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Observations of comorbidity in heart diseases, including cardiac dysfunction (CD) are increasing, including and cognitive
impairment, such as Alzheimer’s disease and dementia (AD/D). This comorbidity might be due to a pleiotropic effect of genetic
variants shared between CD and AD/D. Here, we validated comorbidity of CD and AD/D based on diagnostic records from millions
of patients in Korea and the University of California, San Francisco Medical Center (odds ratio 11.5 [8.5–15.5, 95% Confidence
Interval (CI)]). By integrating a comprehensive human disease–SNP association database (VARIMED, VARiants Informing MEDicine)
and whole-exome sequencing of 50 brains from individuals with and without Alzheimer's disease (AD), we identified missense
variants in coding regions including APOB, a known risk factor for CD and AD/D, which potentially have a pleiotropic role in both
diseases. Of the identified variants, site-directed mutation of ADIPOQ (268 G > A; Gly90Ser) in neurons produced abnormal
aggregation of tau proteins (p= 0.02), suggesting a functional impact for AD/D. The association of CD and ADIPOQ variants was
confirmed based on domain deletion in cardiac cells. Using the UK Biobank including data from over 500000 individuals, we
examined a pleiotropic effect of the ADIPOQ variant by comparing CD- and AD/D-associated phenotypic evidence, including cardiac
hypertrophy and cognitive degeneration. These results indicate that convergence of health care records and genetic evidences may
help to dissect the molecular underpinnings of heart disease and associated cognitive impairment, and could potentially serve a
prognostic function. Validation of disease–disease associations through health care records and genomic evidence can determine
whether health conditions share risk factors based on pleiotropy.
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INTRODUCTION
Adequate identification and risk stratification of patients based on
substantial evidence including genetic contributions is a central
theme in precision medicine [1]. For example, the identification of
a pleiotropic effect as a risk factor shared between diseases is a
central premise for beneficial care outcomes including co-
occurring (or sequential) diagnosis of diseases in an individual
[2, 3], and for predicting mortality [4]. While mapping disease
relationships has a long history, the advent of digitalized health
records has led to a rapid increase in ability to analyze health care
data. This allows for the recapitulation of known temporal disease
correlations, such as illness trajectories in Denmark [5]. For
example, in our previous study, we traced sequential diagnosis
patterns of millions of patients, then identified an unexpected risk
of patients with schizophrenia that would change clinical care

meaningfully [6]. However, the validation of newly identified
genomic risk factors underpinning the comorbidity between
diseases using functional evidence has shown limited success.
Pleiotropy is a phenomenon whereby one gene affects multiple

traits and appears to be pervasive in biology. Over decades,
genome-wide association studies (GWAS) have illustrated that
trait-associated genetic variants are substantially shared across
different traits, which may lead to comorbid diseases [7].
Detection of shared genetic risks between traits and diseases
have been mainly presented based on a large-scale analysis of
GWAS data [8]. Li et al. determined that corpuscular volume is
elevated before diagnosis of acute lymphoblastic leukemia by
associated variants in the gene for IKZF1 through the integration
of electronic medical records (EMRs) and a comprehensive GWAS
database, VARIMED [9]. In other previous attempts, the beneficial
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results of clinical application of analysis of pleiotropy effect have
been demonstrated via subtyping of patients with type 2 diabetes
using their personal genotypes and aligning medical records,
including those for disease comorbidities [10].
Dementia is a spectrum of neurological conditions and is an

increasingly prevalent issue, covering a wide range of medical
conditions, including Alzheimer's disease (AD), dementia with
Lewy bodies, and vascular dementia. The risk factors for
Alzheimer's disease, and dementia (AD/D) have been suggested
in previous attempts to identify them, which are mainly based on
the analysis of clinical epidemiology, such as smoking pattern [11]
and hemodynamic monitoring [12]. Various etiologies of cardiac
dysfunction (CD), such as heart failure, obesity, and myocardial
infarction (heart attack), have been ranked [13]. Multimorbid
conditions (i.e. multiple diseases in a single patient) are a major
clinical issue in patients with CD [14, 15]. Interestingly, patients
with CD present a higher risk for AD/D [16]. Although it is
suspected that heart disease and AD/D share similar genetic
backgrounds and risk factors, such as ApoE polymorphisms [17],
many aspects of the genetic architecture shared between AD/D
and CD remain unknown.
In this study, we recapitulate the comorbidity of CD and AD/D

by repurposing the digital health records of a large number of
patients from different countries. The purpose of this is to unravel
the shared genetic risk factors of these diseases based on
functional evidence, which comprises a genetic associations
database, in vitro experiments, medical images, and associated
cognitive behavior.

METHODS
Use of administrative health care records
The dataset used in this analysis was the National Inpatients Set of Korea
(NISK) from the Health Insurance Review and Assessment Service (HIRA;
www.hira.or.kr). The HIRA database contains deidentified inpatient and
outpatient billing information from all medical facilities in Korea covered
by insurance, including primary care and academic medical centers. We
used three of the annual builds of HIRA (2009–2011) and merged these
iterations. To avoid redundancy in the merged HIRA dataset, we only used
records of deceased individuals and their diagnostic records in the
2009–2010 versions, and merged these with the most recent 2011 version.
All diagnostic codes were reported using the International Classification of
Disease, 10th Revision (ICD-10) and grouped to the 3-letter code level to
minimize overlap and subclassification of diagnoses. To validate the
identified diagnostic patterns, we utilized electronic medical records
(EMRs) from the University of California, San Francisco (UCSF) Medical
Center, collected using Epic (Verona, WI) between 2011 and 2017, which
includes inpatient and outpatient records for 816504 unique individuals.
The records were deidentified and contained no direct patient identifiers
as defined by the Health Insurance Portability and Accountability Act
(HIPAA).

Disease trajectory (temporal diagnoses of diseases) by
directed acyclic graph modeling
The primary diagnosis code was used to determine the primary disease
state of each patient. We used a method identical to that used in our
previous work to trace the temporal order of disease diagnoses for each
patient [6, 18]. In summary, a trajectory consists of the first node for
patients diagnosed as being with disease i and nodes for subsequent
diagnoses presenting in patients who were diagnosed in a prior diagnosis
node, which are connected via directed acyclic edges showing that
subsequent diagnoses occurred more frequently than at random. To
determine the association between a pair of diseases that were co-
diagnosed in one patient, we first calculated the relative association (RA)
measurement of all disease pairs (Disease i – Disease j) that occurred within
1 year for each patient. Then, we quantified the overall temporal
directionality of disease co-occurrence (δi→j for Disease i → Disease j)
using mean difference of dates of diagnoses or associated admissions for
each individual. The statistical significance was determined by a binomial
test (Benjamin–Hochberg false discovery rate [FDR] < 0.1). Finally, we used

selected pairs of disease co-occurrences (RA > 1, FDR < 0.1) with the
directional order of diagnoses (δi→j ≠ 0, FDR < 0.1) in further analysis.
Based on the shared patients between two pairs of diagnoses steps

(Disease 1→2 and Disease 2→3, FDR < 0.1), we joined multiple steps of
disease-to-disease trajectories by concatenating the progressions of the
two diseases into three or multiple steps of diseases (Disease 1→2→3). All
details of methods utilized are presented in Additional file 1.

Analysis of whole-exome sequencing of AD/D samples
Tissue collection and genomic DNA extraction. In the present study, we
used the same samples and case-control criteria as used in our previous
work [19]. In summary, two brain banks (the Netherlands Brain Bank [NBB]
and the Human Brain and Spinal Fluid Resource Center [HBSFRC]) provided
fresh frozen human postmortem hippocampus and matched whole blood
samples. Samples were classified into AD-affected, and unaffected age-
matched controls based on clinical and neuropathological findings.
Genomic DNA (gDNA) was isolated from 6 to 10 Nissl-stained tissue slides
by laser capture microdissection (LCM). Cryosectioning of a frozen
hippocampal tissue block (20 μm depth) was performed by cryostat
(CM1850, Leica Germany) and attached to ultraviolet (UV)-treated 1.0 mm
PEN-membrane slides (Zeiss, 415190-9041-000). The slides were stained
with 1% cresyl violet-75% EtOH solution right before LCM. After confirming
the proper staining of sub-regions of the hippocampal formation (HIF),
slides were mounted on the stage of an LCM instrument (PALM
MicroBeam, Zeiss Germany). HIFs from the slides were captured and
stored in a lysis buffer (56304, Qiagen, Germany). Mechanical crushing of
the acquired tissue was performed using a bead-beating homogenizer
(FastPrep-24, MP Biomedicals USA). The homogenized tissue was then
lysed at 56 °C for 12 h, using a column-based QIAamp DNA Micro Kit
(56304, Qiagen). Whole blood cells were processed using QIAamp DNA
Blood Midi Kit (51183, Qiagen), according to the manufacturer’s instruc-
tions. Quantification of extracted gDNA was performed using a Bioanalyzer
2100 (Agilent, USA), and its integrity was checked by running it on 1%
agarose gel. The volume of the LCM-captured region from the PALM Robo
software and the concentration of gDNA from the Bioanalyzer was used to
determine the average gDNA yield from the HIF. The process of estimating
the number of neurons in the LCM-captured region is as follows: first, the
average number of observed neurons in each sub-region of the HIF is
determined by finding the number of maximum signals from 8-bit
converted Nissl-stained images using ImageJ software. Thereafter, the area
of the LCM-captured region is multiplied by the average neuron count.

Whole-exome sequencing. Each exome library was prepared based on the
manufacturer’s instructions (Human All Exon V4/V5+UTR 50Mb Kit, Agilent
USA) using about 1 μg of gDNA. Paired-end sequencing with an Illumina
HiSeq 2000/2500 sequencing system was performed according to the
manufacturer’s protocol using quality control-passed exome libraries (http://
nextgen.mgh.harvard.edu/attachments/Paired-End_SamplePrep_Guide_1005
063_D.pdf).
To identify germline variants from the samples, we applied the GATK’s best

practice workflows. First, germline variants of each sample were identified
with a GATK HaplotypeCaller (release 3.5.0) in GVCF mode. All GVCFs
generated from each sample were jointly genotyped by using the GATK
GenotypeGVCFs tool (release 3.5.0) and we recalibrated the variant quality
score of the jointly genotyped vcf with the GATK VariantRecalibrator. Next,
we applied a hard filter with the criteria of QD < 2.0, FS > 60.0, MQ< 20.0,
HaplotypeScore >13.0, MappingQualityRankSum<−12.5, or ReadPosRank-
Sum<−8.0 on the recalibrated vcf as recommended in GATK’s best practice
workflows. Finally, variants that passed the hard filter were annotated with an
Ensemble Variant Effect Predictor [20].

Identification of newly identified pleiotropic variants
By integrating a comprehensive human disease–SNP association database
(VARIMED), Exome Aggregation Consortium (ExAC), and whole-exome
sequencing (WES) of 50 brains from individuals with and without AD, we
identified missense variants. In summary, we first selected 92 genes
including APOE shared between the relevant genetic variants of CD and
AD/D from VARIMED. Among those of genes, we selected 183 pathogenic
genetic variants harbored in 58 genes. The pathogenicity of germline
variants was determined based on the averaged functional impact of
missense variants (mean score >0) from 16 algorithms, including SIFT [21]
and Polyphen2 [22]. In Additional File 5, the list of 16 used algorithms is
presented. We selected those 16 scoring methods based on the coverage
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(>90%) and the median score (range 0.2–0.3) criteria, and averaged their
scores for each missense mutation. Among those 183 variants, we finally
selected three variants in three genes as candidates for newly identified
pleiotropic variants that might contribute to both CD and AD/D. Those
three variants are (i) among the top 10 ranked pathogenic score (>0.7), (ii)
not detected in individuals without AD in our WES samples, (iii) rare
variants based on ExAC (allele frequency <1%) [23], and (iv) not reported in
ClinVar, implying that they were not identified as mutations in human
phenotypes [24].

Validation of the pleiotropic variants for CD and AD/D
Molecular cloning of the selected variants and expression of the human
protein, tau. Three of the selected germline mutations (MTHFD1L
c.1688G>A; p.Arg563His, DPP10 c.2254C>A; p.Gln752Lys, ADIPOQ
c.268G>A; p.Gly90Ser) are reconfirmed in identical brain samples through
Sanger sequencing. After the reconfirmation of germline mutations, full-
length cDNA of human MTHFD1L (2937 bp, ENST00000367321.7) was
chemically synthesized and mutant form MTHFD1L (c.1688G>A), ADIPOQ
(735 bp, ENST00000320741.6; c.268G>A), and DPP10 (2391 bp,
ENST00000410059.5; c.2254C>A) were generated by mutagenesis. To
append a 3×FLAG tag on either N-, C-terminal of wild-type and mutant
form, we synthesized 3×FLAG DNA fragments by annealing oligos (Table 1).
Then, we performed overlap PCR with 3×FLAG and each cDNA as

templates to make the final insert. We assembled each insert and linearized
Xho1/EcoR1 double-digested form of pCIG2-C1 plasmid (modified from
pCIG2) by using an EZ-fusion cloning kit (EZ016S, Enzynomics South Korea)
to obtain pCIG-3×FLAG-hMTHFD1L, pCIG-3×FLAG-hADIPOQ, and pCIG-
3×FLAG-hDPP10. For an expression test, 3 μg of pCIG2-3×FLAG (Empty),
pCIG2-3×FLAG-WT, and pCIG2-3×FLAG-mutant plasmid DNA were transi-
ently expressed in Neuro-2a cell line (American type Culture Collection
[ATCC], CCL-131) by using iN-fect reagent (15081, iNtRON South Korea) and
cells were harvested after 72-h transfection. Neuro-2a is a fast-growing
mouse neuroblastoma cell line and has been widely used to study
Alzheimer’s disease [25]. Therefore, we used this cell line for the functional
validation.
The expression levels of human proteins, such as tau (a known

phenotype signature of AD), were estimated using western blotting. The
cells were washed with phosphate-buffered saline (PBS) and lysed with 1×
RIPA buffer (9806, Cell signaling Technology) in combination with protease
inhibitor cocktail (P8465, Sigma USA). The lysates were cleared by
centrifugation at 13,000 × g for 30min and the protein concentration of
the supernatant was determined using a Bradford protein assay (Bio-Rad).
Total proteins were separated by NuPage 4–12% bis Tris–polyacrylamide
gel electrophoresis in MES SDS running buffer (ThermoFisher Scientific),
and then transferred to a PVDF membrane (GE Healthcare USA). The
membranes were probed with specific antibodies. Immunocomplexes were
detected using horseradish peroxidase-conjugated anti-rabbit, mouse
antibodies followed by chemiluminescence detection (ECL, Amersham).
The band intensities were quantified using NIH ImageJ software. We used
specific primary antibody against CP13 (Anti-CP13, phospho-tau ser202)
(39357, Cell Signaling Technology). Polyclonal tau (A0024) antibody was
purchased from Dako, and PHF1 (phospho ser396/404) antibody was kindly
provided by Dr. P. Davies. Anti-β-actin antibody was obtained from Sigma
(A2228).

Analysis of the functional role of ADIPOQ in a cardiomyoblast cell (H9c2) and
associated disease pathway. To evaluate the functional role of ADIPOQ on
CD, we cloned ADIPOQ knockout (ADIPOQ-KO) cells using cardiomyoblasts

(H9c2). Using a CRISPR-Cas9 system (px 330 all-in-one vector), we
constructed ADIPOQ-KO cells [26], single-cell RNA-seq data of these
ADIPOQ-KO cells were analyzed using the Chromium platform (10X
Genomics). The single-cell RNA-seq reads were filtered based on the
percentage of mitochondrial genes (<30%). All of doublet artifacts are
removed using DoubletFinder [27]. From 15,423 cells and 800,233,426
reads of transcripts, we calculated the pseudobulk expression of all genes
[28] to identify differentially expressed genes (DEGs) by comparing the
reads with those from conventional RNA-seq of H9c2 cells (GSE89130).
After quantile normalization between our pseudobulk expressions of
genes and transcript abundance of H9c2, we selected DEGs using R
software. The associated pathways and Gene Ontology (GO) of the
selected DEGs were determined based on the p value of the gene set
enrichment test [29] using the R software package clusterProfiler (https://
git.bioconductor.org/packages/clusterProfiler).

Structural and functional differences of hearts and brains by the germline
variants of ADIPOQ. We also examined anatomical and functional
differences by the selected germline variant in ADIPOQ, such as volumes
of heart, trends in numeric memory function, and asymmetricity of brains
in a longitudinal manner from the UK Biobank. Of 502,591 individuals in
the UK Biobank study, germline variants of 49,960 of individuals were
sequenced using WES. Of these 49,960 of participants, we selected 310
who had a rare variant in ADIPOQ (ENST00000320741.6; c.268A), then
selected 49,642 individuals who have a major allele in ADIPOQ
(ENST00000320741.6; c.268G). To show the contribution of the rare variant
of ADIPOQ, we selected 69 individuals from a minor allele group, and 275
from a major allele group based on a propensity score analysis [30],
implying that other confounders such as age, level of obesity, and sex are
similar between compared sets. The volume of hearts including the
thickness of the heart wall, volume of ventricles, and aorta were estimated
based on the cardiac magnetic resonance images (MRIs) using deep
learning-based auto-segmentations [31]. Likewise, the longitudinal trends
of numeric memory function of the individuals from the UK Biobank were
also compared according to the selected allele groups of ADIPOQ.

RESULTS
Overview of study
The exploration and discovery phases of the present study are
depicted in Fig. 1. The merged HIRA covered 55,291,171 diagnoses
for 2,182,356 individuals with 43,545 death outcomes. The mean
age of patients in the merged HIRA was 54.17 ± 23.26 years. We
also utilized deidentified EMRs of UCSF Medical Center consisting
of 685,200 patients for the validation of the identified diagnosis
patterns from NISK of HIRA (Table 2).
We traced the temporal relationships between diseases

diagnosed within individuals to investigate the possibility of a
pleiotropic effect on genetic risk factors. To systematically trace
the disease diagnosis trajectories, we simplified the timeline for
each patient by recording the first instance of each primary
diagnosis, such that any later diagnosis of the same disease was
removed. We used our previous approach, directed acyclic graph
(DAG) modeling approach to recapitulate the pattern of disease
diagnoses by time [32]. In DAG modeling, the trajectory consists of
the first node for a set of patients diagnosed with a disease i, and
nodes are connected via directed acyclic edge presenting

Table 1. Oligos used to synthesize 3×FLAG DNA fragments.

sense 5′–3′ anti-sense 5′–3′

(i) N-3×FLAG ATGGACTACAAAGACCA CTTGTCATCGTCATCCTTGTA

TGACGGTGATTATAAAGAT GTCGATGTCATGATCTTTATAA

CATGACATCGACTACAAG TCACCGTCATGGTCTT

GATGACGATGACAAG TGTAGTCCAT

(ii) 3×FLAG-C GACTACAAAGACCATGACGG CTACTTGTCATCGTCATC

TGATTATAAAGATCATGACAT CTTGTAGTCGATGTCATG

CGACTACAAGGATGACGATG ATCTTTATAATCACCGTC

ACAAGTAG ATGGTCTTTGTAGTC
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subsequent diagnoses occurred frequently than random. The
details of our DAG-based approach were published previously
[6, 18]. The concept of our DAG-based approach is presented
graphically in Additional file 2. The significance of sequential
patterns of diagnoses and directionalities were determined by the
p-value of the binomial test (FDR < 0.1). In our model, there were
405 disease trajectories traced in total, and our model showed
3.24 steps of disease diagnoses after the initial diagnosis on
average (Table 3). After excluding co-occurring diagnoses, which
may be associated with the milieu of the 405 disease trajectories,
we selected a diagnosis pattern starting from CD to AD/D to
examine a possible pleiotropic effect between the diseases
through shared genetic risk factors.
After we validated a sequential pattern of disease diagnoses,

including CD and AD/D, based on the HIRA and UCSF datasets, the
shared genetic risk contributions (i.e., a pleiotropic effect) were
examined using population-wide evidence from the UK Biobank
data and experimental validations.

Validation of the association between CD and AD/D
The 405 disease trajectories modeled based on the HIRA dataset
are presented in Additional file 3. Our DAG model demonstrates
the real-world phenomena, including the known clinical burden of
hospital deaths, and regional pattern of diagnoses prevalence. For
example, chronic obstructive pulmonary disease (COPD) patterns
in patients with dementia and the elderly were captured in our

model with 854 fatal outcomes via the sequential diagnoses
including pneumonia, which reinforces the findings of previous
studies (Additional file 2) [33, 34].
The CD to AD/D diagnostic path identified in patients from

South Korea is shown in Fig. 2A. In total, 425 patients were
diagnosed as having hypertensive heart and renal disease, and
then presented diverse disease status including aging-related
diseases (senile cataracts) and known comorbidity of cardiovas-
cular diseases (hyperlipidemia) [35] within 1 year. Of those 425
patients, 6.8% (n= 26) were diagnosed with AD/D. Patients who
were diagnosed with dementia following hypertensive heart and
kidney disease were enriched with those having hypertensive
heart disease (p= 1.08E–04, hypergeometric test; Fig. 2C). We
note that diagnoses of vascular dementia were not included
among these 26 patients. Although there is a growing number of
reports for the coexistence of heart failure and dementia, the
shared risk factors are unclear [36] and warrant further analysis.
To examine confounders for this propensity for nonvascular AD/

D among patients with hypertensive heart failure, we scrutinized
independent medical records. We hypothesized that repeated
representation of co-occurring diagnoses from an independent
dataset shows shared genetic risk factors between diseases.
Indeed, the same pattern of diagnoses is observed in the EMR of
UCSF Medical Center (Fig. 2B). The UCSF Medical Center EMR
provided deidentified data from 816504 patients from 2011 to
2018. In summary, among 672 patients with hypertensive heart

Fig. 1 Identifying shared genetic architecture by repurposing scaled digital health data. Schematic workflow of a developing hypothesis in
the observation phase based on digital health data (gray boxes) to study, using genomic data (white boxes). In the gray boxes, the database of
HIRA and the electronic health records (EHR) of UCSF Medical Center were used to suggest the association of cardiac dysfunction (CD), such as
hypertensive cardiac disease, with dementia and Alzheimer’s disease (AD/D); the public database of HIRA (Health Insurance Review and
Assessment service) was used as a nationwide inpatient/outpatient diagnoses observation database in South Korea; the EHR of UCSF was
used as the validation database. After presenting the propensity of CD amongst AD/D diagnoses, we examined the genetic associations
between CD and AD/D in a discovery phase (i.e., white boxes).
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Table 2. Summary of the datasets used.

Datasets and features Frequency

Observation phase National inpatient/outpatient set of HIRAa

Total patients 2,182,356

Selected patientsb 763,892

No. of men in the selected set 341,788 (44.7%)

No. of women in the selected set 420,104 (55.2%)

No. of diagnoses 13,459,583

No. of unique diagnosis codes (ICD-10)c 5859 (5–3-letter level)

Unique diagnosis high-level (3 letter)d 1151

Mean of diagnoses age 54.19 (±23.26)

Outcome of diagnoses

Deceasede 43,545 (5.7%)

Alivef 1,252,114

UCSF Medical Centerg (2012.01 to 2017.01)

Total patients 6,852,000

Total cases of diagnoses 44,545,038

No. of unique diagnoses codes (ICD-10-CM) 29,893

Unique diagnosis codes with 3 letters 1831

Mean of diagnoses age 48.67 (±23.41),

Outcome of diagnoses

Deceased 2961

Not deceased 143,996

Pending 21,248,546

Discovery phase VARIMED (VARiant Informing MEDicine)

No. of reviewed publication 10,331

No. of SNPs (dbSNP IDs) 130,426 (129,890)

No. of traits (disease/non-disease traits)h 4 223 (1 489/2374)

No. of associations between SNPs and traits 135,410

NBB (Netherlands Brain Bank)

Total patients (AD/non-AD)i 50 (AD 43/non-AD 7)

Hippocampal formation (HF) samples 50

Blood (BL) samples 50

Mean deceased age (AD/non-AD deceased) 83.5±8/71.4±12.6

Sex (AD deceased) Male= 14; Female= 29

Sex (non-AD deceased) Male= 3; Female= 4

Braak staging (AD/non-AD deceased) 5.02±1.1/0.71 ± 0.48

UK Biobank

No. of total participants 502,543

Participants with whole-exome seq (WES)j 49,960
aThe Health Insurance Review and Assessment Service of Korea (HIRA). We utilized non-longitudinal sets consisting of randomly sampled in/outpatient sets
built annually from 2009 to 2011 (www.hira.or.kr).
bTo minimize the re-enrollment of patients into the 2011 set from the 2009 and 2010 sets, we selected only deceased patients from the 2009 and 2010 sets. In
addition, we excluded records of non-disease-related diagnoses, including injuries, poisoning, and childbirth, using diagnosis codes.
cInternational Statistical Classification of Disease and Related Health Problems 10th Revision (ICD-10).
dBased on the hierarchical structure of ICD-10 codes, which consists of a 5-letter level for a disease with familial history and a 3-letter level for general disease
classification, we used transformed diagnosis codes at the 3-digit level in this study.
eDetected outcomes in health insurance reviews (HIRA).
fOther non-deceased outcomes included ongoing patients, transferred, sent back, others, and discharged while alive.
gDeidentified electronic medical records (EMRs) from the University of California, San Francisco (UCSF) Medical Center (a tertiary-care university hospital).
hCounted based on MeSH terms (Medical Subject Headings, the National Library of Medicine’s controlled vocabulary) for traits including eye color and
diseases such as asthma.
iAll collected samples were of Western European ancestry.
jWe analyzed participants with WES data to validate the phenotypic effect of the germline variant of interest.
Bold characters emphasize the numbers of the table.
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and kidney disease, mostly those with hypertensive heart failure
(p= 4.66E–02, hypergeometric test; Fig. 2C), 6.8% (n= 46) were
also diagnosed with dementia. HIRA and UCSF Medical Center
EMR were gathered for nonbiomedical research purposes,
indicating a possibility of diagnoses primarily for the billing of
health insurance. However, for confirmation of CD and AD/D,
general guidelines from the American Heart Association (AHA) [37]
and the Diagnostic and Statistical Manual of Mental Disorders: 5th
Edition (DSM-5) [38] require evidence-based evaluation of patients,
such as MRIs and Mini-Mental State Examination (MMSE) score.
Therefore, we were confident of the categorization of the disease
patients and the sequential pattern of their diseases. Moving
forward to the discovery phase of our study, we sought to verify
the shared underlying mechanisms in disease trajectories.

Identification of pleiotropic variants contributing to AD/D and
CD
We analyzed WES of 50 samples from deceased individuals
consisting of 43 patients with AD and seven individuals from
normal group. Since we were mainly interested in the genetic risk
of AD/D and CD in the elderly (Fig. 2), we included only the group
of subjects with AD are those with late-onset cases (age of
diagnosis ≥65, mean deceased age 83.5 ± 8 years). A summary of
the demography of patients whose samples were analyzed by
WES is shown in Table 4.
We analyzed 1,327,403 bp of exonic regions of 88 genes of CD-

and AD/D-associated genes (Fig. 3A). Those 88 genes were
selected from our comprehensive human disease–SNP association
database (VARIMED), a manually curated database of disease–SNP
associations, containing over 100 features of association studies
from 8962 human genetics papers covering 2376 diseases and
traits [9]. The identified set of 88 genes commonly associated with
CD and AD/D is shown in Additional file 4. For example, it is
known that rare variants of APOB elevate the level of low-density
lipoprotein cholesterol (LDL-C) and then ultimately increase the
risk of the AD [39]. Meanwhile, genetic mutations of APOB are also
associated with the risk of coronary artery diseases and CD

[40, 41]. Similarly, other notorious shared genetic risks, such as
variants of lipoprotein lipase (LPL), shared between CD and AD/D
were detected [42, 43]. In addition, variants with lower patho-
genicity score including one variant in ADIPOQ (score= 0.227)
were excluded from further analysis (Additional file 4). We filtered
184 germline variants of 58 genes as shared genetic risks of CD
and AD/D, and then finally selected three variants in three genes
(MTHFD1L, DPP10, ADIPOQ) as candidates with pleiotropic features
for the comorbidity of CD and AD/D (Additional file 4). Those three
variants were selected based on the newly identified and rare
variants in ExAC (<1%) and ClinVar [24], and the averaged
pathogenicity scores (>0.7; range [0,1]) from 16 algorithms
including SIFT [21] and Polyphen [22], which quantify the
functional impact of missense variants (Fig. 3A). The overall
distribution of pathogenicity scores across the 16 methods we
used are presented in Additional file 5. The three variants were
detected in six samples from patients with AD, but in no samples
from those without. The average of pathogenicity scores of the
variants are presented in Table 4. The variant of MTHFD1L was
detected in samples from 3 patients with AD in our NBB WES data
(c.1688G>A; p.Arg563His) with pathogenicity score of 0.81, and
rarely detected in the ExAC database covering over 60706
individuals. Similarity, variants of DPP10 and ADIPOQ were
detected in two and one of our AD samples with high pathogenic
scores (0.79 and 0.86, respectively), and rarely detected in the
ExAC database. Therefore, we selected those variants as newly
identified candidates, which may be associated with CD and AD/D.
Because our WES data were generated from brain samples of

patients with AD, we confirmed the variants of the matched blood
samples experimentally, if possible, to exclude the possibility of
somatic mutations. Three selected germline mutations (MTHFD1L
c.1688G>A; p.Arg563His, DPP10 c.2254C>A; p.Gln752Lys, ADIPOQ
c.268G>A; p.Gly90Ser) were reconfirmed in brain samples and
available blood samples from identical individuals through Sanger
sequencing (Fig. 3B).
The rare variants MTHFD1L (c.1688G>A), DPP10 (c.2254C>A),

and ADIPOQ (c.268G>A) were selected as candidates for
pleiotropic variants for CD and AD/D.

Functional validation of the pleiotropic variants using in vitro
experiments
The degree of abundance of CP13 (phosphorylated tau Ser202),
PHF1 (phosphorylated tau Ser396/404), and tau proteins in the
neuronal cell lines by transfected genes is shown in Fig. 4A. We
assessed the abundance of CP12, PHF1, and tau proteins for three
biological replicates for each cell line. The abnormal aggregation
of CP13, PHF1, and tau is a well-known neuropathology of AD/D
[44–46]. We quantified the aggregation of CP13, PHF1, and tau
across the status of genetic variants that we selected (three
repeats per condition). Although the variants of MTHFD1L
(MTHFD1L-M) and DPP10 (DPP10-M) showed similar levels of
expression for CP13, PHF1, and tau, the site-directed mutant
ADIPOQ (ADIPOQ-M; ADIPOQ c.268G>A) displayed abnormal
aggregation of tau and CP13 (Fig. 4B–D; p < 0.05, t-test). Therefore,
the identified ADIPOQ variant (c.268G>A) seems to contribute the
aggregation of tau and CP13 (phosphorylated tau Ser202).
Owing to the poor transfection efficacy of ADIPOQ-M (ADIPOQ

c.268G>A) in a cardiac cell line (H9c2), we constructed an ADIPOQ
knockout (ADIPOQ-KO) cardiac cell using a CRISPR-Cas9 system (px
330 all-in-one vector, Additional file 6). Then, we constructed the
pseudobulk expression of ADIPOQ-KO across 14116 cells by
aggregating the count matrix of single-cell RNA-seq. The
pseudobulk expression of 15791 genes was calculated based on
aggregating the raw read count as depicted in the Methods
section and a previous attempt [28]. By comparing the RNA-seq
result from the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/, accession number: GSE89130), 473
DEGs in ADIPOQ-KO were determined (FDR p < 0.05 and log2 of

Table 3. Statistics of diagnosis trajectory analysis using the set
of HIRA.

Features Frequency

Trajectorya

= the first and followed
nodes linked via edges

No. of trajectories 405

Node
=Diagnosed patients as
a disease i

Total type of diagnosis 604

The 1st diagnosis 170

Patients in the 1st
diagnosis

1,023,171

Fatal outcomes of
diagnosis

2 134

Edge (Directed
acyclic edge)
= Sequence between
diagnosis i and j
(FDR < 0.1)b

Subsequent diagnoses
after the 1st diagnosis

80,316

Mean of steps
diagnoses in a
trajectory

3.24 ± 1.12

aThe trajectory consists of the first node, representing a set of patients
diagnosed with disease i, succeeding nodes are connected via a directed
acyclic edge, representing subsequent diagnoses that occur more
frequently than randomly.
bAll the presented edges were statistically significant (Relative association
(RA) for the co-occurrence of diagnosis i and j > 1 and FDR of the binomial
test for the co-diagnosis of diagnosis i and j < 0.1; FDR of the binomial test
for the sequential directionality of diagnosis dates <0.1). The details of the
diagnosis trajectory model are presented on the following website (https://
www.youtube.com/watch?v=jJMds31-e2g).
Bold characters to emphasize the numbers of the table.
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fold change >5). We conducted a quantile normalization followed
by a comparison of the pseudobulk expression to a cardiomyo-
blast control (GSE89130, bulk RNA-seq results). Here, we note that
the identified variant (ADIPOQ 268G>A) is a missense variant with
a high pathogenicity score (0.86, Additional File 4), meaning the
protein of the ADIPOQ variant would be damaging or truncated.
Therefore, we examined the overall impact of DEGs of ADIPOQ-KO
to prioritize associated biological function for further validation.
The overall gene expression between ADIPOQ-KO and GSE89130
was similar (Pearson correlation coefficient 0.721, p= 1.54E–125)
indicating that the batch variation by sequencing technology was
negligible (Additional file 6). The 473 DEGs are enriched with CD
and cognition impairment pathways including AD, cardiac muscle
contraction, and hypertrophic cardiomyopathy (FDR p < 0.05,
hypergeometry test; Fig. 4E). The enriched gene ontology (GO)
terms of those DEGs show favorable support such as sarcomere
(GO:0030017; FDR p= 0.0049), muscle system process (GO:0003012,

FDR p= 1.23E–05), and contractile fiber (GO:0043292, FDR
p= 0.00049, Additional file 7). The functional impact of ADIPOQ
deletion shows that the alteration of overall gene expression is
associated with cardiac function, including hypertrophic
cardiomyopathy.
In summary, we confirmed that the variant of ADIPOQ

(c.268G>A) contributes to abnormal aggregation of tau, and that
gene expression altered by the knockout of ADIPOQ is peculiarly
associated with dysfunction of cardiac muscle.

Functional validation of the pleiotropic variants using
population-wide data
We scrutinized phenotypic differences by the germline variant of
ADIPOQ (ADIPOQ c.268G>A). Of 502,591 individuals in the UK
Biobank, 49,960 participants have a matched WES data (Table 2).
Of them, we selected 310 who have the rare variant in ADIPOQ
(ENST00000320741.6; c.268A), then selected 49,642 individuals

Fig. 2 The preceding diagnosis of heart disease before dementia. A, B Traced models of disease diagnosis patterns using the directed
acyclic graph (DAG) model. Our DAG model consisted of a node for the disease diagnosis and an edge for subsequent diagnoses presented
that were not random (FDR < 0.1). A From the HIRA dataset, we found that 6.1% of the patients suffering from hypertensive heart and renal
disease (n= 425) were diagnosed with unspecified dementia and Alzheimer’s disease (a major subtype of dementia). B We validated whether
the identical pattern was repeated in the independent dataset obtained from the electronic health records (EHR) of the UCSF Medical Center.
Of the 672 patients with hypertensive heart and kidney disease, 6.8% (n= 46) were diagnosed with dementia. C, D Due to the vague
definition of the “hypertensive heart and kidney disease” diagnosis, we looked into a more detailed diagnosis code at the 5-digit level of ICD-
10. C In the HIRA dataset, approximately 46% of dementia diagnoses made in patients who already had hypertensive heart and renal diseases
were identified after heart failure. Therefore, the diagnosis of dementia after the diagnosis of hypertensive heart and renal disease was
significantly enriched by cardiac disease (CD) (p= 1.08E–04, hypergeometry test). D Likewise, the EHR from the UCSF Medical Center also
showed an identical pattern. Of the 46 dementia diagnoses made in patients with pre-existing hypertensive heart and renal disease, 33 were
identified after the diagnosis of heart failure. The diagnosis of dementia after the diagnosis of hypertensive heart and kidney disease was
enriched by cardiac diseases, such as heart failure (p= 4.66E–02, hypergeometric test).
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who have the major allele in ADIPOQ (ENST00000320741.6;
c.268G). We selected 69 individuals from the minor allele group,
and 276 individuals in the major allele group based on the
propensity score matching analysis [47], thereby minimizing
differences in other confounders, such as age, level of obesity
(measured by the body mass index), and sex, between the
compared sets (Additional file 8).
The volume of hearts, including the thickness of heart wall,

volume of ventricles, and aorta, were estimated based on cardiac
magnetic resonance images (MRIs) using deep learning-based
auto segmentation [31]. The average of the wall thickness of the
heart across 16 sites is significantly increased in the ADIPOQ-M
group (ADIPOQ c.268A, p= 0.0023 in one-sided Wilcoxon test for
whether the thickness of ADIPOQ-M group is greater than W);
mean of the wall thickness in ADIPOQ-W= 5.60 ± 0.76 mm; mean
of the wall thickness in ADIPOQ-M= 5.77 ± 0.64 mm (Fig. 4F). The
wall thickness measured from 16 different sites in the heart
between ADIPOQ-W (major genotype GG) and ADIPOQ-M (minor
genotype AG) is shown in Additional file 9. However, other
screened phenotypes from heart MRIs, such as ventricular volume
and atrial volume, are similar in the allele group of ADIPOQ,
indicating that a thick heart wall associated with the germline
variant of ADIPOQ (ADIPOQ c.268G>A) is independent of heart
volume.
We also examined the genetic contribution of the ADIPOQ

variant (ADIPOQ c.268G>A) for AD/D. Based on the reliability of
the cognitive tests in the UK Biobank [48], we selected mean
reaction time (RT) of participants. Within an assessment, the RT
was measured for 12 rounds by pressing a snap button for which
both cards presented matched correctly. We compared the mean
RTs between the results of the initial assessment (0 year) and the
third assessment (5–10 years later). We omitted the second
assessment due to the lack of assessment results. The long-
itudinal trends of cognition and processing functions are
decreased in both ADIPOQ allele groups with the participants’
aging (Fig. 4G). The mean age of all participants was 53.95 years
(ADIPOQ-W) and 53.45 years (ADIPOQ-M) in the initial assessment,
respectively (Additional file 8). Meanwhile, the mean RTs between
ADIPOQ-W and ADIPOQ-M were found to be similar from the
initial assessment (ADIPOQ-W= 531.94 s; ADIPOQ-M= 531.60 s,
p= 0.4, t-test), however the minor allele group (ADIPOQ-M)
showed a significant increase at the third assessment (ADIPOQ-
W= 569.87 s; ADIPOQ-M= 596.92 s, p < 0.05, t-test). Similarly, the
difference of the mean RT alterations between allele groups is
shown in Fig. 4H. The Y-axis of Fig. 4H indicates the difference
between the mean RTs at the baseline and third assessment; the
larger value of Y-axis of Fig. 4H indicates degeneration of the
cognitive processes and the slowing of RT of participants after the
first assessment. At the third assessment time, the minor allele
group ADIPOQ (ADIPOQ-M, ADIPOQ c.268G>A, Minor AG) showed
an almost 155.24% longer mean RT after the first assessment than
the major allele group (mean difference of the RT between the
first and third test; major GG= 39.16 ± 95.7 s, minor
AG= 60.70 ± 108.44 s, p < 0.05, t-test; Fig. 4H). Although the
onset of AD/D was undetected from the health care records of
these individuals owing to their relatively young age (mid-50s),
our examination shows the contribution of the germline variants
of ADIPOQ (c.268G>A) for the phenotype of AD/D, such as
degeneration of the processing and response.
These results indicated that we successfully validate potential

pleiotropic effects of the variant of ADIPOQ (c.268G>A) for the
phenotype of AD/D (aggregation of tau, and the longitudinal
trend of cognitive degeneration; p < 0.05), and the phenotype of
CD (thickened muscle in the wall of the heart; p < 0.05) (Fig. 4A–H).
The repeated patterns of paired diagnoses (i.e., CD and AD/D)
(Figs. 1–3) from the population-scale EMRs are based on the
pleiotropy of ADIPOQ. Our identified germline variant of ADIPOQ
(c.268G>A) is a genetic risk shared between CD and AD/D.Ta
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DISCUSSION
In the present study, we hypothesized that a repeated diagnosis of
two diseases within a single patient is associated with a shared
biological mechanism, such as a pleiotropic variant, and can be
validated via big data. Using the systematic approach of our
previous work (i.e., DAG modeling) [6], we observed from the NISK
of the HIRA and UCSF data that a CD diagnosis, such as
hypertensive heart disease or heart failure, is particularly frequent
amongst patients with AD/D (odds ratio 11.5 [8.5–15.5, 95%
confidence interval (CI)]). We identified three missense variants,
including ADIPOQ, which might have a pleiotropic role in both
diseases. Functional evidence covering tau aggregation, transcrip-
tional impact of ADIPOQ knockout for cardiomyoblasts, and the
quantitative assessment of cognition and cardiac muscle struc-
tures persistently indicate the pleiotropy of the ADIPOQ variant
(c.268G>A) in CD and AD/D.
Although the expression ADIPOQ has been mainly observed in

fat tissue, genetic variants of ADIPOQ showed association with
diverse disease traits, such as heart failure and dementia. For
example, the release of adiponectin, encoded by ADIPOQ, in
epicardial adipose tissues contributes to the defense mechanism

for myocardial oxidative stress [49]. Moreover, chronic adiponectin
deficiency causes cerebral insulin resistance, leading to AD-like
cognition impairments and Aβ deposition in aged mice [50].
Functional contributions of ADIPOQ for both of CD and AD/D been
suggested previously, whereas confirmation of pleiotropic loci of
ADIPOQ has hitherto been lacking.
Although a plethora of GWAS studies shed light on the genetic

risks shared between diseases and traits, they are mainly based on
statistical support from a population, calling for independent
functional validation. However, analysis of multifunctional genes
like that for ADIPOQ, which is involved in regulating fat
metabolism and obesity-associated cognitive decline [51], requires
multiple evidences for identification of their functional roles. Here,
the power of big data analytics, including next-generation
sequencing analysis and our disease trajectory modeling, catalyze
the identification and validation of newly identified pleiotropic
variants for CD and AD/D and showed that significant genetic
evidences is indispensable to interpret data-driven analysis in
medicine. Therefore, investigation of national projects to exploit
the human genome aggregating phenotype data, such as AllofUs
(https://allofus.nih.gov/) and FinnGen (https://www.finngen.fi/en),

Fig. 3 Identification of the candidates of the pleiotropic variants for CD and AD/D. A Integration of the variant–disease associations
metaset from our VARIMED and the whole-exome sequencing (WES) dataset. We selected 3 variants in MTHFD1L, DPP10, and ADIPOQ for
further validation. B Reconfirmation of selected germline variants using Sanger sequencing.
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would accelerate the identification of genetic architecture under-
lying human diseases.
The present study has several limitations. Although we

validated phenotypic impact for cardiac muscle alongside the
variant of ADIPOQ (c.268G>A) using the UK Biobank, underlying

transcriptional evidence remained unclear because of the poor
transfection efficacy of ADIPOQ (c.268G>A) in H9c2 cells. The
suggested pleiotropic locus of ADIPOQ shows functional impact
for CD- and AD/D-asociated phenotypes (i.e., tau aggregation and
hypertrophic cardiac muscle). The chronologic order of these
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diseases (CD followed by AD/D) and late-onset propensities are
open questions. We also acknowledge that the suggested
pleiotropic locus of ADIPOQ (c.268G>A) is a rare variant (minor
allele frequency [MAF] <1% in ExAC), whereas the known
incidence of CD and AD/D is substantial. While it is possible that
common variants (MAF > 5%) are also associated with CD and AD/
D, the functional impact of rare variants has been shown to have
more substantial contributions [52]. The influence of confounders,
including aging, as well as the subtle effects of common variants,
require further study. Therefore, the presented Additional file 4
would pave the way to identify additional pleiotropic loci of CD
and AD/D by conjugating genomic data and linked phenotype
data, such as that in the UK Biobank, AllofUs, and FinnGen.
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