic acid

SA) conjugated 20 nm dexamethasone loaded micelles (SA-PEG-DXM),

 known E-selectin ligand [ 80 ]. SA-PEG-DXM NPs showed greater cel-

ular uptake and accumulation in the kidney of an acute kidney injury

AKI) murine model than non-SA bound NPs [ 80 ]. 
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Table 1 

Promising nanoparticles for the diagnosis of CKD and DKD. A number of studies published within the last decade have shown promising pre-clinical results 

for the diagnosis of both DKD and CKD. Since both diseases show similar renal damage the use of NPs for therapeutic delivery have been interchangeably 

considered for both CKD and DKD within this table. 

Class Nanoparticle Size (nm) Model Summary Refs. 

Gold Anti-collagen-I 

antibody-conjugated AuNPs 

(bare or PEG-coated) 

19 / 45 In vitro (collagen coated 

plate; murine kidney 

sections) 

Co-I-AuNPs bind specifically to with increased 

retention to mouse fibrotic kidneys. They can then be 

detected by micro-CT. 

[ 81 ] 

PEG-modified, highly 

stabilised core-satellite Au 

nano-assemblies with 

N-acetylation chitosan 

modification 

Core: 18.7Satellite: 3.9 BALB/c mice Fluorescence imaging indicates NACS-PEG-CSAuNAs 

effectively target renal tubular cells with greater 

retention than standard NACS-PEG-AuNPs. 

[ 82 ] 

Renal clearable glutathione 

coated AuNPs 

2.5 CD-1 mouse UUO model Non-invasive x-ray imaging shows increased retention 

and cellular uptake in UUO kidneys, with anatomical 

localisation precisely correlated with local pathology. 

Contrast enhancement is 6x higher than using 

diatrizoate meglumine (a clinically used agent). 

[ 83 ] 

Renal clearable luminescent 

glutathione coated AuNPs 

< 5.5 Mouse UUO model Fluorescence imaging using renal clearable 

near-infrared emitting AuNPs is a low cost, 

non-invasive measure of kidney dysfunction 

progression with greater contrast than small-molecule 

based contrast agents and greater sensitivity than 

typical blood markers. 

[ 84 ] 

Iron 

oxide 

SPION-labelled MSCs 60 Ischaemic AKI in rabbits 

CKD in Sprague-Dawley rats 

SPIONs are an effective, non-toxic agent for targeted 

MRI when combined with the use of MSCs to treat 

renal injury and CKD. 

[ 44 , 45 ] 

PEG-coated iron oxide NPs 20 BALB/cJRj mice NPs accumulate in PTECs and generate clear negative 

contrast for renal MRI, with reduced RES retention and 

increased renal clearance. 

[ 85 ] 

SPIONs 5.8 MPI is a new alternative to MRI which uses SPIONs. 

These are potentially a safer alternative to traditional 

contrast agents in CKD patients. 

[ 86–88 ] 

Ferumoxytol 30 Licensed in humans for 

treatment of anaemia. 

Human case study. 

Ferumoxytol is an effective novel MRI contrast agent 

with an excellent safety profile in CKD patients. 

[ 89 , 90–92 ] 
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anomedicines for the diagnosis of kidney diseases 

The prognosis of DKD is dependant on the disease’s stage at the

ime of diagnosis. For this reason, a large proportion of research has

ocused on the development of new non-invasive diagnostic tools that

ay help detect DKD at an earlier, more treatable stage. Advancements

n medical imaging technologies, such as magnetic resonance imaging

MRI) and positron emission tomography (PET)/ computerised tomog-

aphy (CT) show promise as methods of achieving early diagnosis. Im-

roved biomarker technology can now be paired with imaging tech-

iques to give a more specific assessment of the disease [ 38 ]. For exam-

le, nephrons can now be examined individually to assess the affected

rea thus reducing the time a patient spends in diagnostic limbo [ 38 ].

urrently these NP-based tools are limited to a preclinical setting; how-

ver, their continued advancement highlights their potential for future

linical diagnosis ( Table 1 ). 

anotechnology to improve kidney imaging 

CT and MRI are the standard imaging techniques used for the detec-

ion and diagnosis of DKD but require a high contrast ratio to distinguish

etween varying structures. NPs show great promise as image enhance-

ent tools and can reduce the use of accepted contrast agents that dis-

lay nephrotoxic side effects [ 93 , 94 ]. Compared with PET and CT, MRI

as a much higher spatial resolution, especially for soft tissue, making it

he favoured technique for characterising indeterminate renal diseases

 95 ]. CT, however, offers prominent benefits in terms of speed of image

cquisition and relative availability. Gold NPs (AuNPs) are considered

n attractive candidate to enhance CT imaging due to their ability to

eighten X-ray attenuation [ 96 ]. At both low (40–60 kVp) and high

100–140 kVp) tube potentials AuNPs have been found to significantly

mprove the contrast to noise ratio (89% and 114%, respectively) of CT

n an imaging phantom compared to the clinically used contrast agent–
5 
odine [ 97 ]. Similarly, anti-collagen-I antibody conjugated AuNPs have

een used to visualise kidney fibrosis in vitro and do not induce renal

amage in mice, suggesting strong clinical potential [ 81 ]. However, the

cquisition of CT images using NP contrast agents has thus far been

ested at variable voltages. Given the energy dependence of X-ray at-

enuation for a given substance, image production at oscillating volt-

ges likely results in different estimations of contrast even when using

 reference agent. Thus, without a standardisation protocol the accu-

ate comparison of contrast agents for CT scanning remains difficult to

btain. NP based initiatives have therefore placed more focus on MR

maging for renal diagnostics. 

MR imaging is the result of intermittent low energy nuclear rota-

ions. To achieve this, pulses of radio frequency are emitted into a con-

tant magnetic field. The rotation-relaxation process is then measured

o form the image. The resolution of these images can be significantly

nhanced through the use of contrast agents which shorten either the

ongitudinal (T 1 ) or transverse (T 2 ) relaxation periods of aqueous pro-

ons [ 98 , 99 ]. Paramagnetic compounds can enhance the contrast dis-

lay of MRI by promoting the relaxation of the water molecules that

urround it [ 100 ]. Whilst T 1 contrast agents produce brighter images

hat are more distinguishable from artefacts than T 2 [ 100 ] they are also

uickly excreted by the kidneys due to their small molecular size [ 101 ].

n addition, gadolinium, the traditional agent used for T 1 contrast, has a

hort blood circulation time so acquiring high resolution images proves

hallenging [ 102 ]. As such, new technologies that can safely increase

he resolution of MRI are desirable. 

Iron oxide NPs (IONPs) are the most widely researched nanoparti-

le for enhancing clinical imaging due to their intrinsic magnetic and

iodegradable attributes [ 103–105 ]. The majority of studies have in-

estigated IONPs as T 2 contrast agents due to their ability to efficiently

horten transverse relaxation times. In addition, IONPs display desir-

ble attributes such as adaptable surface chemistry and long blood half-

ives with minimal toxicity [ 104 , 106 ]. In the kidney, IONPs have been
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sed to quantitatively assess glomerular morphology. Using superpara-

agnetic ferritin-based NPs several studies have been able to acquire

-dimensional images of the diseased tissue [ 107 ]. Ferritin NPs are su-

erparamagnetic due to ferritin’s ability to oxidise and incorporate iron

n a crystalline form. Incorporating these NPs into MR imaging has since

een used to create whole-kidney maps of glomerular number and esti-

ate distribution of glomerular volumes [ 105 , 107–109 ]. 

Superparamagnetic iron oxide NPs (SPIONs), when used as a con-

rast agent, generate a local disturbance in the applied magnetic field

hich reduces transverse relaxation times (T 2 and T 2 
∗ ), resulting in a

ocal darkening of the image [ 110 ]. SPION accumulation at the target

ite is detected using T 2 and T 2 
∗ weighted MRI, with each glomerulus

isualised as a black ‘dot’ [ 105 , 107–109 ]. Significantly, this technology

as been used to track changes in renal function during the development

f CKD. In this study, cationised ferritin (CF) was shown to selectively

ocalise to the GBM [ 108 ]. In a preclinical model of glomerulosclerosis,

ale Sprague-Dawley rats were treated with CF and were subsequently

xamined by MRI [ 108 ]. Rats with glomerulosclerosis showed reduced

lomerular accumulation of CF, but exhibited diffuse accumulation of

F in the renal tubules due to leakage through the damaged GBM) [ 108 ].

hese NPs allowed visualisation via MRI of the renal damage associated

ith glomerulosclerosis [ 108 ]. Non-invasive methods such as this may

elp to distinguish between DKD and NDKD, thus informing more accu-

ate clinical decision making. 

anotechnology for detecting kidney inflammation 

Kidney inflammation is a significant factor in the development of

KD. Kidney damage caused by the pre-requisite insults associated with

isease onset (hyperglycaemia and hypertension) leads to proinflam-

atory cytokine production by tissue resident macrophages [ 111 ]. Cy-

okines are involved in further leucocyte recruitment to advance the

ound healing process but can also exacerbate tissue damage by initiat-

ng an autoimmune reaction. Continued renal damage results in collagen

eposition as part of a secondary mechanism of wound healing leading

o fibrogenesis and the irreversible stages of DKD [ 111 , 112 ]. In fact,

acrophage accumulation in the kidney interstitium correlates with a

ecline in renal function, increased proteinuria and advanced intersti-

ial fibrosis [ 113 ]. For this reason, non-invasive imaging and tracking

f macrophage activity within DM patients has been proposed as an ef-

ective method of early DKD detection. 

SPIONs are amongst the array of technology previously used to de-

ect renal inflammation. Following intravenous injection SPIONs are

hagocytosed by macrophages and display prolonged T 2 and T 2 
∗ ef-

ects on MR images of macrophage-infiltrated tissues including the kid-

ey [ 114–116 ]. Using either SPIONs or C3d conjugated NPs, Serkova

t al. tested their ability to enhance MR imaging in a mouse model of

upus nephritis [ 116 ]. C3d conjugated NPs showed decreased water T 2 

n the selected model but not in wildtype mice whilst nontargeted SPI-

Ns had no effect on contrast. It is worth noting that SPIONs have also

een used to monitor macrophage infiltration of kidney tissue by act-

ng as MRI contrast agents in patients receiving renal transplantation

nd suffering from transplant rejection [ 114 ]. SPIONs can therefore be

sed to examine longitudinal changes in inflamed kidneys. This data is

ot only of use in the clinic to inform therapeutic decisions but also in

esearch to improve pharmaceutical development. 

Other methods of inflammation assessment have focused on the

roinflammatory cytokine TNF- 𝛼. Urinary TNF- 𝛼 concentrations in-

rease with progression of nephropathy [ 117 ]. Similarly, DKD patients

ave elevated levels of both serum and urinary TNF- 𝛼; these concentra-

ions rise concomitantly with disease progression [ 118 , 119 ]. As such,

NF- 𝛼 is a plausible marker of DKD onset and progression. Currently,

he enzyme-linked immunosorbent assay (ELISA) test is the most com-

only used method for detecting TNF- 𝛼 in a given sample with a de-

ection limit of 10 pg/ mL [ 120 ]. However, TNF- 𝛼 plasma levels above

.17 pg/mL are indicative of cardiovascular disease, the most common
6 
ause of mortality amongst DKD patients [ 121 ]. In addition, results can

ake between 2 and 4 weeks to obtain delaying diagnosis [ 122 ]. Thus,

ew approaches are required to use this cytokine as an accurate prog-

ostic marker. 

Recently Lai et al. used surface enhanced Ramen scattering (SERS)

ctive small clusters of AuNPs conjugated to antibodies in a magnetic

ead pull-down assay for TNF- 𝛼 detection [ 123 ]. SERS is a surface-

ensitive optical technique that enhances Ramen scattering through use

f nanostructures to detect single molecules [ 124 , 125 ]. The Raman

pectrum showed specificity and selectivity for TNF- 𝛼 detection (limit

f detection 1 pg/ mL), with minor signal display from negative controls

ncluding 0.05% bovine serum albumin, interleukin (IL) − 1 and IL-8 at

 concentration of 10 ng/ mL. More recently, unconjugated SERS have

een reported to produce a limit of detection value of 0.125 pg/ mL

 122 ]. Whilst the authors identified improved detection of TNF- 𝛼, this

abel-free approach is limited in its clinical application due to difficul-

ies discerning different proteins within a given sample. Collectively,

hese data indicate that SERS based NPs are capable of detecting TNF- 𝛼

t physiologically relevant concentrations, but further work is required

o improve their label-free specificity. 

anotechnology for detecting kidney biomarkers 

Despite the limitations surrounding albumin as a marker of renal

isease, this renally filtered peptide is still used to inform key clinical

ecisions. In healthy individuals, albumin is detectable at low levels,

ut diseases such as DM that result in kidney injury can initiate long-

erm adverse effects such as glomerular leakage and tubular dysfunc-

ion [ 126 ]. Such events can lead to albumin entry into the urine; this

s termed albuminuria and currently acts as an accessible, non-invasive

iomarker of DKD. At low concentrations, (30–300 mg/L of albumin

n the urine) this is termed microalbuminuria and is often observed at

he earlier stages of disease progression [ 127 ]. As such, microalbumin-

ria has become a significant area of interest for the early detection of

idney damage. 

The current clinical method of microalbuminuria detection is an

mmune-turbidimetry assay using polyclonal antibodies against human

lbumin [ 127 ]. By combining this approach with AuNPs, Shaikh et al.

eveloped a point-of-care system that could be used in almost any set-

ing, from home to bedside [ 128 ]. AuNPs were used to enhance the

iocompatibility and conductivity of this electrochemical immunosen-

or allowing for the near immediate detection of kidney damage. How-

ver, whilst antibody mediated detection shows high sensitivity these

ethods are expensive and require careful handling. To overcome these

imitations, Budhathoki-Uprety et al. used polycarbodiimide polymers

ncapsulating single-walled carbon nanotubes (PCD-SWCNT) capable of

inding to free albumin [ 129 ]. Upon the binding of albumin, at a range

f concentrations (6.25 to 100 mg/L), to the nanotube a hypsochromic

blue) shift in photoluminescence was observed indicating the presence

f quantifiable microalbuminuria ( Fig. 3 a–c ). This point-of-care plat-

orm could easily be used in clinical situations and applied to other re-

ource limited settings to determine early DKD onset. 

The most established predicter of ESRD is the current GFR and past

FR trajectory, which relies on examination of serum creatinine to

roduce an estimated value (eGFR) [ 131 , 132 ]. However, creatinine is

ot directly proportional to GFR due to the influence of muscle mass

n its serum concentration and its tendency to rise only when kidney

unction is already significantly impaired [ 133 , 134 ]. Serum cystatin

-based eGFR has been proposed as an alternative marker of kidney

amage as it exhibits better diagnostic accuracy [ 135 ]. Cystatin C is

 13 kDa nuclear protein that is freely filtered and almost completely

etabolised by the cells of the proximal tubules [ 136 ]. With this in

ind, Sun et al. developed a sandwich chemiluminescence immunode-

ection method for cystatin C labelled with amino-functionalised meso-

orous silica NPs encapsulating dye [ 137 ]. Compared with ELISA this

P based approach demonstrated considerably greater sensitivity (limit
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Fig. 3. Optical nanosensor for albumin detection . In an attempt to develop a nanotube probe to detect urinary albumin the authors synthesised a hydrophobic 

carboxylated chain to mimic fatty acids as these are known to bind to albumin [ 130 ] . Polymers with amine and polyethylene glycol (PEG) groups that could 

interact via Coulombic and hydrophobic interactions, respectively were also developed as controls. A. Emission intensity response of the PCD-SWCNT complexes 

((9, 4) chirality) to albumin. B. Emission wavelength response of the PCD-SWCNT complexes to albumin ((9, 4) chirality). C. Photoluminescence emission spectra of 

carboxy-PCD-SWCNT complexes upon addition of albumin (concentration increasing from bottom to top). Reproduced with permission from reference [ 129 ]. 
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f detection 0.0333 ng/mL vs 0.0029 ng/mL, respectively). The authors

ttributed these results to the superior ability of mesoporous silica NP to

arry a dye load than antibodies. Similarly, Lopes et al. utilised AuNPs

s part of an electrochemical immunosensor to detect levels of cystatin

 in CKD serum samples [ 138 ]. This diagnostic method provided precise

esults (relative standard deviation ≤ 6.2%) and quantified cystatin C in

 manner that agreed with the values obtained by a particle-enhanced

ephelometric immunoassay. To this end, the use of NPs to advance

mmunosensor methods shows great clinical promise. 

anomedicines for the treatment of DKD 

The overwhelming disadvantage of current methods of DKD treat-

ent is their inability to reverse renal fibrosis: the pathological result of

ngoing microvascular damage, metabolic changes and oxidative stress.

ver a decade of research aimed at identifying therapeutic strategies

or treating DKD and CKD has focused on fibrogenesis. Thus far lit-

le progress has been made in achieving fibrotic reversal. Whilst RAS

lockade has been used to regress glomerulosclerosis in rat kidneys this

rocess does not translate to humans [ 139 ]. In DKD patients, pancre-

tic transplantation has been shown to reverse some lesions of kidney

brosis but this takes at least a decade to achieve [ 140 ]. Whilst new ini-

iatives are constantly being considered, limitations surrounding their

ioavailability, half-life and efficacy have thus far hindered any clinical

mpact. Nanotechnology represents an opportunity to overcome such

ssues ( Table 2 ). 

Ps for drug delivery 

NPs are an attractive tool for the loaded delivery of drugs to the kid-

ey. Due to their unique ability to improve drug efficiency and enhance

ontrolled drug release several studies have been conducted in this field.

he adjustable surface properties of NPs, such as the conjugation of poly

ethylene glycol) (PEG), has proven revolutionary in preventing opson-

sation and systemic clearance of NP encapsulated chemotherapeutic

gents [ 155 ]. Whilst the study of metallic NPs has seen a meteoric rise

n recent years, owing to their ability to enhance MRI contrast, other ma-

erials have shown promise as drug nanocarriers. Various polymers, for

xample, have been used in colloidal drug delivery research to increase

herapeutic value and decrease associated side effects [ 156 ]. Among

hese are the poly (D,L- lactic-co-glycolic acid) (PLGA) NPs which have

hown great promise in the diagnosis and therapy of several cancers

 157 , 158 ]. In the kidney, PEG conjugated PLGA NPs have been used to

eliver dexamethasone acetate (A-DEX) to the glomerular mesangium

 51 ]. A-DEX is an FDA approved immunosuppressive corticosteroid used

or the treatment of various inflammatory diseases [ 159 ]. Although cor-

icosteroids can be given systemically various side effects such as hy-
7 
ertension, hyperglycaemia, peptic ulcers and glucosuria can be pre-

ented through local administration [ 160 ]. In this study, 90 nm sized

Ps showed significant accumulation in rat kidneys and were rapidly

60 s) endocytosed by the mesangial cell line HBZY-1 [ 51 ]. These find-

ngs demonstrated the ability of PEG-PLGA NPs to act as therapeutic

arriers to the kidney. The authors did not, however, compare the effi-

acy of this nanocarrier against free A-DEX, leaving questions over its

herapeutic value. 

In an attempt to target the inflammatory environment within the

iabetic kidney Bruni and colleagues developed an ultrasmall colloidal

anomaterial of tuneable size (5–30 nm) with or without a hydropho-

ic poly- 𝜀 -caprolactone core and a brush-like PEG corona [ 161 ]. Using

hese NPs, they delivered A-DEX to a 3-dimensional in vitro co-cultured

ystem of endothelial cells and podocytes previously treated with Adri-

mycin (doxorubicin hydrochloride) to replicate cellular damage [ 162 ].

amaged podocytes displayed shortened cell processes and substantial

emodelling of the actin cytoskeleton, with loss of filament bundles and

ounding of the cell shape [ 161 ]. Cells treated with A-DEX loaded NPs

ecovered the normal orientation of actin stress fibres within 24 h. Un-

ortunately, the lack of in vivo data provided by this study raises ques-

ions regarding the biodistribution of A-DEX loaded NPs. Whilst a safe

anotoxicity profile was reported in the target cell line the authors failed

o consider side effects that may occur in the surrounding organs (e.g.,

iver, spleen, lungs). 

Renal fibrosis is the hallmark final stage of CKD and DKD regardless

f aetiology. Fibrosis is characterised by the excessive deposition of fi-

rous connective tissue, including collagen and fibronectin, in the dam-

ged environment [ 163 ]. Patients that develop renal fibrosis advance

o ESRD requiring renal transplant as there is currently no approved

reatment for this pathogenic process. For this reason, a lot of research

as been focused on alternative therapeutics such as traditional Chi-

ese medicines and transition metals as a method of reversing fibrosis.

reconditioning with the transition metal cobalt (Co 2 + ), for example,

as been shown to inactivate the collagen synthesis enzyme prolyl 4-

ydroxylase suggesting an anti-fibrotic effect, although this remains to

e seen in vivo [ 164 ]. Whilst treatment with CoCl 2 has previously been

ffective in the attenuation of fibrosis [ 165 ], specific renal targeting

f this therapy has proven challenging. To improve Co delivery to the

idney Tan et al. developed a drug-releasable self-assembly nanoplat-

orm using glutathione (GSH)-modified AuNPs and Co 2+ (GLAuNPs-Co)

 166 ]. Using an obstructed nephropathy mouse model, they observed

 2-fold increase in therapeutic efficacy with GLAuNPs-Co compared

o free CoCl 2 . Subsequent polymerase chain reaction (PCR) analysis

evealed upregulation of the anti-fibrotic microRNA, miR-29a, follow-

ng GLAuNPs-Co treatment [ 166 ]. Mice injected with GLAuNPs-Co dis-

layed significant attenuation of interstitial fibrosis, indicating that it is

 promising therapy for treating the fibrotic kidney. 
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Table 2 

Promising nanoparticles for the treatment of CKD and DKD. A number of studies published within the last decade have shown promising pre-clinical results 

for the treatment of both DKD and CKD. Since both diseases can progress to ESRD the use of NPs for therapeutic delivery have been interchangeably considered 

for both CKD and DKD within this table. 

Class Nanoparticle Size (nm) Model Summary Refs. 

Gold AuNPs 50 STZ-induced diabetic 

hyperglycaemia in rats 

AuNPs prevent STZ-induced diabetic 

hyperglycaemia and have positive effects on renal 

function and oxidative stress. They downregulate 

TGF- 𝛽1, fibronectin, collagen IV, TNF- 𝛼 and 

VEGF-A expression and ameliorate podocyte 

injury. 

[ 141 , 142 ] 

Pomegranate peel extract 

stabilised AuNPs 

20–120 STZ-induced diabetic 

hyperglycaemia in mice 

PPE-AuNPs normalise STZ-induced pancreatic 

beta-cell dysfunction and reduce glomerular 

sclerosis and renal fibrosis. They also reduce 

pro-inflammatory cytokines by modulating the 

MAPK/NF-kB/STAT3/cytokine axis. 

[ 143 ] 

Organic Chitosan (non water-soluble, 

LMW) polyplex (Ch/siRNA) 

200–250 BALB/cJBomTac female mice Ch/siRNA NPs accumulate specifically in PTECs, 

achieving knockdown of aquaporin 1 by up to 

50%. 

[ 144 ] 

Chitosan siRNA Mouse UUO model Intraperitoneal Ch/siRNA targeting COX-2 in 

macrophages attenuates UUO-induced kidney 

injury. 

[ 145 ] 

Catechol-derived LMW chitosan 

with zinc + emodin 

Mouse UUO model Chi-Zn-emodin complexes attenuate fibrosis in 

ureter-obstructed mice. 

[ 146 ] 

1-Serine-modified PAMAM 

dendrimer with captopril 

2–5 Male ddY and Hos:HR-1 mice Serine-modified PAMAM shows highly selective 

renal accumulation (vs unmodified), with effective 

renal delivery of captopril (ACE inhibitor). 

[ 50 ] 

Polycationic cyclodextrin NPs 

containing siRNA 

Female BALB/c mice and 

C57BL/6-Tg(CAG- 

EGFP)1Osb/J 

mice 

siRNA/CDP-NPs localise to the glomerular 

mesangium where they are rapidly internalised 

and cause knockdown. 

[ 147 ] 

PEG-PCL-PPI triblock 

amphiphilic polymer 

(PPP NPs) with rhein 

75 ± 25 STZ-induced murine DN PPP-RH 

–NPs showed kidney-targeted distribution 

and improved efficacy of rhein against DN. 

[ 148 ] 

Liposomal Liposome-encapsulated 

clodronate (LEC) 

Ang-II induced hypertensive 

C57BL/6 mice 

LEC treatment reduces blood pressure and protects 

against renal injury and fibrosis in hypertensive 

mice by reducing macrophage-driven 

inflammation and oxidative stress. 

[ 149 ] 

CoQ10-loaded liposomes 180 STZ-induced diabetic male 

Sprague-Dawley rats 

CoQ10-loaded liposomes combined with UTMD 

may reverse early DN. 

[ 150 , 151 ] 

bFGF-loaded liposome 170 STZ-induced diabetic male 

Sprague-Dawley rats 

bFGF-loaded liposomes combined with UTMD may 

reverse early DN by inhibiting inflammation. 

[ 152 ] 

CREKA-coupled celastrol-loaded 

liposomes 

110 UUO model in C57BL/6 J 

male mice 

CREKA-coupled liposomes enable anti-fibrotic 

drug (celastrol) targeting via fibronectin in fibrotic 

kidneys. 

[ 153 ] 

Quercetin-loaded liposomes 130 STZ-induced DN in male 

Sprague-Dawley rats 

Quercetin-loaded liposomes exhibit greater 

efficacy than standard quercetin. 

[ 154 ] 
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Curcumin, the active ingredient in traditional medicines and dietary

pice turmeric has long been considered a therapeutic prospect for treat-

ng fibrosis. As an economically viable alternative to more expensive

harmacological agents, curcumin is now the subject of several studies

or the treatment of stage 3 CKD [ 167–169 ]. In a randomised, double-

lind study of patients with DKD, daily treatment with turmeric capsules

or 2 months (containing 22.1 mg curcumin/per capsule) significantly

educed plasma TGF- 𝛽 concentrations [ 170 ]. In fact, curcumin therapy

an reduce glomerular hypertension, hyperfiltration, glomerular sclero-

is and interstitial fibrosis in rats but its uses in healthcare have been

imited by its poor bioavailability and metabolic stability [ 171–173 ]. In

ddition, curcumin targeting to the kidneys proves challenging due to

ts low tissue absorption, immediate metabolism and rapid elimination

 174 , 175 ]. Conjugating the polyphenolic compound to NPs has allowed

or specific kidney targeting with some now reaching clinical trial for the

reatment of CKD [ 176 ]. From these studies it can be speculated that the

ncreased bioavailability of nanocurcumin compared to free curcumin

ay promote methods of DKD treatment. 

Ps for RNA delivery 

Over the years accumulating evidence has revealed an epigenetic in-

uence on the pathogenesis of DKD culminating in the identification of

 number of therapeutic targets. Among these are the non-coding RNAs
8 
ncRNAs) which have attracted a great deal of interest due to their piv-

tal role in several physiological and pathological processes [ 177 ]. The

cRNAs can be divided into distinct subgroups according to their length

anging from the long ncRNAs ( > 200 nucleotides), to the short interfer-

ng RNA (20–25 nucleotides) to the micro (mi)RNAs (18–22 nucleotides)

 177 ]. Many miRNAs are associated with DKD progression and renal fi-

rosis making them ideal targets for nanomedicine interventions. 

Recently, Wang et al. used exosome-encapsulated miR-29, which

isplays anti-fibrosis activity, to counteract muscular wastage and re-

al fibrosis in a ureteral obstruction (UUO) mouse model [ 178 ]. Ex-

somes (91 nm) were injected intramuscularly and contained the ex-

somal membrane protein gene Lamp2b that was fused with the tar-

eting peptide rabies viral glycoprotein (RVG). The RVG peptide di-

ects the transfected exome to organs, such as the kidney, that express

he acetylcholine receptor [ 179 ]. Intramuscular injection of exosome-

ncapsulated miR-29 partially depressed renal fibrosis (confirmed by

ecreased TGF- 𝛽, 𝛼-smooth muscle actin, fibronectin, and collagen 1A1)

n UUO mouse kidneys. Overexpression of miR-29 also correlated with

 significant reduction in the protein levels of pro-fibrotic peptides

GF- 𝛽3 and Yin Yang 1 (YY1) [ 178 ]. YY1 plays a crucial role in the

evelopment of renal fibrosis by upregulating 𝛼-smooth muscle actin

xpression and inducing epithelial-mesenchymal transition [ 43 ]. The

se of exosomes as a therapeutic delivery system has recently re-

eived approval to undergo clinical trial testing [ 180 ]. As such, ex-
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s  
some based targeted approaches such as this display high clinical

otential. 

Other methods of therapeutic intervention have utilised siRNAs to

ilence pathogenic genes. Using polycationic cyclodextrin NPs Zucker-

an et al. successfully delivered siRNA to the glomerular mesangium

f lpr mice (mouse lupus nephritis model) [ 147 ]. Importantly, NP en-

apsulated siRNA (siRNA/CDP-NPs) was detectable by real-time PCR

ut this finding was not shared with freely administered siRNA [ 147 ].

igher uptake of siRNA/CDP-NPs was observed in vitro compared to

ree siRNA [ 147 ]. This method of siRNA transport may prove effective

n DKD treatment especially given the fact that several pre-clinical stud-

es have observed successful gene silencing by siRNA for renal fibro-

is in vivo [ 181–185 ]. The need for repeated siRNA administration in

hronic conditions such as DKD must be considered before these studies

an reach clinical trial. Such necessity leads to concerns over the imple-

entation of siRNA therapy, including healthcare costs and potential

ong-term side effects (e.g. inactivation of a multifunctional gene). 

Ps for stem cell delivery 

In recent years, the use of stem cell based regenerative therapies has

ained attention as a method of reversing fibrosis in renal tissue. Mes-

nchymal stem cells (MSCs) have been considered a promising strategy

o cure DKD but challenges surrounding targeting them to specific or-

ans in vivo has limited their clinical utility [ 186 ]. For this reason, com-

ining the targeting characteristics of NPs with MSCs’ “healing ” prop-

rties has recently gained considerable interest. 

To improve MSC homing to DKD afflicted renal tissue Wu et al.

elivered the MSC chemotactic peptide, SDF-1 (stromal cell-derived

actor-1) loaded in microbubbles (MB SDF-1 ) to the kidneys of strepto-

otocin treated rats [ 187 ]. Streptozotocin is a toxin that negatively im-

acts the viability of pancreatic 𝛽-cells inducing hyperglycaemia in se-

ected animal models [ 188 ]. Using ultrasound-targeted microbubble de-

truction (UTMD) the authors successfully released SDF-1 into the tar-

eted kidneys with subsequent in vitro experiments revealing a load-

ng efficacy of 79% and a loading content of 15.8 μg/mL. Implanted

SCs were scarcely observed in a control group of healthy rats (num-

er of 3.6 ± 2.1) [ 187 ]. Importantly, UTMD delivered MSCs (number of

3.4 ± 3.1) were significantly increased when rats were also treated with

DF-1 (number of 23.8 ± 3.6, Fig. 4 ) [ 187 ]. MSCs were transfected with

reen fluorescent protein (GFP) for visualisation by confocal laser scan-

ing microscopy [ 187 ]. The majority of MSCs clustered around the small

lood vessels and in the peritubular interstitium [ 187 ]. Few MSCs were

etected in the glomeruli suggesting this method of delivery may be

ore suited to the treatment of tubulointerstitial fibrosis than glomeru-

osclerosis. 

Recently, Li et al. labelled MSCs with fabricated polydopamine

PDA)-capped Fe 3 O 4 (Fe 3 O 4 @PDA) NPs in an attempt to promote MSC

igration to the site of injury [ 189 ]. MSC-loaded NPs exhibited im-

roved homing to the sight of injury and increased expression of anti-

nflammatory cytokines TGF- 𝛽 and IL-10 in vivo. Interestingly, MSC-

oaded Fe 3 O 4 @PDA NPs increased expression of the SDF-1 receptor C-

-C chemokine receptor 4 which has previously been implicated in the

ecruitment of MSCs to sites of inflammation/injury [ 190 ]. It is also

mportant to note that the authors reported no adverse effects on MSC

haracteristics following Fe 3 O 4 @PDA NP encapsulation suggesting this

echnique of MSC homing may act as an effective method for treating in-

ammatory diseases such as DKD [ 190 ]. Given the significant evidence

upporting Fe 3 O 4 based NPs as effective contrast agents in MR imag-

ng (see section 4.1), these findings highlight the possibility of NPs as

heranostic tools of use in both DKD detection and treatment. 

hallenges in nanomedicine – renal toxicity 

This review has highlighted a wide variety of NPs for therapeutic

nd diagnostic purposes to overcome clinical obstacles found in differ-
9 
nt studies. As with any therapeutic intervention, NPs show off-target

nteractions that may ultimately damage the surrounding tissue causing

ndesirable side effects or progression of the diseased state. At present

ur understanding of the precise toxic effects of NPs on healthy tissue

re under considerable debate owing to the variety of preparation meth-

ds used to assess NP function. The large range of toxicology assays,

ell culture, animal models, dosing parameters and toxicity evaluations

ndertaken throughout the literature have only added to this conflict

 191 , 192 ]. Studies show that the bulk of toxicity is observed when using

norganic NPs owing to their unique physio-chemical properties such as

usceptibility to oxidation and small dimensions [ 38 , 193 ]. To this end

rganic NPs may show more clinical promise. Despite advancements in

ur understanding of NP activity in vivo their potential indirect toxic-

ty toward healthy tissues requires considerable validation before being

pplied in a clinical setting. 

xidative stress 

Nanomaterials formed from a wide variety of compounds such as car-

on nanotubes, fullerenes and metal oxides have proven to be effective

nducers of oxidative stress [ 194 , 195 ]. Several NP properties have been

ttributed to their ability to induce reactive oxygen species (ROS) pro-

uction such as immune cell activation, reactive particle surfaces and

itochondrial interaction [ 196–198 ]. The majority of studies investi-

ating the use of NPs for therapeutic benefit in the kidney have used

etallic NPs [ 199 ], as such this section will discuss the ability of metal

Ps to induce oxidative stress. 

Oxidative stress is considered one of the primary causes of NP in-

uced nephrotoxicity and is characterised by an increase in ROS within

he selected tissue/cell [ 200 , 201 ]. ROS are produced during normal

hysiological processes such as cellular respiration and metabolism. In

he diabetic kidney, however, there is evidence that hyperglycaemia and

ypertension associated with diabetes cause pathological renal changes

ssociated with ROS overproduction [ 202 , 203 ]. To this end, ROS pro-

uction mediated by NP activity represents a major limitation to their

mplementation. Studies have thus far shown that several metallic based

Ps can cause significant ROS production. Silver NPs (AgNPs), for exam-

le, have previously been observed to inhibit electron transport in the

itochondrial respiratory chain resulting in dysfunctional activity of the

rganelle and ROS generation. In addition, AgNPs can limit production

f the antioxidant glutathione by inhibiting its enzymatic synthesis caus-

ng an imbalance in the antioxidant to ROS ratio with subsequent ROS

ccumulation [ 204 ]. 

This ROS mediated renal damage is not limited to AgNPS. Zinc oxide

Ps (ZnO NPs) have been found to cause excessive ROS accumulation

n human embryonic kidney 293 (HEK 293) cells in vitro causing re-

uced viability and resultant apoptosis due to destruction of fundamen-

al cellular components such as peptides, lipids and DNA [ 205 ]. In the

ame cell type copper adsorbed chitosan NPs generated sufficient ROS

o cause poly-ADP ribose polymerase (PARP) depletion, preventing the

NA repair process and eventually leading to cell death [ 206 ]. It is im-

ortant to note that the authors of both studies did not confirm these

ndings in an in vivo setting, reducing their translatable value. Shri-

astava et al., however, observed significant elevation of ROS and the

NA damage marker, 8-oxo-7,8-dihydro-2 ′ -deoxyguanosine (8-oxodG),

n the kidney of male Swiss albino mice when exposed to either Au or

g NPs in vivo , suggesting NP toxicity is not limited to an in vitro setting

 207 ]. Given that ROS levels significantly contribute to renal pathology

n diabetes, these studies collectively suggest further research is required

efore metallic NP based DKD treatments can be transferred to a clinical

etting. 

nflammation 

Inflammation is a key component of the early immune mediated re-

ponse to pathogenic infection or tissue insult. Initially formed as part
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Fig. 4. In vivo detection of implanted exogenous MSCs Differences in implanted MSCs among groups under a confocal laser scanning microscope. Exogenous 

MSCs were labelled with GFP and displayed green signals. In normal rats, GFP-labelled MSCs were only occasionally detected in all three groups. In DN rats, GFP- 

labelled MSCs were rare in control group. UTMD increased the exogenous MSCs and UTMD + SDF-1 greatly improved the homing of exogenous MSCs. The white bar 

indicates 50 𝜇m. B. Histogram comparison of the GFP-labelled MSCs among groups, ∗ P < 0.05 (P-value of 4.93 × 10 − 6 , DN + UTMD versus DN + control; P-value of 

4.15 × 10 − 9 , DN + UTMD + SDF-1 versus DN + control) and # P < 0.05 (P-value of 3.02 × 10 − 5 , DN + UTMD + SDF-1 versus DN + UTMD). This data provided by 

Wu et al. shows a significant increase in MSC homing to the diabetic kidney using UTMD based transport, especially when paired with SDF-1 homing. Reproduced 

with permission from reference [ 187 ] . 

o  

r  

a  

E  

s  

fi

 

c  

s  

f  

f  

l  
f the innate response to external stimuli, inflammation is caused by the

elease of pro-inflammatory cytokines by an array of immune cells such

s macrophages, neutrophils, dendritic cells and CD4 + T cells [ 208 ].

xcessive inflammation can result in over stimulation of the immune

ystem and can lead to chronic renal damage and the development of

brotic tissue [ 163 ]. 
10 
NPs can be identified by cells of the immune system activating a cas-

ade of pro-inflammatory signalling mechanisms in an attempt to de-

troy the foreign body. Mediators of these signals, cytokines, have been

ound to impair renal structure and function [ 209–211 ]. Reddy et al.

or example, observed a significant time-dependant increase in IL-8 re-

ease from HEK293 cells following 48 h exposure to multi wall carbon
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d  
anotubes (MWCNT), a result that correlated with a significant decrease

n cellular viability as recorded using 3-(4,5- dimethylthiazol-z-yl) − 2,5-

yphenyl-tetrazolium bromide (MTT) assay [ 212 ]. Alternatively, tita-

ium dioxide nanoparticles (TiO 2 NPs) proved highly toxic when ad-

inistered to CD-1 female mice [ 213 ]. TiO 2 NPs accumulated in the

idney causing nephric inflammation leading to necrosis and dysfunc-

ion. TiO 2 exposure also activated nucleic factor- 𝜅B (NF- 𝜅B) promoting

xpression of TNF- 𝛼, macrophage migration inhibitory factor, IL-2, IL-

, IL-6, IL-8, IL-10, IL- 18, IL-1 𝛽, cross-reaction protein, transforming

rowth factor- 𝛽 (TGF- 𝛽), interferon- 𝛾 (IFN- 𝛾) and CYP1A1. This sug-

ests that inflammation is the main effect of TiO 2 -induced acute renal

oxicity. Similarly, gold nanoparticles (AuNPs) have been reported to

ncrease immune cell infiltration (largely neutrophils and mononuclear

ells) in the hepatocytes of male Wistar-Kyoto rats resulting in cellular

ecrosis and loss of normal hepatic architecture [ 214 ]. 

Several studies have shown that NP properties such as size, charge

ydrophobicity/hydrophilicity and external coating can influence their

nteraction with the host immune system [ 215–217 ]. To alleviate recog-

ition by inflammatory cells NPs can be bound to poly(ethylene gly-

ol) (PEG) which forms an immune tolerant hydrophilic environment

 218 ]. Whilst this initiative has proven effective in some pre-clinical

odels, studies have found PEG-specific antibodies in the blood of Wis-

ar rats resulting in accelerated PEG-liposome clearance [ 219 , 220 ]. As

uch, there is currently only one pegylated NP that has received FDA

pproval (Doxil) and this is not licensed for treatment of the diseased

idney [ 221 ]. As such the use of PEG to avoid NP immune destruction

s considered a promising but incomplete initiative. 

NA damage 

The prominent cause of DNA damage within the diabetic kidney is

xidative stress. Whilst most cells of the body are well equipped to pre-

ent such events from escalating to serious ailments continued or un-

reated damage leads to elevated risk of proliferative diseases such as

ancer. Markers of genomic damage are used to monitor a patient’s prob-

bility of developing such ailments or assessing their risk of disease pro-

ression. In conditions such as CKD, markers include micronuclei and

trand breaks in peripheral blood lymphocytes (PBLs) and the quantity

f 8-oxodG in serum or urine [ 222 ]. As previously stated, metallic NPs

re the greater producers of ROS than their non-metal counterparts thus

here is wider literary understanding of their mechanisms of DNA im-

airment. 

Numerous studies have evidenced the ability of metallic NPs to cause

NA damage in the kidney. Using the NRK-52E kidney epithelial cell

ine exposed to nickel oxide (NiO) NPs Abudayyak et al. observed dose-

ependant DNA damage and oxidative damage evidenced by increas-

ng levels of MDA, 8-OHdG, PC and depletion of the antioxidant, GSH.

omet assay studies used to determine genotoxic potential revealed a

.4–5.6-fold increase in DNA damage in direct proportion to increased

iO NP concentration [ 223 ]. Similarly, Ranjbar et al. identified a sig-

ificant increase in 8-OHdG in homogenised kidney samples derived

rom male Wistar rats treated with AgNPs at variable concentrations (0–

50 ppm) for 24 h [ 224 ]. It is worth noting that the authors observed

ower levels of 8-OHdG in rats treated with 5 ppm AgNP than the con-

rol population (0 ppm). This would suggest AgNPs display a potentially

nti-genotoxic effect at low concentrations ( ∼5 ppm) but further data

upporting this observation are required to validate such a claim. 

The fibrotic kidney represents the latter stages of DKD progression

nd requires consistent dialysis or renal transplant to prevent fatality.

n multiple models of renal injury, studies have revealed that epithelial

ells can be arrested in the G2/M phase of the cell cycle which leads to

he adoption of a profibrotic secretory phenotype [ 225–227 ]. In HEK2

ells AgNPs have been found to induce G2/M cell cycle arrest in depleted

onditions of GSH [ 228 ]. Similarly, in HEK293 cells treated with single

all carbon nanotubes (SWCNTs) cell cycle arrest was observed in a time

nd dose dependant manner. Cell cycle analysis showed that 25 μg/ml
11 
WCNTs in medium induced G 1 arrest through downregulation of cell

ycle genes cdk2, cdk4, cdk6 and cyclin D3. Interestingly, the authors also

ote that SWCNTs reduced HEK293 cellular adhesion by downregulat-

ng adhesion-associated proteins such as laminin, fibronectin, cadherin,

AK and collagen IV [ 229 ]. As a fundamental component to the develop-

ent of renal fibrosis, collagen IV represents a highly promising target

or the treatment of DKD [ 163 ]. Thus, SWCNTs may represent a promis-

ng tool for DKD treatment, however, additional research is required to

lleviate their potentially genotoxic effects. 

uture perspectives 

argeting senescent kidney cells 

At present, the National Kidney Foundation recommends any patient

iagnosed with either type 1 or type 2 DM to be screened for kidney

amage within five years of their diagnosis. The current methods for

KD screening (eGFR and albuminuria), however, are time consuming

nd lack accuracy [ 230 , 231 ]. Identifying reliable biomarkers for the

arly detection of DKD could help identify vulnerable subjects before

nvasive procedures are required. 

In recent years, senescent cells within the diseased kidney have

hown promise as a target for DKD interventions. Both hyperglycaemia

nd hypertension have been found to induce cellular senescence in the

enal microvascular endothelium and mesangium providing a causal

ink between DKD and onset of senescence [232] . Upon the cessation

f cellular proliferation, senescent cells maintain their high metabolic

ctivity and adopt a pro-inflammatory phenotype known as the senes-

ence associated secretory phenotype (SASP) [ 233 , 234 ]. The SASP has

een postulated to be one of the major contributors to renal inflam-

ation, through modulation of the tissue environment and disruption

f cellular functions [ 235 , 236 ] by secreting cytokines including IL-1,

L-6, IL-8 and TNF- 𝛼 [237] . The release of TGF- 𝛽 by senescence cells

n turn promotes tubulointerstitial fibrosis, mesangial cell fibrogenesis

nd apoptosis of podocytes [ 238 , 239 ]. High mobility group box pro-

ein 1 (HMGB1) acts as a damage-associated molecular pattern (DAMP)

ollowing senescence induced stress and activates immunostimulatory

olecules such as RAGE receptors and toll like receptor 4 [240–242] .

MGB1 has been found to promote several DKD associated phenotypes

ncluding renal inflammation, albuminuria, thickening of the mesangial

atrix and tubulointerstitial fibrosis in streptozotocin-induced diabetic

ude mice [243] . 

Adoption of a senescent phenotype precedes histological changes as-

ociated with DKD onset in murine models [ 244 , 245 ]. In patients with

ype 2 DM related DKD, elevated levels of the senescent marker SA- 𝛽-

al in the tubular compartment correlate with an increase in blood glu-

ose [246] . Similarly, upregulation of the senescent marker P16 INK4A 

as been noted in diabetic tubular cells and podocytes and this is asso-

iated with proteinuria when found in the glomeruli [246] . However,

t is the SASPs that cause extensive damage to local tissues and there-

ore therapeutic interventions should be identified to prevent this pro-

ess. For instance, the therapeutic approaches used to treat senescence

re termed senolytics and have shown great promise for the treatment

f DKD [247] . However, many of the pharmaceuticals that are encom-

assed by this umbrella term show damaging off-target side effects that

ust be addressed [ 248 , 249 ]. Given the malleable properties of NPs de-

cribed in this review nanotechnology presents as an attractive method

or the safe delivery of senolytics. The combination of these approaches

as been well summarised by other authors [250–252] and we suggest

hat with further research this will prove to be a viable method for the

reatment of DKD. 

lassifying the diabetic kidney 

The clinical manifestations of DKD are the results of microvascular

eterioration within the kidney glomeruli and analysis of this process
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Table 3 

Current criteria for DKD diagnosis Replica table of the 5 stages of DKD as originally depicted by Tervaert et al. [ 262 ]. 

Class Description Inclusion criteria 

I Mild or nonspecific light microscopy changes and electron-microscope 

proven GBM thickening 

Biopsy does not meet any of the criteria mentioned for class II, III or IV 

GBM > 395 nm in female and > 430 in male individuals 9 years of age 

or older 

IIa Mild mesangial expansion Biopsy does not meet criteria for class III or IV 

IIb Severe mesangial expansion Biopsy does not meet criteria for class III or IV 

III Nodular sclerosis (Kimmelstiel-Wilson lesion) Biopsy does not meet criteria for class III or IV 

At least one convincing Kimmelstiel-Wilson lesion 

IV Advanced diabetic glomerulosclerosis Global glomerular sclerosis in > 50% glomeruli 

Lesions from class I to III 
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an be used as a diagnostic measure [253] . Renal damage in DM patients

s also associated with non-diabetic contributions, termed non-diabetic

idney disease (NDKD). One-third of patients with diabetes have NDKD

254–258] . The clinical features include a decline in kidney function

nd proteinuria in the absence of diabetic retinopathy [254] . Due to

he complex nature and overlapping clinical entities between DKD and

DKD, patient differentiation remains a challenge; less than 10% of DKD

atients receiving dialysis have their condition confirmed by biopsy

 254 , 259 ]. Distinction between these conditions requires kidney biopsy,

ollowed by histopathological assessment. Generating quantifiable data

rom these procedures is possible, but only moderately reproducible, due

o subjective scores assigned by pathologists [260] . In fact, the preva-

ence of both DKD and NDKD shows significant variation amongst DM

atients biopsied at different global institutions [261] . This warrants

he use of new non-invasive approaches that can be used universally by

linicians to easily distinguish between DKD and NDKD. 

In 2010 the renal pathological society introduced a new classifica-

ion system for DKD, applicable to patients with both T1D and T2D

 Table 3 ) [262] . This system defines 4 distinct categories of DKD based

n glomerular findings observed under light and electron microscopy.

espite its reported success in several studies, this system has been heav-

ly criticised for its arbitrary category distinctions and limited appli-

ability to clinical practice [263–265] . Kidney biopsy is not a routine

rocedure undertaken for the diagnosis of DKD meaning the use of a

istological classification system is limited. Gheith et al. have since pro-

osed a 5-stage structure based on clinical observations but this system

tilises a largely subjective method of clinical assessment [ 266 ]. Thus,

here remains a significant need to stratify the risk of DKD progression

o help inform clinical decisions. 

Throughout this review we have discussed the capacity of NPs to

mprove both diagnosis and therapy for DKD and argue that this same

echnology can be used to overcome the limitations associated with the

urrent DKD staging system. Traditionally, assessment of GBM thicken-

ng has required biopsy for light and electron microscopy. In contrast,

Ps can now achieve this by enhancing MRI contrast without the need

or invasive tissue sampling [ 267 ]. Advanced stages require evidence of

lomerulosclerosis such as the presence of Kimmelstiel-Wilson lesions

ut the data obtained from histopathological assessment is highly sub-

ective [ 262 ]. To overcome these issues, we suggest the quantification of

iomarkers using NPs as a tool of identification. This approach can pro-

ide a more detailed insight into disease pathology at an earlier stage,

elping to inform clinical decisions. 

The inflammatory marker oxidised low-density lipoprotein receptor

 (LOX-1) has shown great promise as a candidate for this purpose.

xpressed in macrophages, vascular endothelial cells, fibroblasts, and

latelets, binding of LOX-1 to its respective ligand on leucocytes initi-

tes an inflammatory response [ 268 , 269 ]. In the renal capillaries and

ubules of diabetic rats, LOX-1 expression correlates with intense oxida-

ive stress, leucocyte infiltration, depressed mitochondrial enzyme level

nd function and peritubular fibrosis [ 270 ]. Glucose has been found to

nhance endothelial LOX-1 expression making it an ideal candidate for

dentifying the diabetic kidney [ 271 ]. For these reasons, we argue LOX-

 is a suitable marker of DKD progression that can be assessed using

anotechnology. 
12 
Anti-LOX-1 conjugated SPIONs have shown promise in their ability

o obtain images of LOX-1 enriched DKD kidney lesions in vivo [ 272 ].

he ability of these NPs to safely target the glomerulus and enhance MRI

ontrast makes them a suitable tool for achieving this goal. As with all

P based approaches in the kidney this hypothesis requires additional

tudy and human trials before being implemented in the clinic. Compar-

tive measures of NP biomarker approaches against current diagnostic

ethods must also be conducted. However, the plethora of literature

vailable regarding NP use in diagnostics supports our claim. Using SPI-

Ns targeting LOX-1 could provide an affordable, non-invasive method

f implementing the current DKD staging system [ 273 ]. 

NPs show numerous advantages including control over shape and

ize, tuneable physiochemical features, modifiable surface charge and

esponsiveness to external and internal stimuli (pH, reactive oxy-

en species, magnetic field, light) to achieve controlled delivery of

rugs/agents. These features can be utilised to address unmet clinical

eeds in the field of kidney disease. Investigations evaluating the ther-

peutic and diagnostic roles of NPs in detecting and treating DKD still

eed to be undertaken. Currently there is no clinical data available on

sing nanomedicines for the diagnosis and treatment of DKD. A lack of

nimal models that accurately replicate the disease’s main features have

lso hindered attempts to stratify risk of DKD among individuals with

M [ 274 ]. Numerous aspects require further exploration, including the

ffect of enhanced permeability retention effect on the use of NPs for

herapeutic purposes, the ability of NPs to recognise disease biomarkers

t correct concentrations and ratios of ligands (which can make them at-

racted towards site of interest), the identification of biomarkers for the

onitoring of therapies and the potential roles of exosomes as biomark-

rs (they may contain crucial information related to disease progression

nd therapeutic responses). The lack of data in this field is likely because

f the broad use of NPs in cancer and infectious diseases whilst DKD has

een overlooked in this regard. The design and use of NPs may allow

mproved tracking of diseased cells/tissues at cellular and subcellular

evels with minimal toxic effects towards surrounding healthy tissues,

mproved accumulation at the target site, on-demand drug-release and

ptimal therapeutic outcomes. We have presented studies in this review

hich show the importance of smart NP platforms in treating kidney

isease. We believe that further research into NPs for the diagnosis and

reatment of DKD may accelerate clinical progress in this field and even-

ually greatly improve patient outcomes. 
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